首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The total ozone content in the atmosphere was determined from the multichannel photometer observations of direct solar radiation made in the urban environment at Pune (18° 32 N, 73° 51E, 559 m ASL) and Sinhagad hill station (18° 22N, 73° 45E, 1305 m ASL) during March 1980-February 1982. The total ozone content of the atmosphere was computed making use of the differential absorption of solar radiation due to ozone at 0.4 and 0.6 m wavelengths in the Chappuis band. The values of the ozone data obtained from the photometer observations at Pune and Sinhagad were compared with the corresponding ozone data obtained from the Dobson spectrophotometer located at Pune. Values of ozone obtained by the photometric method were found to be smaller by 8–18% than the Dobson values when Vigroux's absorption coefficients were used. Similarly, when the absorption coefficients of Inn and Tanaka (1953) were used, the ozone values obtained by the photometric method were smaller by 4–14% than the Dobson values. The ozone values at the hill station obtained from the photometric method were in better agreement (5%) with the Dobson values.  相似文献   

2.
王萍  陈洪滨  吕达仁 《大气科学》2003,27(6):1067-1076
用差分光学吸收光谱(DOAS)方法,从曙暮光天顶散射可见光光谱资料反演了北京上空的O3和NO2柱含量,并对反演结果进行了验证和误差分析.斜柱含量的反演采用了线性和非线性最小二乘拟合方法,拟合时考虑了O3、NO2和H2O的吸收、Ring效应和散射的影响;斜柱含量除以空气质量因子转换成垂直柱含量.空气质量因子的计算使用伪球面DISORT辐射传输模式.O3和NO2总量的检验分别用北京的Dobson O3资料和卫星SAGE Ⅱ的NO2廓线资料.反演的O3总量与Dobson O3总量相比偏差小于10%;NO2总量与SAGE Ⅱ的偏差约20%.  相似文献   

3.
In June 1996, 16 UV-visible sensors from 11 institutes measured spectra of the zenith sky for more than 10 days. Spectra were analysed in real-time to determine slant column amounts of O3 and NO2. Spectra of Hg lamps and lasers were measured, and the amount of NO2 in a cell was determined by each spectrometer. Some spectra were re-analysed after obvious errors were found. Slant columns were compared in two ways: by examining regression analyses against comparison instruments over the whole range of solar zenith angles; and by taking fractional differences from a comparison instrument at solar zenith angles between 85° and 91°. Regression identified which pairs of instruments were most consistent, and so which could be used as universal comparison instruments. For O3, regression slopes for the whole campaign agreed within 5% for most instruments despite the use of different cross-sections and wavelength intervals, whereas similar agreement was only achieved for NO2 when the same cross-sections and wavelength intervals were used and only one half-day's data was analysed. Mean fractional differences in NO2 from a comparison instrument fall within ±7% (1-sigma) for most instruments, with standard deviations of the mean differences averaging 4.5%. Mean differences in O3 fall within ±2.5% (1- sigma) for most instruments, with standard deviations of the mean differences averaging 2%. Measurements of NO2 in the cell had similar agreement to measurements of NO2 in the atmosphere, but for some instruments measurements with cell and atmosphere relative to a comparison instrument disagreed by more than the error bars.  相似文献   

4.
Emission of nitrous oxide from temperate forest soils into the atmosphere   总被引:5,自引:0,他引:5  
N2O emission rates were measured during a 13-month period from July 1981 till August 1982 with a frequency of once every two weeks at six different forest sites in the vicinity of Mainz, Germany. The sites were selected on the basis of soil types typical for many of the Central European forest ecosystems. The individual N2O emission rates showed a high degree of temporal and spatial variabilities which, however, were not significantly correlated to variabilities in soil moisture content or soil temperatures. However, the N2O emission rates followed a general seasonal trend with relatively high values during spring and fall. These maxima coincided with relatively high soil moisture contents, but may also have been influenced by the leaf fall in autumn. In addition, there was a brief episode of relatively high N2O emission rates immediately after thawing of the winter snow. The individual N2O emission rates measured during the whole season ranged between 1 and 92 g N2O-N m–2 h–1. The average values were in the range of 3–11 g N2O-N m–2 h–1 and those with a 50% probability were in the range of 2–8 g N2O-N m–2 h–1. The total source strength of temperate forest soils for atmospheric N2O may be in the range of 0.7–1.5 Tg N yr–1.  相似文献   

