首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ocean Modelling》2011,40(3-4):209-219
Meridional shifts of the Gulf Stream (GS) jet on interannual to decadal timescales and the corresponding oceanic changes around the GS are investigated using a near global eddy-resolving ocean model hindcast from 1960 to 2003. The simulated variability in the shifts of the GS jet axis shows good agreement with observations, and lags atmospheric fluctuations characterized by the North Atlantic Oscillation by about 2 years. This lagged response of the GS jet to the atmospheric variations is attributed to the westward propagation of the undulation of the jet axis from 45°W to 75°W, which has a wavelength of about 4000 km and a displacement of 0.5°. The propagation direction and phase speed of about 2.8 cm s−1 are consistent with the thin-jet theory. The shifts of the jet axis in the downstream region are likely induced by wind fluctuations through Ekman convergence over the central North Atlantic. Associated with the northward (southward) shift of the jet axis, sea surface temperature is warming (cooling) around and north of the jet, and the former warming has a deep and meridionally narrow subsurface structure, consistent with the northward shift of the jet. The meridional shifts of the jet accompany coherent meridional shifts of energetic eddy activity regions around the GS. Our numerical results suggest that the GS jet brings the atmospheric signals from the central to the western North Atlantic, and the resultant meridional shift of the jet induces the notable oceanic changes around the GS.  相似文献   

2.
Remineralization ratios (–O2:P, Corg.:P, N:P) in the ocean are estimated from ocean tracer data using a new approach, which takes into account the effects of local exchange across neutral surfaces. This approach is applied to temperature, salinity, phosphate, nitrate, dissolved oxygen, alkalinity, and dissolved inorganic carbon data from the low- and mid-latitude Pacific, Indian, and South Atlantic Oceans. The consideration of local exchange effects tends to reduce the –O2:P and Corg.:P remineralization estimates above 1500 m compared to earlier estimates. Below 1500 m, exchange effects can be neglected (except in the South Atlantic) and earlier estimates appear robust. In the deep South Atlantic, the consideration of these effects leads to increased –O2:P and Corg.:P remineralization ratio estimates, bringing them more in line with the robust deep ocean estimates. For reasonable, open ocean mixing coefficient values and several choices for phosphate remineralization rate profiles, –O2:P (Corg.:P) remineralization ratios in the ocean increase from about 140 (100) at 750 m depth to about 170 (130) at 1500 m and remain so deeper down. Such an increase down through the upper ocean thermocline implies significant fractionation during remineralization of organic matter—nutrients are released higher in the water column than inorganic carbon. These results also argue for a –O2:P (Corg.:P) uptake ratio in new production of about 140–150 (100–110). N:P remineralization ratios decrease from about 15 at 750 m to about 12 at 1500–2000 m. This may reflect a “true” N:P remineralization (and uptake) ratio of about 16, modified by denitrification.These results imply that applications of derived, quasi-conservative tracers, based on the assumption of constant remineralization ratios, may be subject to significant error for depths less than 1500 m. In addition, present Ocean General Circulation Models of the natural carbon cycle in the ocean–atmosphere system assume remineralization to occur without fractionation but have problems simulating observed, pre-industrial levels of atmospheric pCO2, given observed ocean inventories of alkalinity and dissolved inorganic carbon. Implementation of uptake and (depth-dependent) remineralization ratios estimated here would likely reduce this problem considerably. Furthermore, calculations with a simple global carbon cycle model show that fractionation in the modern ocean, as estimated in the present work, has reduced atmospheric pCO2 by more than 20 ppm below the level it would have had without fractionation.  相似文献   

