首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscoelastic damage model for asphalt concrete   总被引:1,自引:1,他引:0  
The strain rate-dependent mechanical behavior of asphalt concrete was characterized using unconfined compression tests carried out at different loading rates. It was shown that at high strain rates, the elastic deformation and peak axial stress are highly sensitive to strain rate. Both increase as the strain rate increases. At very low strain rates, elastic response and unconfined compressive strength are relatively independent of the loading rate. Based on the experimental observations, a simple viscoelastic damage model is proposed for the strain rate-dependent unconfined compression behavior of asphalt concrete. In the model, strain rate response is modeled by a two-component viscoelastic model consisting of a constant elastic modulus and a viscous modulus that is related by a power-law function to the axial strain rate. Failure and strain softening are modeled via a damage formulation where damage evolution in the asphalt concrete is given by a simple form of the Weibull distribution function. The model was shown to be capable of describing the strain rate-dependent deformation, compressive strength, strain-softening and creep behavior of asphalt concrete. The model is relatively simple and requires only five material parameters.  相似文献   

2.
3.
This paper presents the results from discrete element modelling (DEM) of an idealised (sand) asphalt mixture under constant strain rate (velocity) compressive loading using the Burgers viscoelastic model. Using dimensional analysis it is shown that the effect of scaling applied velocity is the same as that of scaling both viscosities in the Burgers model by the same factor. This has been shown to be the case for a bonded aggregate, and it also has been shown to be applicable even when bond breakage occurs within the sample. This scaling method will be of great benefit in modelling tests on asphalt under different constant strain rates, simply by scaling both viscosities to minimise computational time.  相似文献   

4.
Creep tests on asphalt mixtures have been undertaken under four stress levels in the laboratory while the discrete element model (DEM) has been used to simulate the laboratory tests. A modified Burger’s model has been used to represent the time-dependent behaviour of an asphalt mixture by adding time-dependent moment and torsional resistance at contacts. Parameters were chosen to give the correct stress-strain response for constant strain rate tests in Cai et al. (2013). The stress-strain response for the laboratory creep tests and the simulations were recorded. The DEM results show reasonable agreement with the experiments. The creep simulation results proved to be dependent on both bond strength variability and positions of the particles. Bond breakage was recorded during the simulations and used to investigate the micro-mechanical deformation behaviour of the asphalt mixtures. An approach based on dimensional analysis is also presented in this paper to reduce the computational time during the creep simulation, and this analysis is also a new contribution.  相似文献   

5.
Zheng  Wenbo  Tannant  Dwayne D.  Cui  Xiaojun  Xu  Cong  Hu  Xinli 《Acta Geotechnica》2020,15(2):347-364

Brinell indentation tests were performed on Montney siltstone, and the results were compared with discrete element indentation simulations that use the micro-parameters calibrated using compression test data from the same siltstone samples. The simulated proppant indentation into the rock surface can be 15% less than the laboratory measurements. A lower effective particle–particle modulus and thus a lower Young’s modulus are needed in discrete element models for proper simulation of indentation. An equation to find the appropriate value of Young’s modulus for indentation simulation is proposed using Brinell indentation tests including 198 laboratory tests and 32 discrete element simulations. This equation can improve the prediction of Young’s modulus and thus the particle–particle effective modulus for indentation simulations to match the measured force–indentation depth curve in the laboratory. Using the improved micro-parameters, a parametric analysis of the influence of rock Young’s modulus and proppant particle size on proppant embedment was performed. An equation to estimate Brinell hardness as a function of Young’s modulus and closure stress was derived. A practical procedure was developed to predict proppant embedment from the estimated hardness. The predictions agree with the laboratory measurements in a case study on the Montney Formation.