5.
During a series of flights in the winters 1991/92 to 1994/95 total stratospheric NO2 was measured by means of the DOAS (Differential Optical Absorption Spectroscopy) technique on board a C160 (Transall) aircraft. In an area covering 60°W to 60°E, and 16°N to 86°N, the total stratospheric NO2 was observed to vary markedly with latitude and season (winter and spring). In the mid-winter Arctic vortex extremely low total stratospheric NO2 (< 3.1014/cm2) was always found, generally larger amounts of NO2 occurred outside the vortex in winter and towards the spring both inside and outside the vortex. This behaviour of stratospheric NO2 can be explained by the denoxification of the wintertime polar stratosphere. Ambient to the vortex in mid-winter however, sudden increases of total stratospheric NO2 by about a factor of 3 were observed. These sudden increases in stratospheric NO2 coincide with a change in the wavenumber 2 of the geopotential height at 60°N, which indicates that most likely the events are caused by planetary waves efficiently transporting air masses rich in NOx from lower to higher latitudes. The monitoring of stratospheric NO2, during latitudinal traverses ranging from the Arctic (80°N) to the Subtropics (18°N) in spring also unexpectedly showed a large variability in total stratospheric NO2 at mid-latitudes. Since photochemistry almost certainly can be excluded, it is proposed that the observed variability may be due to the planetary wave activity of the stratospheric surf zone, known to dynamically connect the tropical and the polar stratosphere.  相似文献   

6.
A calibrated spectroradiometer was used for the measurement of spectra of the absolute actinic flux F during the POPCORN field campaign in Pennewitt (53.8° N, 11.7° E, sea level) in August 1994. The obtained set of actinic flux spectra was used to determine the photolysis frequencies J(O1D), J(NO2), J(HCHO), J(H2O2), J(HONO), and J(CH3CHO), using molecular photodissociation data from literature. The accuracy of the actinic flux measurement was about ±5%. The accuracy of the photolysis frequency determination is limited by the uncertainties of the molecular absorption cross section and quantum yield data. A good agreement within the experimental uncertainties was found in comparison with measurements of J(O1D) and J(NO2) by filterradiometer which were calibrated absolutely against chemical actinometer. A comparison of this work's photolysis frequency measurements at 40° solar zenith angle with respective measured and modeled data from the literature also shows good agreement for most of the processes considered in this work. However, in the case of J(NO2) data reported in the literature as a function of solar zenith angle differences up to a factor of 1.6 with respect to this work's J(NO2) data are observed. Since this is far beyond the estimated experimental uncertainties, other atmospheric variables, such as aerosols, seem to affect J(NO2) to an extent that is underestimated by now and make indirect comparisons of J(NO2) measurements difficult.  相似文献   

7.
The well calibrated Brewer spectrophotometer 17 (Sci-Tec Instruments Inc., Canada) stayed at the Meteorological Observatory Hohenpeissenberg (MOHP) from August 27 until September 1, 1984, in order to check and recalibrate Brewer 10, which had some stability problems. Brewer 17 was initially calibrated in July 1983, the validity of this calibration was repeatedly verified before and after the stay at the MOHP (Kerr et al., 1985; Kerr, 1984). The instrument proved itself to be very stable and appropriate as travellings standard instrument.As Dobson 104 didn't seem to be well calibrated at that time, the occasion was taken to perform also a Dobson recalibration. The methods normally used were not satisfactory, but a different method, presuming Effective Absorption Coefficients (EAC), presented by Kerr et al. at the Quadrennial Ozone Symposium 1984 in Greece, yielded encouraging results. Before recalibration Dobson 104 showed a difference of 2–3% in comparison to Brewer 10-, Brewer 17- and TOMS- (on satellite Nimbus 7) measurements, whereas the agreement with the Brewers after EAC-calibration was good (X rel < 1%). The different Dobson calibration methods are compared and the results of the Dobson 104 and Brewer 10 recalibrations are presented.
Zusammenfassung Vom 27. August bis 1. September 1984 befand sich das Brewer Standard Spektrophotometer 17 (Sci-Tec Instruments Inc., Canada) am Meteorologischen Observatorium Hohenpeißenberg (MOHP), um den nicht sehr stabilen Brewer 10 zu überprüfen und neu zu kalibrieren. Der Brewer 17 wurde erstmals im Juli 1983 kalibriert, die Gültigkeit dieser Eichung wurde mehrfach vor und einmal nach dem Aufenthalt am MOHP bestätigt (Kerr et al., 1985; Kerr, 1984). Das Instrument erwies sich als sehr stabil und geeignet als transportables Standardinstrument.Da der Dobson 104 zum damaligen Zeipunkt ebenfalls nicht gut kalibriert schien, wurde die Gelegenheit einer Dobson-Neukalibrierung wahrgenommen. Die normalerweise benutzten Methoden waren nicht zufriedenstellend im Gegensatz zu einer Methode, die von Effektiven Absorption Coeffizienten (EAC) ausgeht. Diese von Kerr et al. auf dem Quadrennial Ozon Symposium 1984 in Griechenland vorgestellte Methode lieferte hier ermutigende Ergebnisse. Vor der Neueichung zeigte der Dobson 104 eine Differenz von etwa 2–3% im Vergleich mit Brewer 10-, Brewer 17- und TOMS- (auf dem Nimbus-7-Satelliten) Messungen, während die Übereinstimmung mit den Brewer-Geräten nach der EAC-Kalibrierung gut war (X rel < 1%). Die verschiedenen Dobson-Kalibrierungsmethoden werden verglichen und Ergebnisse der Dobson 104- und Brewer 10-Neukalibrierungen werden vorgestellt.
  相似文献   