3.
Climate models with biogeochemical components predict declines in oceanic dissolved oxygen with global warming. In coastal regimes oxygen deficits represent acute ecosystem perturbations. Here, we estimate dissolved oxygen differences across the global tropical and subtropical oceans within the oxygen minimum zone (200–700-dbar depth) between 1960–1974 (an early period with reliable data) and 1990–2008 (a recent period capturing ocean response to planetary warming). In most regions of the tropical Pacific, Atlantic, and Indian Oceans the oxygen content in the 200–700-dbar layer has declined. Furthermore, at 200 dbar, the area with O2 <70 μmol kg?1, where some large mobile macro-organisms are unable to abide, has increased by 4.5 million km2. The tropical low oxygen zones have expanded horizontally and vertically. Subsurface oxygen has decreased adjacent to most continental shelves. However, oxygen has increased in some regions in the subtropical gyres at the depths analyzed. According to literature discussed below, fishing pressure is strong in the open ocean, which may make it difficult to isolate the impact of declining oxygen on fisheries. At shallower depths we predict habitat compression will occur for hypoxia-intolerant taxa, with eventual loss of biodiversity. Should past trends in observed oxygen differences continue into the future, shifts in animal distributions and changes in ecosystem structure could accelerate.  相似文献   

4.
Satellite remote sensing offers new means of quantifying particulate organic carbon, POC, concentration over large oceanic areas. From SeaWiFS ocean color, we derived 10-year data of POC concentration in the surface waters of the global ocean. The 10-year time series of the global and basin scale average surface POC concentration do not display any significant long-term trends. The annual mean surface POC concentration and its seasonal amplitude are highest in the North Atlantic and lowest in the South Pacific, when compared to other ocean basins. POC anomalies in the North Atlantic, North Pacific, and global concentrations seem to be inversely correlated with El Niño index, but longer time series are needed to confirm this relationship. Quantitative estimates of POC reservoir in the oceanic surface layer depend on the choice of what should represent this layer. Global average POC biomass is 1.34 g m?2 if integrated over one optical depth, 3.62 g m?2 if integrated over mixed layer depth, and up to 6.41 g m?2 if integrated over 200-m layer depth (when assumed POC concentration below MLD is 20 mg m?3). The global estimate of total POC reservoir in the surface 200-m layer of the ocean is 228.61×1013 g. We expect that future estimates of POC reservoir may be even larger, when more precise calculations account for deep-water organic-matter maxima in oligotrophic regions, and POC biomass located just below the seasonal mixed layer in spring and summer in the temperate regions.  相似文献   

5.
Chlorofluorocarbon (CFC) inventories provide an independent method for calculating the rate of North Atlantic Deep Water (NADW) formation. From data collected between 1986 and 1992, the CFC-11 inventories for the major components of NADW are: 4.2 million moles for Upper Labrador Sea Water (ULSW), 14.7 million moles for Classical Labrador Sea Water (CLSW), 5.0 million moles for Iceland–Scotland Overflow Water (ISOW), and 5.9 million moles for Denmark Strait Overflow Water (DSOW). The inventories directly reflect the input of newly formed water into the deep Atlantic Ocean from the Greenland, Iceland and Norwegian Seas and from the surface of the subpolar North Atlantic during the time of the CFC-11 transient. Since about 90% of CFC-11 in the ocean as of 1990 entered the ocean between 1970 and 1990, the formation rates estimated by this method represent an average over this time period. Formation rates based on best estimates of source water CFC-11 saturations are: 2.2 Sv for ULSW, 7.4 Sv for CLSW, 5.2 Sv for ISOW (2.4 Sv pure ISOW, 1.8 Sv entrained CLSW, and 1.0 Sv entrained northeast Atlantic water) and 2.4 Sv for DSOW. To our knowledge, this is the first calculation for the rate of ULSW formation. The formation rate of CLSW was calculated for an assumed variable formation rate scaled to the thickness of CLSW in the central Labrador Sea with a 10 : 1 ratio of high to low rates. The best estimate of these rates are 12.5 and 1.3 Sv, which average to 7.4 Sv for the 1970–1990 time period. The average formation rate for the sum of CLSW, ISOW and DSOW is 15.0 Sv, which is similar to (within our error) previous estimates (which do not include ULSW) using other techniques. Including ULSW, the total NADW formation rate is about 17.2 Sv. Although ULSW has not been considered as part of the North Atlantic thermohaline circulation in the past, it is clearly an important component that is exported out of the North Atlantic with other NADW components.  相似文献   