  相似文献   

6.
Comparison of size effect for different types of strength tests   总被引:2,自引:0,他引:2  
SummaryComparison of Size Effect for Different Types of Strength Tests Different theories have been proposed to explain and predict size effect. Notable is Weibull's Weakest link theory. In addition various theories have been founded on strain energy consumption at failure. The present paper suggests a theoretical approach, based on energy considerations and mode of failure, which holds for diverse types of mechanical testing. Maximum size effect is assumed to be associated with failure through development of a single fracture plane and a lack of size effect is associated with failure affecting a volume of material. The quantitative expression of the theoretical approach is based on the relationship between load at failure (P) and cross sectional area of the specimen (A):P=KA n wheren expresses size effect andK is a constant.The theoretically lowestn-value equals 0.75 expressing maximal size effect whereas the theoretically highestn-value is 1.00 expressing lack of size effect.n-values evaluated from published data for various mechanical tests indeed lie between these limits and appear to be related to type of test, material properties and specimen shape. Point load tests and Brazilian tests are generally associated with large size effects. This may be attributed to the test conditions which promote development of single fracture planes. On the other hand relatively small size effects are generally found for uniaxial compression tests. Failure in these tests characteristically occurs through multiple fracturing and crushing and therefore affects a volume of material rather than a single plane. Brittleness seems to be associated with large size effects and ductility with small size effects.With 4 Figures  相似文献   

7.
In order to determine the properties of lean Roller compacted concrete mixture of Filiatrinos Dam, a number of trial mixtures were prepared and a trial section was constructed. The results of the above tests were supplemented with laboratory measurements and in situ tests that were performed during the quality control of the dam construction. Additionally, results of trial mixtures using flysch excavation material from the dam area and limestone aggregates with clay lumps from a nearby quarry were used. This paper examines the impact of the quality of aggregates and the cementitious materials’ content on compressive strength and also the influence of other factors, such as the percentage of compaction. Certain mathematical relations are suggested that can be used in the design phase of hardfill Dams as well as in the quality control during construction. Moreover, the influence of the cement content on the compressive strength and the percentage of the replacement of cement with flying ash are studied.  相似文献   

8.
张倩  李泽  温志广  杨永红 《冰川冻土》2017,39(2):358-365
针对寒区道路工程中的沥青路面冻融受荷损伤问题,借助细观损伤力学和宏观统计随机损伤模型,建立了冻融与荷载耦合作用下的沥青混合料损伤本构关系和损伤演化方程;探讨了冻融循环次数、应变和油石比影响下的沥青混合料冻融受荷损伤劣化机理。研究表明:冻融循环疲劳损伤累积和荷载作用于带有微缺陷粗集料界面附近产生的应力集中加剧了沥青混合料总损伤劣化程度。冻融循环20次之后,损伤度变化不大,基本趋于恒定;相同损伤程度时,应变值随冻融次数的增加而减小。油石比对总损伤影响显著,当油石比相对较小时,以冻融破坏为主;当油石比较大时,以受荷破损为主。研究成果可为寒区沥青路面抗冻设计、性能评价及养护维修时机选择提供参考。  相似文献   

9.
Dynamic Characteristics of Granite Subjected to Intermediate Loading Rate   总被引:29,自引:11,他引:18  
Summary A large diameter split Hopkinson pressure bar (SHPB) has been developed. This equipment is briefly described, together with a shaped striker that initiates a half-sine incident waveform to obtain the complete stress-strain relationship of the Bukit Timah granite at medium strain rate. Good constant strain rate was derived, and the dynamic complete stress-strain curves and energy absorption of the granite were measured at a strain rate between 20 and 60 per second. Repeated impact between 60–90% of the static strength of the granite was also conducted. Results from the tests show that the cumulative damage of the granite depends on the peak stress of the dynamic loads with a fixed duration. The dynamic fracture strength of the granite loaded at medium strain rate is directly proportional to the cube root of the strain rate. For the granite loaded at this strain rate, Youngs modulus is unchanged. Energy absorption of the samples loading to fragmentation determined its fragmented size distribution. At high strain rate, the rock possesses large energy absorption and the particle size of the fragments is much smaller.  相似文献   

