首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predators utilize a variety of behavioral techniques to capture elusive prey. Behavioral flexibility is essential among generalist predators that pursue a diversity of prey types, and capture efficiency is expected to be intense during the breeding season for parents that engage in self- and offspring-provisioning. We studied the foraging behavior of parental northern gannets in the northwestern Atlantic (Gulf of St. Lawrence) when they were feeding on Atlantic mackerel almost exclusively. Data-loggers recorded short (mean duration: 6.3 s), high speed (inferred vertical speeds of up to 54.0 m*s 1, equivalent to 194 km*h 1), and shallow dives (mean depth: 4.2 m; maximum: 9.2 m). Dives tended to occur in bouts, varying between 0.3 and 4.6 per hour (mean = 1.6). During foraging, overall flight heights ranged from 0 to 70 m, with no clear preferences for height. Most plunge-dives were initiated at flight altitudes of 11–60 m (mean ± SE = 37.1 ± 2.8 m; range 3–105 m except for 1 of 162 dives that was initiated at the sea surface). Dive depth and flight altitude at plunge-dive initiation were positively and significantly correlated, though it appears that low flight altitudes were sufficient to reach dive depths at which mackerel were present. Almost all dives were V-shaped indicating that a high acceleration attack is the most effective strategy for gannets feeding on large rapid-swimming prey such as mackerel that owing to thermal preferences does not occur below the thermocline and are thus well available and essentially trapped in the water depths exploited by northern gannets.  相似文献   

2.
Enigmatic seafloor gouge marks at depths of 1700–2100 m have been observed from submersible during geological survey work studying mud volcanoes in the eastern Mediterranean Sea. The marks consist of a central groove (about 10 cm deep and 1–2 m long), superimposed on a broader bowl-shaped depression (1–2 m long by about 50 cm wide) with raised rims (up to 10 cm high) to either side of the central groove. We discuss the potential biological causes of these marks, and conclude that they are probably created by Cuvier's beaked whales (Ziphius cavirostris) during foraging dives to these depths. The mud volcanoes have a comparatively rich and diverse benthic ecology associated with methane-rich fluid seeps and thus could be the base of food chains that reach top predators like the deep-diving whales. The characteristic high acoustic backscatter of the mud volcanoes would facilitate their detection by the echolocation system of these whales.  相似文献   

3.
The three-dimensional structure of two potential mesoscale upwelling areas that are located in the external waters of the Philippine archipelago (i.e. northwest of Luzon and east of Mindanao) were constructed by analysis of historical data. A unique characteristic of both upwelling sites is that they can be identified by their anomalously cold subsurface temperatures rather than sea surface temperature distributions. As such, they cannot be observed in sea surface temperature fields derived by satellite imagery. The data used in the analysis were obtained from the National Oceanographic Data Center hydrographic database. Objective analysis was performed to produce monthly temperature fields at several standard depths within the upper 500 m of the region 0–30°N and 100–140°E with a horizontal grid resolution of 0.5°. The extent and timing of these upwelling areas are described. A review of existing hypothesis on the mechanisms for their evolution and seasonal modulation are presented. The change in heat content during the upwelling season is greater than 300 W m−2 in both areas. Based on the excursion of isotherms, vertical velocities of 83 cm day−1 and 26 cm day−1 were obtained for upwelling northwest of Luzon and east of Mindanao, respectively.  相似文献   