6.
The concentration of dissolved and particulate Re have been measured in the Narmada, Tapi and the Mandovi estuaries in the Arabian Sea and the Hooghly estuary in the Bay of Bengal. Re concentration in water and particulate matter of these estuaries is highly variable. Re in river waters analysed varies from 1 to 41 pmol/kg, the lowest in the Mandovi and the highest in the Mahi river. Re concentrations in the rivers analysed except in the Mandovi river are higher than the average global riverine Re concentration of 2.1 pmol/kg. Based on this study and the available data, the contemporary global annual flux of dissolved riverine Re is estimated to be ~ 350 × 103 mol with an average concentration of ~ 9.2 pmol/kg, much higher than the earlier estimates. Residence time of Re in the oceans based on this estimate is 175,000 years, ~ 4 times lower compared to earlier estimates. Re behaves conservatively in all the estuaries studied. Re concentrations of seawater in the Bay of Bengal and in the Arabian Sea, estimated from the data of the Hooghly and the Mandovi estuaries respectively are ~ 40 pmol/kg, similar to the open ocean Re values of the Arabian Sea measured in this study and the values reported for in other oceanic regions. However, the dissolved Re in the Gulf of Cambay is 2 to 5 times higher, consistent with the high Re measured in the Mahi estuary and in the coastal waters of the Gulf of Cambay. The source of high Re in the Gulf of Cambay seems to be anthropogenic, measurements of Re in rivers and industrial waste waters draining into the Gulf supply amount to ~ 2300 mol of Re annually. This anthropogenic supply coupled with high residence time of water in the Gulf contribute to its high Re. Re concentration in suspended sediments of the Narmada estuary varies from 1 to 2 pmol/g, and does not show any discernible trend with salinity.The contemporary global riverine Re supply to the oceans estimated in this study is ~ 2–4 times higher compared to its removal in the reducing (anoxic/suboxic) sediments, indicating non-steady state of Re in the ocean. High dissolved riverine Re flux coupled with high Re content in the Gulf of Cambay highlights the need of a detailed study of Re in the various global rivers and in oceans including coastal regions and semi enclosed basins of the world to understand its behaviour in various reservoirs and to constrain the residence time of Re in the ocean.  相似文献   

7.
This paper aims to analyse acoustic-propagation character in the front area of Kuroshio Extension (KE). By analysing Argo data and the Sea surface height (SSH) data in this KEF area, a two-dimensional (2D) sound-speed feature model (SSPFM) characterising the KEF is proposed. The SSPFM has a transition zone with a width about 100 km and the sound channel changes from 1000 m south of KEF to 300 m north of KEF, resulting in a sharp gradient about 7 m/km. Along with the meandering character of the KEF axis, the sharp gradient results in a rather complicated acoustic environment in the KEF area. With reanalysis data from the hybrid coordinate ocean model, a three-dimensional (3D) sound-speed environment is established. The acoustic propagation character in the KEF area is then analysed with the 2D SSPFM and the 3D acoustic environment. Results show that the KEF affects acoustic propagation mainly by modifying the sound channel depth. Given that acoustic propagation in the KEF area is influenced mainly by the meandering KEF, with the near-real-time SSH data to locate the KEF, the 2D SSPFM is able to provide a near-real-time estimate of the underwater 3D acoustic environment.  相似文献   

8.
Current estimates point to a mismatch of particulate organic carbon supply derived from the surface ocean and the microbial organic carbon demand in the meso- and bathypelagic realm. Based on recent findings that chemoautotrophic Crenarchaeota are abundant in the mesopelagic zone, we quantified dissolved inorganic carbon (DIC) fixation in the meso- and bathypelagic North Atlantic and compared it with heterotrophic microbial activity. Measuring 14C-bicarbonate fixation and 3H-leucine incorporation revealed that microbial DIC fixation is substantial in the mesopelagic water masses, ranging from 0.1 to 56.7 μmol C m−3 d−1, and is within the same order of magnitude as heterotrophic microbial activity. Integrated over the dark ocean’s water column, DIC fixation ranged from 1–2.5 mmol C m−2 d−1, indicating that chemoautotrophy in the dark ocean represents a significant source of autochthonously produced ‘new organic carbon’ in the ocean’s interior amounting to about 15–53% of the phytoplankton export production. Hence, chemoautotrophic DIC fixation in the oxygenated meso- and bathypelagic water column of the North Atlantic might substantially contribute to the organic carbon demand of the deep-water microbial food web.  相似文献   