10.
A split Hopkinson pressure bar (SHPB) system with a special shape striker has been suggested as the test method by the International Society for Rock Mechanics (ISRM) to determine the dynamic characteristics of rock materials. In order to further verify this testing technique and microscopically reveal the dynamic responses of specimens in SHPB tests, a numerical SHPB test system was established based on particle flow code (PFC). Numerical dynamic tests under different impact velocities were conducted. Investigation of the stresses at the ends of a specimen showed that the specimen could reach stress equilibrium after several wave reverberations, and this balance could be maintained well for a certain time period after the peak stress. In addition, analyses of the reflected waves showed that there was a clear relationship between the variation of the reflected wave and the stress equilibrium state in the specimen, and the turning point of the reflected wave corresponded well with the peak stress in the specimen. Furthermore, the reflected waves can be classified into three types according to their patterns. Under certain impact velocities, the specimen deforms at a constant strain rate during the whole loading process. Finally, the influence of the micro-strength ratio ( \({{\tau_{\text{c}} } \mathord{\left/ {\vphantom {{\tau_{\text{c}} } {\sigma_{\text{c}} }}} \right. \kern-0pt} {\sigma_{\text{c}} }}\) ) and distribution pattern on the dynamic increase factor (DIF) of the strength DIF were studied, and the lateral inertia confinement and heterogeneity were found to be two important factors causing the strain rate effect for rock materials.  相似文献   

11.
The maintenance of harbor waterways generates large amounts of dredged sediments which are often rich in coexisting organic and inorganic contaminants. Electrokinetic remediation treatments have recently been developed for the simultaneous removal of heavy metals and polycyclic aromatic hydrocarbons (PAHs), using various enhancing agents generally tested sequentially. In this study, different processing fluids were tested, alone or mixed, to improve the decontamination of aged model sediment contaminated with cadmium, lead, chromium, copper, zinc, and five PAHs. Nitric acid (NA) and citric acid (CA) were tested to avoid the formation of an alkaline front into the sediment and favor the metals removal, while an anionic surfactant [sodium dodecyl sulfate (SDS)] and a nonionic surfactant (Tween 20) were tested to solubilize and mobilize PAHs. Processing fluids were circulated under a constant voltage gradient of 1 V cm?1 for 10–14 days. NA showed an excellent potential to remove metals (76.8–99.9 % removal) and PAHs (70.3–89.7 % removal) in a single run. Besides, the mixture of Tween 20 and CA, more environmental friendly, could be considered as a relatively good processing fluid for the simultaneous removal of metals (10.3–90.8 % removal) and PAHs (53.6–61.6 % removal) from the fine-grained sediment, while SDS mixed to CA was not a good candidate for this purpose (0.1–65 % removal for metals and 34.1–41.0 % removal for PAHs).  相似文献   

12.
Absorption of nitric oxide from nitric oxide /air mixture in hydrogen peroxide solution has been studied on bench scale internal loop airlift reactor. The objective of this investigation was to study the performance of nitric oxide absorption in hydrogen peroxide solution in the airlift reactor and to explore/determine the optimum conditions using response surface methodology. A Box–Behnken model has been employed as an experimental design. The effect of three independent variables—namely nitric oxide gas velocity, 0.02–0.11 m/s; nitric oxide gas concentration, 300–3,000 ppm and hydrogen peroxide concentration, 0.25–2.5 %—has been studied on the absorption of nitric oxide in aqueous hydrogen peroxide in the semi-batch mode of experiments. The optimal conditions for parameters were found to be nitric oxide gas velocity, 0.02 m/s; nitric oxide gas concentration, 2,246 ppm and hydrogen peroxide concentration, 2.1 %. Under these conditions, the experimental nitric oxide absorption efficiency was observed to be ~65 %. The proposed model equation using response surface methodology has shown good agreement with the experimental data, with a correlation coefficient (R 2) of 0.983. The results showed that optimised conditions could be used for the efficient absorption of nitric oxide in the flue gas emanating from industries.  相似文献   