4.
Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.  相似文献   

5.
Elephant seals are wide-ranging, pelagic, deep-diving (average of 400–600 m) predators that typically travel to open waters and continental shelf edges thousands of kilometers from their land breeding colonies. We report a less common pattern of foraging in the shallow waters of a continental shelf. Southern elephant seals, Mirounga leonina, that breed at Península Valdés (Argentina), face an extended (∼1,000,000 km2; 400–700 km-wide, depending on track), shallow (<150 m) and seasonally productive plateau, the Patagonian shelf. Adults of both sexes usually cross it in rapid transit to other potential foraging grounds on the shelf edge or in the Argentine Basin, but 2–4 year-old juveniles spread over the plateau and spent months in shallow waters. This behavior was recorded for 9 seals (5 males and 4 females) of 23 satellite-tracked juveniles (springs of 2004 and 2005) and for 2 subadult males studied in previous seasons. Trips included travel trajectories and time spent in areas where swim speed decreased, suggesting foraging. Preferred locations of juvenile females were in the proximity of the shelf break, where stratified waters had relatively high phytoplankton concentrations, but young and subadult males used the relatively cold (7–8 °C), low-salinity (∼33.3) mid-shelf waters, with depths of 105–120 m and a poorly stratified water column. Three of the latter seals, instrumented with time–depth recorders, showed dives compatible with benthic feeding and no diel pattern of depths distribution. Regions of the mid-shelf were used in different seasons and were associated with low chlorophyll-a concentration at the time of the visit, suggesting that surface productivity does not overlap with putative quality habitat for benthic foragers. Benthic diving on the shallow mid-shelf would be a resource partitioning strategy advantageous for young males prior to greater energetic demands of a high growth rate and a large body size. Later in life, the more predictable, bathymetry-forced, shelf-break front may offer the food resources that explain the uninterrupted increase of this population over several decades.  相似文献   

6.
This overview compares and contrasts trends in the magnitude of the downward Particulate Organic Carbon (POC) flux with observations on the vertical profiles of biogeochemical parameters in the NE subarctic Pacific. Samples were collected at Ocean Station Papa (OSP, 50°N, 145°W), between 18–22 May 1996, on pelagic stocks/rate processes, biogenic particle fluxes (drifting sediment traps, 100–1000 m), and vertical profiles of biogeochemical parameters from MULVFS (Multiple Unit Large Volume Filtration System) pumps (0–1000 m). Evidence from thorium disequilibria, along with observations on the relative partitioning of particles between the 1–53 μm and >53 μm classes in the 50 m mixed layer, indicate that there was little particle aggregation within the mixed layer, in contrast to the 50–100 m depth stratum where particle aggregation predominated. Vertical profiles of thorium/uranium also provided evidence of particle decomposition occuring at depths ca. 150 m; heterotrophic bacteria and mesozooplankton were likely responsible for most of this POC utilisation. A water column carbon balance indicated that the POC lost from sinking particles was the predominant source of carbon for bacteria, but was insufficient to meet their demands over the upper 1000 m. While, the vertical gradients of most parameters were greatest just below the mixed layer, there was evidence of sub-surface increases in microbial viability/growth rates at depths of 200–600 m. The C:N ratios of particles intercepted by free-drifting and deep-moored traps increased only slightly with depth, suggesting rapid sedimentation even though this region is dominated by small cells/grazers, and the upper water column is characterised by long particle residence times (>15 d), a fast turnover of POC (2 d) and a low but constant downward POC flux.  相似文献   

7.
Vertical changes in abundance, biomass and community structure of copepods down to 3000 m depth were studied at a single station of the Aleutian Basin of the Bering Sea (53°28′N, 177°00′W, depth 3779 m) on the 14th June 2006. Both abundance and biomass of copepods were greatest near the surface layer and decreased with increase in depth. Abundance and biomass of copepods integrated over 0–3000 m were 1,390,000 inds. m?2 and 5056 mg C m?2, respectively. Copepod carcasses occurred throughout the layer, and the carcass:living specimen ratio was the greatest in the oxygen minimum layer (750–100 m, the ratio was 2.3). A total of 72 calanoid copepod species belonging to 34 genera and 15 families occurred in the 0–3000 m water column (Cyclopoida, Harpacticoida and Poecilostomatoida were not identified to species level). Cluster analysis separated calanoid copepod communities into 5 groups (A–E). Each group was separated by depth, and the depth range of each group was at 0–75 m (A), 75–500 m (B), 500–750 m (C), 750–1500 m (D) and 1500–3000 m (E). Copepods were divided into four types based on the feeding pattern: suspension feeders, suspension feeders in diapause, detritivores and carnivores. In terms of abundance the most dominant group was suspension feeders (mainly Cyclopoida) in the epipelagic zone, and detritivores (mainly Poecilostomatoida) were dominant in the meso- and bathypelagic zones. In terms of biomass, suspension feeders in diapause (calanoid copepods Neocalanus spp. and Eucalanus bungii) were the major component (ca. 10–45%), especially in the 250–3000 m depth. These results are compared with the previous studies in the same region and that down to greater depths in the worldwide oceans.  相似文献   