9.
To describe the larval and juvenile fish fauna and to evaluate the relative contribution of the ocean and the estuary as settlement areas for benthic species, we compared the composition and abundance of larval fish supply to that of recently settled juvenile fishes in both ocean and an adjacent estuary habitats in southern New Jersey. The study was conducted from May to November 1992 in the Great Bay–Little Egg Harbor estuary (<1–8 m sampling depth) and on the adjacent inner continental shelf in the vicinity of Beach Haven Ridge (8–16 m). During the study more larvae nearing settlement (postflexion) were captured in the estuary than in the ocean. Settlement occurred earlier in the estuary than in the ocean perhaps under the influence of earlier, seasonal warming of estuarine waters. There appeared to be two spatial patterns of settlement in the study area based on the dominant species (n = 17) represented by a sufficient number of individuals (n  25 individuals). There were species that primarily settle in the estuary, as represented by both estuarine residents (n = 3) and transients (n = 4), and those that settle in both the estuary and the ocean (n = 10). However, there were no species whose larvae were present in the estuary yet settle in the ocean. The fact that many of the species settle in both the estuary and the ocean indicates an overlap between these habitats because, at least for some species, these habitats may function in the same way. Further resolution of fish settlement patterns, and its influence on recruitment will need to rely on synoptic comparisons between estuaries and the ocean over multiple years.  相似文献   

10.
Rapid ‘swing’, compass variations O(10°) in O(10 s), and ‘spin’, complete rotations around the vertical axis within a few minutes, are a concern of acoustic current meters moored in-line. Observations are used from fast sampling, at once per 1 and 30 s, instrumentation on deep-ocean moorings mainly outside surface wave and bottom boundary influences. Such instruments do not require a vane common to some historic mechanical current meters and they are often moored in a much easier to handle sub-surface buoy or mounting rack, without vanes. In their mountings they are nearly symmetric, so that they can spin freely in (turbulent; shear) flows. A comparison is made between noise levels of such free spinning instrumentation with those of instruments mounted in a fixed bottom-frame and with those of instruments equipped with a vane to one side. Typical spinning has a single rotation varying between 40 and 200 s. Spinning is shown to be highly binary: on or off. Its effects are found negligible on estimates of ocean currents, provided compass updates are adequate as in existing instrumentation. Acoustic noise is O(10) times larger than noise due to spinning. Some effects of spinning are noticed in the acoustic echo amplitude showing higher noise at frequencies >100 cpd, cycles per day. The character of this noise changes dramatically due to spinning. However, it is mainly in the ocean turbulence range and does not affect measurements of internal waves or periodic zooplankton motions.  相似文献   