13.
In order to apply the mechanical properties (measured on material specimens or laboratory‐sized models) to large structures (such as concrete dams), a non‐linear theory able to predict the size‐scale effect has to be used. One of these theories was first proposed by Hillerborg and co‐workers (fictitious crack model) and is based on the earlier works by Barenblatt and Dugdale for metals (cohesive crack model). It is based on the existence of a fracture process zone (FPZ), where the material undergoes strain softening. The behaviour of the material outside the FPZ is linear elastic. A large number of short‐time laboratory tests were executed, by varying the load, under crack mouth opening displacement control. Since concrete exhibits a time‐dependent behaviour, an interaction between creep and micro‐crack growth occurs in the FPZ. Therefore, different testing conditions can be applied: rupture can be achieved by keeping the load constant before peak value (pre‐peak tests), or after peak value and after an unloading and reloading procedure (post‐peak tests). The crack propagation rate is shown to be small enough to neglect inertial forces and large enough to keep the time‐dependent behaviour of the process zone as dominant compared to the behaviour of the undamaged and viscoelastic zone. Due to the variability in material microstructure from one specimen to another, experimental data show large ranges of scatter. Well established methods in probability theory require sufficient experimental data in order to assume a probability density distribution. The objective of this study is to investigate the ranges of variation of the time response under constant load in simple structural elements associated with pre‐selected variation (fuzziness) in the main material parameters. For situations where the values of the material parameters are of a non‐stochastic nature, the fuzzy set approach to modelling variability has been proposed as a better and more natural approach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
An inverse micromechanics approach allows interpretation of nanoindentation results to deliver cohesive‐frictional strength behavior of the porous clay binder phase in shale. A recently developed strength homogenization model, using the Linear Comparison Composite approach, considers porous clay as a granular material with a cohesive‐frictional solid phase. This strength homogenization model is employed in a Limit Analysis Solver to study indentation hardness responses and develop scaling relationships for indentation hardness with clay packing density. Using an inverse approach for nanoindentation on a variety of shale materials gives estimates of packing density distributions within each shale and demonstrates that there exists shale‐independent scaling relations of the cohesion and of the friction coefficient that vary with clay packing density. It is observed that the friction coefficient, which may be interpreted as a degree of pressure‐sensitivity in strength, tends to zero as clay packing density increases to one. In contrast, cohesion reaches its highest value as clay packing density increases to one. The physical origins of these phenomena are discussed, and related to fractal packing of these nanogranular materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents the creep behaviour of intact and remoulded specimens of fibrous peat obtained from a field site near Anzac, Alberta, Canada. The creep behaviour was investigated by means of long-term drained and undrained triaxial tests. The development of volumetric, axial, and undrained axial strain and strain rate during drained and undrained creep tests under variable stress conditions is presented. The stress strain strain rate (p′ε v\(\dot{\varepsilon }_{\text{v}}\)) relationship is found to be unique for different stress and loading durations. The p′ε v\(\dot{\varepsilon }_{\text{v}}\) relationship is analysed and represented by creep isotaches. The applicability of different creep models developed for normally consolidated clay is discussed and applied to define the development of creep strain in fibrous peat under varying isotropic and deviator stresses. The secondary consolidation coefficient for evaluating the volumetric strain rate of peat is found to be applicable with some limits. The drained creep behaviour of remoulded peat specimens differs from the behaviour shown by Shelby tube specimens, whereas the undrained creep behaviour in remoulded and Shelby tube specimens is similar.  相似文献   