8.
In the southern Arabian Sea (between the Equator and 10°N), the shoaling of isotherms at subsurface levels (20 °C isotherm depth is located at ∼90 m) leads to cooling at 100 m by 2–3 °C relative to surrounding waters during the winter monsoon. The annual and interannual variations of this upwelling zone, which we call the Arabian Sea dome (ASD), are studied using results from an eddy-permitting ocean general circulation model in conjunction with hydrography and TOPEX/ERS altimeter data. The ASD first appears in the southeastern Arabian Sea during September–October, maturing during November–December to extend across the entire southern Arabian Sea (along ∼5°N). It begins to weaken in January and dissipates by March in the southwestern Arabian Sea. From the analysis of heat-budget balance terms and a pair of model control experiments, it is shown that the local Ekman upwelling induced by the positive wind-stress curl of the winter monsoon generates the ASD in the southeastern Arabian Sea. The ASD decays due to the weakening of the cyclonic curl of the wind and the westward penetration of warm water from the east (Southern Arabian Sea High). The interannual variation of the ASD is governed by variations in the Ekman upwelling induced by the cyclonic wind-stress curl. Associated with the unusual winds during 1994–1995 and 1997–1998 Indian Ocean dipole (IOD) periods, the ASD failed to develop. In the absence of the ASD during the IOD events, the 20 °C isotherm depth was 20–30 m deeper than normal in the southern Arabian Sea resulting in a temperature increase at 97 m of 4–5 °C. An implication is that the SST evolution in the southern Arabian Sea during the winter monsoon is primarily controlled by advective cooling: the shoaling of isotherms associated with the ASD leads to SST cooling.  相似文献   

9.
Three time-series sediment traps were deployed in the Japan Trench at 40°26′N, 144°28′E, from October 1994 to May 1995. The depths were approximately 1, 4.2 and 6.8 km and the water depth was 7150 m. There were large mass fluxes in spring at 1 and 4.2 km depths, whereas increased fluxes appeared from 27 December 1994 to 29 January 1995, at 4.2 and 6.8 km depths. The 1994 Sanriku-Oki earthquake (Mw=7.7) occurred on 28 December 1994, at 40°27′N, 143°43′E, adjacent to the study site. Distinct increases in non-biogenic material were observed at both 4.2 and 6.8 km just after the earthquake; the material seems to have originated from the surface sediments, though differing Mn/Al of particulate materials at the two depths imply a difference in their source areas. Analysis indicates that the main part of the increased particulate fluxes at 6.8 km depth derived from the sediment on the eastern slope of the Japan Trench.  相似文献   