11.
We have hypothesized that the weekly/biweekly passage of winter storms in the subtropical open ocean destabilizes the water column leading to pulsed NO3? inputs, resulting in new production that is not accounted for in most annual estimates. This paper presents data on nitrogen and carbon cycling in the Sargasso Sea at approximately daily resolution, during the period prior to seasonal stratification in 2004 and 2005; these data permit us to assess the importance of winter storms for introducing NO3? and the contribution of these inputs to annual new and export production. The two sampling years were in stark contrast to each other with 2004 characterized by periods of relative calm between winter storms, and 2005 characterized by nearly continuous storm activity. As a result, temporal variability in mixed layer depth (MLD) and euphotic zone [NO3?] were very different between years. MLDs in 2004 increased to >150 m in response to the passage of storms and then rapidly shoaled to <100 m leading to the pulsed injection of NO3? (~100 nmol l?1) into the lower half of the euphotic zone, while in 2005 MLDs were consistently >300 m and euphotic zone [NO3?]>100 nmol l?1. Despite the very different [NO3?], rates of daily NO3? uptake were similar from year to year because of significant nocturnal uptake in 2004. Similar rates of new production did not translate into similar rates of particulate nitrogen and carbon export however, as observed export from the upper 200 m was 2–5-fold greater in 2004 than in 2005. Furthermore, the decrease of particulate nitrogen and carbon flux with depth between 200 and 400 m in 2004 was substantially lower than in 2005; this is consistent with the observed biological response in which diatoms and coccolithophores exhibited rapid growth following pulsed NO3? inputs in 2004. A combination of data from the Bermuda Testbed Mooring, which provides a longer temporal record than the cruise, and the observations presented in this study show that in the winter of 2004, there were 8–10 storm events that likely resulted in pulsed NO3? inputs. Summed over all the events, new production prior to seasonal stratification was estimated to be ~0.12–0.18 mol N m?2 or ~14–21% of current annual estimates.  相似文献   

12.
The Southern Ocean hosts significant topographic mixing that might be associated with internal tides. Tidal signals are evident in bottom temperature at 1000 m in Drake Passage, suggesting that internal tides with an amplitude of between ∼20 and 200 m may be present. Various necessary conditions for internal tide generation show that the steep topography in and around Drake Passage can initiate internal tides, and recent global tide models have suggested this region to generate very large interface displacements. Here, we present an attempt to detect internal tides in Drake Passage. During the last 10 years, combinations of bottom pressure recorders and inverted echo sounders have been deployed in the region. The bottom pressure recorders measure predominantly the barotropic tide; the inverted echo sounders measure travel time from sea bed to sea surface and therefore are influenced both by sea level (barotropic tide) and internal sound speed (internal tide). By subtracting one from the other, the internal tide should be detectable. Although the technique works successfully around Hawaii, it does not prove the existence of large internal tides in Drake Passage. The detectability of the internal tidal signal in Drake Passage is investigated using a six-layer one-dimensional model to simulate the bottom pressure and travel time signals of a semi-diurnal tide. The temperature and salinity stratification in Drake Passage is sufficiently weak that large vertical excursions are necessary to produce a signal in travel time detectable above the noise in Drake Passage. An internal tide of at least 70 or 20 m in northern and southern Drake Passage, respectively, would be detected. The fact that these are, perhaps surprisingly, not detected by the combination of bottom pressure and travel time, constrains the internal tides in Drake Passage to be ∼20 m in southern Drake Passage, and between 20 and 70 m in northern Drake Passage. The model also predicts that satellite altimetry would not be able to detect internal tides in Drake Passage, but would in the Brazil Basin and Hawaii regions.  相似文献   

13.
Measurements of sea-ice thickness were obtained from drill holes, an ice-based electromagnetic induction instrument (IEM), and a ship-borne electromagnetic induction instrument (SEM) during the early-melt season in the southern Chukchi Sea in 2002 and 2004, and in late summer 2003 at the time of minimum ice extent in the northern Chukchi Sea. An ice roughness criterion was applied to distinguish between level and rough or ridged ice. Ice-thickness modes in the probability density functions (PDFs) derived from drill-hole and IEM measurements agreed well, with modes at 1.5–1.6 and 1.8–1.9 m for all data from level ice. The PDFs derived from SEM measurements show that the primary modes are at 0.1 and 1.1 m in 2003 and 0.7 m in 2004. In 2002 and 2004, significant fractions (between one-third and one-half) of level ice were found to consist of rafted ice segments. Snow depth varied significantly between years, with 2004 data showing more than half the snow cover on level ice to be at or below 0.05 m depth in late spring. Ice growth simulations and examination of ice drift and deformation history indicate that impacts of atmospheric and oceanic warming on level-ice thickness in the region over the past few decades are masked to a large extent by variability in snow depth and the contribution of deformation processes. In comparison with submarine sonar ice-thickness data from previous decades, a reduction in ice thickness by about 0.5–1 m is in part explained by the replacement of multi-year with first-year ice over the Chukchi and Beaufort shelves.  相似文献   