16.
Dongping Lake is an important regulator for the Eastern Route of South-to-North Water Diversion Project in China, and the water quality assurance of it is of great importance. To investigate the distribution characteristics and burial process of phosphorus (P) in Dongping Lake as well as their relationship with regional economic development and human activities, 33 spatially distributed surface sediment samples and one lake sediment core were extracted from Dongping Lake. A harmonized procedure for the P forms in freshwater sediments developed by the European Programme, Standards, Measurements, and Testing was used in this paper. The results show that NaOH–P (P bound to Al, Fe, Mn oxides or hydroxides), HCl–P (Ca-bound P), inorganic phosphorus (IP), organic phosphorus (OP), and total phosphorus (TP) in the surface sediments show a strong spatial variability. The highest NaOH–P and OP concentrations were observed in the eastern and south-eastern region of the lake and decreased gradually away from the mouth area of Dawen River. We deduced that anthropogenic input via the Dawen River is the main contributor. The higher concentration of HCl–P occurred in the north-west region of the lake and increased in a gradient away from the mouth area of Dawen River, and this pattern of distribution could be related to grain-size effects and higher transport energies close to riverine inlets. Pollution reflected by phosphorus in the core sediments of Dongping Lake is well consistent with the economic development history of Dongping County. From the beginning of the 20th century to the middle 1970s, the concentrations of each P speciation did not vary largely and runoff of the Yellow River mainly contributed to the P accumulation in the sediment, which might reflect the background values of them in the lake in pre-industrial period. The stable Mz (mean grain size), low loss-on-ignition (LOI), and high sedimentary flux also support this. The rapid increase of NaOH–P and OP at 10–0 cm (especially 5–0 cm) indicates the enhancing anthropogenic eutrophication since the middle 1970s. The LOI peak period and a coarsening of particle size also support this interpretation. However, the decreasing of TP and HCl–P was attributed to the change in sediment supply. As due to construction of dams around the lake, runoff of the Dawen River mainly contributed to the P accumulation in the sediment during this period.  相似文献   

17.
This paper presents the results from a pile load testing program for a bridge construction project in Louisiana. The testing includes two 54-in. open-ended spun cast concrete cylinder piles, one 30-in. open-ended steel pile and two (30- and 16-in.) square prestressed concrete (PSC) piles driven at two locations with very similar soil conditions. Both cone penetration tests (CPTs) and soil borings/laboratory testing were used to characterize the subsurface soil conditions. All the test piles were instrumented with vibrating wire strain gauges to measure the load distribution along the length of the test piles and measure the skin friction and end-bearing capacity, separately. Dynamic load tests were performed on all test piles at different times after pile installations to quantify the amount of setup with time. Static load tests were also performed on the PSC and open-ended steel piles. Due to expected large pile capacities, the statnamic test method was used on the two open-ended cylinder piles. The pile capacities of these piles were evaluated using various CPT methods (such as Schmertmann, De Ruiter and Beringen, LCPC, Lehane et al. methods). The result showed that all the methods can estimate the skin friction with good accuracy, but not the end-bearing capacity. The normalized cumulative blow counts during pile installation showed that the blow count was always higher for the PSC piles compared to the large-diameter open-ended cylinder pile, regardless of pile size and hammer size. Setup was observed for all the piles, which was mainly attributed to increase in skin frictions. The setup parameters “A” were back-calculated for all the test piles and the values were between 0.31 and 0.41.  相似文献   

18.
The generation of both Brazil and Dauphiné twins is triggered by strain fields associated with the fluctuation of growth parameters when solid inclusions of goethite (?) are precipitated on to a growth surface. Brazil twins are generated either directly from solid inclusions of smaller size or dislocations originating therefrom, whereas Dauphiné twins are generated only directly from solid inclusions of larger size. Precipitation of polymerized embryonic particles of SiO2 on the surface of solid inclusions is considered to be responsible for the generation of Brazil twins, whereas for Dauphiné twins it is necessary that embryonic particles precipitated in twin orientation on the surface of solid inclusions grow beyond a critical size.  相似文献   

19.
The pre-bored grouted planted pile is a new type of composite pile foundation that consists of a precast concrete pile and the surrounding cemented soil. A series of shear tests were conducted in a specific shear test apparatus to investigate the shaft capacity of the different pile–soil interfaces. The test results show that the frictional capacity of the cemented soil–sand interface is controlled mainly by the sand properties, while the strength of the cemented soil slightly influences the interface properties by affecting the normalized roughness coefficient Rn. The frictional capacity of the concrete–sand interface is similar to the frictional capacity of the cemented soil–sand interface, and the existence of mud cake layer virtually hampers the frictional properties of the interface. The maximum skin friction of the concrete–cemented soil interface increases approximately linearly with the increasing cemented soil strength, and the value of the maximum skin friction is much larger than that of the cemented soil–sand interface of identical cemented soil strength, which demonstrates the integrity of the pre-bored grouted planted pile in the load transfer process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号