10.
The influence of solar radiation on springtime rates of photochemical and biological consumption of dimethylsulfide (DMS) in surface waters from the western Atlantic Ocean was examined by exposing 0.2 μm filtered and unfiltered surface seawater to natural sunlight at five depths in the upper 30 m. Parallel deck incubations of 0.2 μm filtered seawater under various long-pass optical filters were also carried out to aid in assessing the wavelength dependence of DMS photolysis. DMS photolysis rate constants for mid-day exposure (∼10:30–17:30 local time) to surface irradiance ranged from 0.026 to 0.086 h−1 and were highest in coastal and shelf waters. Photolysis rate constants decreased with increasing irradiation depth, in accordance with the attenuation of ultraviolet radiation (UVR, 280–400 nm). Total DMS consumption rates (photochemical+biological) in unfiltered surface samples also decreased with increasing incubation depth and were larger than photolysis rates at nearly all depths and all stations. The decrease in photolysis rate constants with exposure depth was mirrored by biological DMS consumption rate constants that were severely inhibited at surface irradiances, and approached or exceeded dark rate constants at deeper exposure depths. Photolysis rates were 2–19 times greater than estimated biological consumption rates in the surface light exposed samples, while biological consumption rates were significantly larger than photolysis rates at incubation depths below the 1% light level for UV–B radiation (280–320 nm). Total DMS loss rates increased up to nine-fold with UVR exposure, but changes in DMS concentrations were not strongly correlated to light dose, presumably due to parallel, light-mediated DMS production processes. The primary loss process for DMS depended mainly on the depth interval considered and the attenuation of UVR; in general, photochemical removal dominated shallow layers characterized by high UV–B intensities, whereas biological removal dominated in deeper layers where UV–B was absent, but UV–A (320–400 nm) and visible (400–700 nm) light fluxes were still relatively high. These results demonstrate that UVR exposure significantly influences the spatial and temporal pattern of DMS production and loss processes, and ultimately the DMS flux to the atmosphere.  相似文献   

11.
An autonomous upwardly-moving microstructure profiler was used to collect measurements of the rate of dissipation of turbulent kinetic energy (ε) in the tropical Indian Ocean during a single diurnal cycle, from about 50 m depth to the sea surface. This dataset is one of only a few to resolve upper ocean ε over a diurnal cycle from below the active mixing layer up to the air–sea interface. Wind speed was weak with an average value of ~5 m s−1 and the wave field was swell-dominated. Within the wind and wave affected surface layer (WWSL), ε values were on the order of 10−7–10−6 W kg−1 at a depth of 0.75 m and when averaged, were almost a factor of two above classical law of the wall theory, possibly indicative of an additional source of energy from the wave field. Below this depth, ε values were closer to wall layer scaling, suggesting that the work of the Reynolds stress on the wind-induced vertical shear was the major source of turbulence within this layer. No evidence of persistent elevated near-surface ε characteristic of wave-breaking conditions was found. Profiles collected during night-time displayed relatively constant ε values at depths between the WWSL and the base of the mixing layer, characteristic of mixing by convective overturning. Within the remnant layer, depth-averaged values of ε started decaying exponentially with an e-folding time of 47 min, about 30 min after the reversal of the total surface net heat flux from oceanic loss to gain.  相似文献   

12.
The dynamics of dissolved combined neutral sugars (DCNS) were assessed in the upper 250 m at the Bermuda Atlantic Time-series Study (BATS) site between 2001 and 2004. Our results reveal a regular annual pattern of DCNS accumulation with concentrations increasing at a rate of 0.009–0.012 μmol C L?1 d?1 in the surface 40 m from March to July and reaching maximum mean concentrations of 2.2–3.3 μmol C L?1. Winter convective mixing (between January and March) annually exported surface-accumulated DCNS to the upper mesopelagic zone (100–250 m), as concentrations increased there by 0.3–0.6 μmol C L?1. The exported DCNS was subsequently removed over a period of weeks following restratification of the water column. Vertical and temporal trends in DCNS yield (% of DOC) supported its use as a diagenetic indicator of DOM quality. Higher DCNS yields in surface waters suggested a portion of the DOM accumulated relatively recently compared to the more recalcitrant material of the upper mesopelagic that had comparably lower yields. DCNS yields and mol% neutral sugar content, together, indicated differences in the diagenetic state of the surface-accumulated and deep pools of DOM. Seasonally accumulated, recently produced DOM with higher DCNS yields was characterized by elevated mol% of galactose and mannose+xylose levels. Conversely, more recalcitrant DOM from depths >100 m had lower DCNS yields but higher mol% of glucose. Lower DCNS yields and elevated mol% glucose were also observed in the surface waters during winter convective mixing, indicating an entrainment of a diagenetically altered DOM pool into the upper 100 m. A multivariate statistical analysis confirms the use of DCNS as an index of shifts in DOM quality at this site.  相似文献   