14.
Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C m−2 d−1, respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0 °C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C m−2 d−1, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.  相似文献   

15.
Recent constructions of the global nitrogen budget estimate that at least half of the ocean's fixed nitrogen is lost by sedimentary denitrification, the majority of which occurs in continental shelves. The Arctic contains approximately 20% of the world's continental shelf, suggesting it is a substantial contributor to the global sedimentary denitrification rate. During two cruises in the summer and spring of 2002 and 2004, respectively, denitrification rates were calculated from the downward diffusive flux of nitrate in the shelf and slope sediments of the Chukchi Sea in the western Arctic. Additionally, in the spring of 2004, denitrification rates were determined by whole-core incubations in which the flux of nitrogen gas out of the sediments was measured. Measurements were made along three transects crossing the shelf and slope (50–3000 m), each transect having different overlying water characteristics. Denitrification rates generally decreased with increasing water depth: rates varied from about 1.6 mmol N m−2 d−1 for the shallow-water sediments to undetectable in deep-water sediments. Rates showed little variation between the two seasons. However, rates were found to correspond with differences in annual overlying primary productivities and particulate organic carbon export fluxes. An extrapolation to the whole Arctic yielded an average Arctic sedimentary denitrification rate of 13 Tg N yr−1. Taken in the context of the global nitrogen budget, it is about 4–13% of the total sink of fixed nitrogen in the ocean.  相似文献   

16.
According to combined observations from vertical plankton tows, dredging with epibenthic nets 1 m above the ocean floor, video recordings and acoustic data from a scanning sonar obtained during descent and during deployment on the ocean floor, the calanoid copepod Calanus hyperboreus was aggregated in high concentrations near the ocean floor of the Greenland Sea between 2300 and 2500 m during late July and August. Concentrations were highest very close to the ocean floor and decreased rapidly further upward. These nearly mono-specific aggregations were apparently drifting in cloud-like formations with a horizontal extension of ca. 270 m with the near-bottom currents. Maximum abundances observed were up to 2 orders of magnitude higher than in the water column. The biomass in the bottom 20 m layer was around 18% of the biomass in the rest of the water column. Stage composition, reduced metabolic rates and insensibility to mechanical stimuli indicate that these C. hyperboreus were representing the resting population. The fact that high concentrations were observed during deployments lasting >1 d and in 3 years suggests that aggregation near the ocean floor is a regular, rather than an extraordinary, pattern in the life history of C. hyperboreus in the Greenland Sea, but there is need for comparison with other seas and eventually other Calanus species.  相似文献   

17.
Vertical carbon fluxes between the surface and 2500 m depth were estimated from in situ profiles of particle size distributions and abundances me/asured off Cape Blanc (Mauritania) related to deep ocean sediment traps. Vertical mass fluxes off Cape Blanc were significantly higher than recent global estimates in the open ocean. The aggregates off Cape Blanc contained high amounts of ballast material due to the presence of coccoliths and fine-grained dust from the Sahara desert, leading to a dominance of small and fast-settling aggregates. The largest changes in vertical fluxes were observed in the surface waters (<250 m), and, thus, showing this site to be the most important zone for aggregate formation and degradation. The degradation length scale (L), i.e. the fractional degradation of aggregates per meter settled, was estimated from vertical fluxes derived from the particle size distribution through the water column. This was compared with fractional remineralization rate of aggregates per meter settled derived from direct ship-board measurements of sinking velocity and small-scale O2 fluxes to aggregates measured by micro-sensors. Microbial respiration by attached bacteria alone could not explain the degradation of organic matter in the upper ocean. Instead, flux feeding from zooplankton organisms was indicated as the dominant degradation process of aggregated carbon in the surface ocean. Below the surface ocean, microbes became more important for the degradation as zooplankton was rare at these depths.  相似文献   