13.
Five moorings ML1–ML5 were deployed on the slope of the Solomon Rise in the Melanesian Basin in the western North Pacific, northeastward at increasing water depths. We measured the velocities of the western branch current of the deep western boundary current (DWBC) and the upper deep current carrying the Lower and Upper Circumpolar Waters (LCPW, UCPW), respectively. The daily mean velocity data from 1–3 February 1999 to 24–26 February 2000 were analyzed, and variability of the DWBCs was clarified. Although the current meters did not entirely cover the western branch current of the DWBC composed of two or three streams, a stream of the western branch current was observed at a depth of 4700 m at ML4 or 4260 m at ML5 for more than half of the observation period. The stream had a mean velocity of 3.7 cm s−1 and alternated between ML4 and ML5 at 20- to 40-day intervals without occupying both of ML4 and ML5 simultaneously. This shows that the width of the stream is less than 120 km (distance between ML4 and ML5), and the position changes in a similar range. In contrast to the velocity of the eastern branch current of the DWBC, that of the western branch current did not decrease with decreasing depths to 4000 m. This reflects the vertical division into the branch currents by the bifurcation of the DWBC. The western branch current of the DWBC is located at the deep side of the countercurrent which was almost always observed at depths of 3880 and 4080 m at ML3. The countercurrent was thought to be the return flow of the western branch current that is partly reversed in the East Mariana Basin. The previous estimate of geostrophic transport of LCPW at the time of the mooring deployment was corrected to 1.4 Sv (106 m3 s−1) in the western branch current, 1.7 Sv in the countercurrent, and 1.1 Sv in the inflow to the East Caroline Basin. The upper deep current was located over the slope of the Solomon Rise with water depth less than 4500 m including ML1–ML3. It flowed at depths of approximately 2000–3500 m with the highest velocity in the middle of this layer and seldom reached the near-bottom where eddy-like disturbances existed. Its volume transport at the mooring deployment was 10.4 Sv. The upper deep current during the first half of the observation period had double cores divided by the countercurrent at ML1, whereas that during the second half had a single core, as the countercurrent at ML1 disappeared in early September 1999. The vector mean velocities of the upper deep current were 5.0 (2650 m, ML2) and 3.6 cm s−1 (1880 m, ML3) during the first half of the observation period and 7.0 cm s−1 (2670 m, ML1) during the second half; they ranged from 3 to 7 cm s−1. Similarly, those of the countercurrent at ML1 during the first half were 6.4, 3.8, 4.6 cm s−1 (2170, 2670, 3570 m).  相似文献   

14.
This study examines the parasite fauna of Bathypterois mediterraneus, the most common fish below 1500 m in Western Mediterranean waters. Samples were obtained during July 2010 from the continental slope of two different areas (off Catalonia and Balearic Islands) in three different bathymetric strata at depths between 1000 and 2200 m. The parasite fauna of B. mediterraneus included a narrow range of species: Steringophorus cf. dorsolineatum, Scolex pleuronectis, Hysterothylacium aduncum, Anisakis sp. larva 3 type II and Sarcotretes sp. Steringophorus cf. dorsolineatum and H. aduncum were the most predominant parasites. H. aduncum showed significant differences in abundance between depths of 2000–2200 m with 1000–1400 m and 1400–2000 m, irrespective of locality, whereas S. cf. dorsolineatum showed significant differences between the two localities at all depths except for 2000–2200 m. We suggest the possible usefulness of these two parasites as geographical indicators for discriminating discrete stocks of B. mediterraneus in Western Mediterranean waters.  相似文献   

15.
It is demonstrated that weakened wind mixing and strengthened water column stratification resulted in the anomalously low sea surface chlorophyll in the northern South China Sea during the 1997–1998 El Niño event. Remotely sensed sea surface temperature, wind and chlorophyll, which were validated by shipboard observations at the SouthEast Asian Time-series Study (SEATS) station (18°N, 116°E) in the northern South China Sea (SCS) provided the basis for this study. During the 1997–1998 winter at the SEATS station, the sea surface temperature was elevated by about 2 °C above the climatological mean, while the wind speed of the northeast monsoon was reduced from a climatological mean of 9.4 to 6.8 m/s. The concentration of surface chlorophyll-a dropped from 0.2 to 0.1 mg/m3. The monthly area-averaged integrated primary production estimated for the northern SCS area (112–119°E, 15–21°N) was reduced by about 40% of the normal winter value. Under the anomalously high sea surface temperature and weak monsoon, the mixed-layer depth would have been reduced from an average of 65 to 45 m and the nutrients in the mixed layer would have been reduced by half, according to observations at the SEATS station in more recent years. During the 1997–1998 El Niño event, the onset of warming in the northern SCS lagged behind that in the eastern equatorial Pacific by about 5 months and lingered for 11 months. This course of change resembled that of the western Pacific warm pool region. However, contrary to the northern SCS, the sea surface chlorophyll was enhanced in the warm pool region during the event, probably mainly because of the uplifted nutricline. Unlike the eastern equatorial Pacific, the dramatic recovery of biological production did not happen in the SCS in the summer of 1998. These distinctive biogeochemical responses reflect fundamental differences between the SCS and the equatorial Pacific in terms of upper water column dynamics.  相似文献   

16.
Extensive measurements of nitrous oxide (N2O) were made in the central and eastern Arabian Sea during the northeast monsoon (February–March), intermonsoon (April–May) and southwest monsoon (July–August) seasons. The latitudinal and longitudinal variations, along with seasonal changes with respect to winter convection and coastal upwelling, are clearly discernible. Vertical profiles collected down to 1000 m show that the Arabian Sea water column is supersaturated with N2O at all depths. However, N2O consumption at intermediate depths, coincident with the oxygen minimum and associated with sediment–water interfaces, and in the denitrifying zone, coincident with NO-2 secondary maxima, are also apparent. The N2O concentration varies from ∼10 nM near the surface to about 80 nM in the secondary peak region (≈800 m). Interrelationships with chemical parameters suggest nitrification to be the main process for the production of N2O in the oceanic water. Plots of apparent oxygen utilization vs production of N2O indicate a consistent linear relationship for AOU between 0 and 200 μM.  相似文献   

17.
In July–September 1997 two hydrographic lines were done in the western N. Atlantic along longitudes of 52 and 66°W as part of the WOCE one-time hydrographic survey of the oceans. Each of these two lines approximately repeated earlier ones done during the International Geophysical Year(s) (IGY) and the mid-1980s. Because of this repeated sampling, long-term hydrographic changes in the water masses can be examined. In this report, we focus on temperature and salinity changes within the subtropical gyre mainly between latitudes of 20 and 35°N and compare our results to those presented by Bryden et al. (1996), who examined changes along a zonal line at 24°N, most recently occupied in 1992. Since this most recent 24°N section in 1992, substantial changes have occurred in the western part of the subtropical gyre at the depths of the Labrador Sea Water (LSW). In particular, we see clear evidence for colder, fresher Labrador Sea Water throughout the gyre on our two recent sections that was not yet present in 1992 at similar longitudes along 24°N. At shallower depths inhabited by waters that are an admixture of Mediterranean (MW) and Antarctic Intermediate Waters (AAIW), our recent survey shows an increase in salinity, which can only be attributed to changes in water masses on potential temperature or neutral density surfaces. Furthermore, waters above the MW/AAIW layer and into the deeper part of the main pycnocline have continued to become saltier and warmer throughout the 40-year period spanned by our sections. These latter changes have been dominantly due to a vertical sinking of density surfaces as T/S changes in density surfaces are small, but depths of individual T/S horizons have increased with time. The net change since the IGY shows a mean temperature increase between 800 and 2500 m depth at a rate of 0.57°C/century with a corresponding steric sea level rise of 1 mm/yr, and a net downward heave with small values near the top and bottom, and a maximum rate of −2.7 m/yr at 1800 m depth. Changes in the deep Caribbean indicate a warming since the IGY due to temperature increases of the inflowing source waters in the subtropical gyre at 1800m depth, but no significant change in the deep salinity.  相似文献   