18.
Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical-based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2–4-fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems were dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2–3.7 m d?1.Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, one-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91±0.20 to 4.92±1.22 mmol C m?2 d?1, 0.25±0.08 to 0.54±0.09 mmol N m?2 d?1, and 0.22±0.04 to 0.50±0.06 mmol Si m?2 d?1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1–11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical-based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3? uptake derived new production rates suggest that only a fraction, <35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p<0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65–95% (average 86±14%) of the total POC export measured in this study was due to diatoms.Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported, given the large association of this material with diatoms during these periods.  相似文献   

19.
The formation time of alongshore morphological variability in surf zone sand bars has long been known to differ from one beach to the other and from one post-storm period to another. Here we investigate whether the type of sea state, i.e. distant swell waves or locally generated short period wind sea, affects the formation time of the emerging alongshore topographic variability.A numerical modeling approach is used to examine the emergence of alongshore variability under different shore-normal wave forcing. A research version of Delft3D, operating on the time-scale of wave groups, is applied to a schematised bathymetry with a single bar. The model is then used to investigate several wave scenarios, examining the impact of peak period, frequency spread and directional spread on the formation time of alongshore variability.Results show that an increase in wave period has a large effect, changing the formation time up to O (250%) in case the wave period is changed from a representative value for the Dutch coast (Tp ~ 5–6 s) to an Australian South East coast value (Tp ~ 10–12 s). In contrast, modifications in the directional and frequency spread of the wave field result only in a minor change in the formation time.Examination of hydrodynamics and potential sediment transport shows that the variations in formation time are primarily related to changes in the magnitude of the time-averaged flow conditions. Variations in the magnitude of very low frequency (f < 0.004 Hz) or infragravity (0.004 < f < 0.04 Hz) surf zone flow velocities do not affect the mean sediment transport capacity. Consequently the formation speed of patterns is primarily governed by positive feedback between mean flow and morphology, and low frequency flow fluctuations are of minor importance.These findings indicate that the development of alongshore topographic variability may be faster at swell dominated open coasts, primarily due to the occurrence of longer period swell. Also, at a given site, the arrival of a long wave period swell after a storm can accelerate the emergence of variability.  相似文献   

20.
The seasonal variability of the carbon dioxide (CO2) system in the Southern Ocean, south of 50°S, is analysed from observations obtained in January and August 2000 during OISO cruises conducted in the Indian Antarctic sector. In the seasonal ice zone, SIZ (south of 58°S), surface ocean CO2 concentrations are well below equilibrium during austral summer. During this season, when sea-ice is not obstructing gas exchange at the air–sea interface, the oceanic CO2 sink ranges from −2 to −4 mmol/m2/d in the SIZ. In the permanent open ocean zone, POOZ (50–58°S), surface oceanic fugacity fCO2 increases from summer to winter. The seasonal fCO2 variations (from 10 to 30 μatm) are relatively low compared to seasonal amplitudes observed in the subtropics or the subantarctic zones. However, these variations in the POOZ are large enough to cross the atmospheric level from summer to winter. Therefore, this region is neither a permanent CO2 sink nor a permanent CO2 source. In the POOZ, air–sea CO2 fluxes calculated from observations are about −1.1 mmol/m2/d in January (a small sink) and 2.5 mmol/m2/d in August (a source). These estimates obtained for only two periods of the year need to be extrapolated on a monthly scale in order to calculate an integrated air–sea CO2 flux on an annual basis. For doing this, we use a biogeochemical model that creates annual cycles for nitrate, inorganic carbon, total alkalinity and fCO2. The changing pattern of ocean CO2 summer sink and winter source is well reproduced by the model. It is controlled mainly by the balance between summer primary production and winter deep vertical mixing. In the POOZ, the annual air–sea CO2 flux is about −0.5 mol/m2/yr, which is small compared to previous estimates based on oceanic observations but comparable to the small CO2 sink deduced from atmospheric inverse methods. For reducing the uncertainties attached to the global ocean CO2 sink south of the Polar Front the regional results presented here should be synthetized with historical and new observations, especially during winter, in other sectors of the Southern Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号