18.
pH and alkalinity measurements from a coastal upwelling area located near 30°S (Coquimbo, Chile), are used to describe the short-term variations of CO2 air–sea exchanges over a period of one week in summer 1996. A 180 km ocean–coastal transect, together with two almost-synoptic grid surveys off Coquimbo covering approximate 2500 km2 each, showed that during and immediately after a 4 day long southwesterly wind event (24–28 January) a large area of cold surface water (≈14°C), highly supersaturated in CO2 (fCO2 up to 900 μatm), was located near the coast. Three days after the end of the event, the second grid survey showed that in most of the study area the surface temperature and pH had increased significantly (by 1–3°C and 0.05–0.2, respectively), and that the surface water was no longer supersaturated in CO2. The CO2-supersaturated water observed in the first grid survey was identified as upwelled subsurface equatorial water, a water mass with its core at about 200 m depth: the depth from which the water upwells is a major determinant of the surface water fCO2. Integrated C fluxes within a 20 km wide coastal strip (1900 km2) indicate a strong outgassing of CO2 from the ocean under upwelling conditions (Grid 1; 121 t C day-1), while the net C exchange was directed to the ocean during the relaxation period (Grid 2; 19 t C day-1). Estimates of CO2 fluxes in upwelling areas based on surface water fCO2 measurements must therefore take into account these short-term variations: reliance on longer-term averages and interpolation will lead to erroneous results.  相似文献   

19.
Data collected from hydrographic stations occupied within the Venezuelan and Columbian basins of the Caribbean Sea from 1922 through 2003 are analyzed to study the decadal variability of deep temperature in the region. The analysis focuses on waters below the 1815-m sill depth of the Anegada–Jungfern Passage. Relatively dense waters (compared to those in the deep Caribbean) from the North Atlantic spill over this sill to ventilate the deep Caribbean Sea. Deep warming at a rate of over 0.01 °C decade–1 below this sill depth appears to have commenced in the 1970s after a period of relatively constant deep Caribbean Sea temperatures extending at least as far back as the 1920s. Conductivity–temperature–depth station data from World Ocean Circulation Experiment Section A22 along 66°W taken in 1997 and again in 2003 provide an especially precise, albeit geographically limited, estimate of this warming over that 6-year period. They also suggest a small (0.001 PSS-78, about the size of expected measurement biases) deep freshening. The warming is about 10 times larger than the size of geothermal heating in the region, and is of the same magnitude as the average global upper-ocean heat uptake over a recent 50-year period. Together with the freshening, the warming contributes about 0.012 m decade–1 of sea level rise in portions of the Caribbean Sea with bottom depths around 5000 m.  相似文献   

20.
In order to estimate the contribution of cold Pacific deep water to the Indonesian throughflow (ITF) and the flushing of the deep Banda Sea, a current meter mooring has been deployed for nearly 3 years on the sill in the Lifamatola Passage as part of the International Nusantara Stratification and Transport (INSTANT) programme. The velocity, temperature, and salinity data, obtained from the mooring, reflect vigorous horizontal and vertical motion in the lowest 500 m over the ~2000 m deep sill, with speeds regularly surpassing 100 cm/s. The strong residual flow over the sill in the passage and internal, mainly diurnal, tides contribute to this bottom intensified motion. The average volume transport of the deep throughflow from the Maluku Sea to the Seram Sea below 1250 m is 2.5 Sv (1 Sv=106 m3/s), with a transport-weighted mean temperature of 3.2 °C. This result considerably increases existing estimates of the inflow of the ITF into the Indonesian seas by about 25% and lowers the total mean inflow temperature of the ITF to below 13 °C. At shallower levels, between 1250 m and the sea surface, the flow is directed towards the Maluku Sea, north of the passage. The typical residual velocities in this layer are low (~3 cm/s), contributing to an estimated northward flow of 0.9–1.3 Sv. When more results from the INSTANT programme for the other Indonesian passages become available, a strongly improved estimate of the mass and heat budget of the ITF becomes feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号