8.
As part of the Second European Stratospheric Arctic and Mid-latitude Experiment (SESAME) field campaign, observations were made during the period from October 1994 to April 1995 at Søndre Strømfjord, Greenland (67°N, 53°W). Using a Fourier transform spectrometer, high resolution (0.06 cm-1) infrared spectra were recorded with the sun as a radiation source. Column amounts of trace gases including HCl, HF, HNO3, N2O and O3 are shown for five time periods during the course of the 1994-95 Arctic winter. Results are compared with lower stratospheric potential vorticity fields to describe variations in trace gas column amounts.  相似文献   

9.
Summary Composite time series combining the results of total ozone measurements taken at Dobson stations located within the latitude band 30°N–60°N, in Europe, and North America, have been examined in order to detect any trends. Various regression trend models were used to identify any trend variations over the regions during the period 1970–1990. The results of fitting the models to the data imply that the model which assumes a linear trend provides precise information about the long-term ozone trends (trends during the period 1970–1990). The study identifies short-term summer trends in the 1980s that are evidently more strongly negative than trends that occur in the 1970s (the differences are statistically significant at the 2 level). The year-round loss (in all analyzed regions) and the winter loss in total ozone (the belt 30°N–60°N) N. America, during the 1980s are about 2–3 times higher than the losses during the 1970s (the differences are statistically significant at the 1 level).With 1 Figure  相似文献   

10.
The standard E – model generates aplanetary boundary layerthat appears to be much too deep. The cause of theproblem is traced to the equation for the dissipationrate () of turbulent kinetic energy (E), specifically theparameterization of dissipation production anddestruction. In the context of atmosphericboundary-layer modelling, we argue that a part of thedissipation production should be modelled as the inputto the spectral cascade from the energy-containingpart of the spectrum, with a characteristic length , while the equilibrium imbalancebetween local production and destruction ofdissipation is modelled as proportional toE2/E, as in the standard model. Wepropose an E – – turbulence closurescheme, in which both the mixing length, m, and are prescribed. The importance ofthe equation is diminished, though itstill determines the dissipation rate in the Eequation.  相似文献   

11.
A three-dimensional model of the global ammonia cycle   总被引:16,自引:0,他引:16  
Using a three-dimensional (3-D) transport model of the troposphere, we calculated the global distributions of ammonia (NH3) and ammonium (NH 4 + ), taking into account removal of NH3 on acidic aerosols, in liquid water clouds and by reaction with OH. Our estimated global 10°×10° NH3 emission inventory of 45 Tg N-NH3 yr provides a reasonable agreement between calculated wet NH 4 + deposition and measurements and of measured and modeled NH 4 + in aerosols, although in Africa and Asia especially discrepancies exist.NH3 emissions from natural continental ecosystems were calculated applying a canopy compensation point and oceanic NH3 emissions were related to those of DMS (dimethylsulfide). In many regions of the earth, the pH found in rain and cloud water can be attributed to acidity derived from NO, SO2 and DMS emissions and alkalinity from NH3. In the remote lower troposphere, sulfate aerosols are calculated to be almost neutralized to ammonium sulfate (NH4)2SO4, whereas in the middle and upper troposphere, according to our calculations, the aerosol should be more acidic, as a result of the oxidation of DMS and SO2 throughout the troposphere and removal of NH3 on acidic aerosols at lower heights. Although the removal of NH3 by reaction with the OH radical is relatively slow, the intermediate NH2 radical can provide a substantial annual N2O source of 0.9 –0.4 +0.9 Tg, thus contributing byca. 5% to estimated global N2O production. The oxidation by OH of NH3 from anthropogenic sources accounts for 10% of the estimated total anthropogenic sources of N2O. This source was not accounted for in previous studies, and is mainly located in the tropics, which have high NH3 and OH concentrations. Biomass burning plumes, containing high NO x and NH3 concentrations provide favourable conditions for gas phase N2O production. This source is probably underestimated in this model study, due to the coarse resolution of the 3-D model, and the rather low biomass burning NH3 and NO x emissions adopted. The estimate depends heavily on poorly known concentrations of NH3 (and NO x ) in the tropics, and uncertainties in the rate constants of the reactions NH2 + NO2 N2O + H2O (R4), and NH2 + O3 NH2O + O2 (R7).  相似文献   

12.
In the first two weeks of May 1981, the research jet of the German Aerospace Research Establishment (DFVLR) was charted to fly a meridional section between 5° and 82°N. A scanning filter photometer, developed at the Max Planck Institut für Aeronomie to measure column content values of atmospheric ozone and nitrogen dioxide, using ultra violet and visible absorption techniques, constituted part of the experimental payload for this campaign that was called SIMOC. The vertical NO2 column content above the aircraft, flying at approximately 10 km, was found to decrease rapidly from 6.9×1015 molecules cm-2 to 2.5×1015 molecules cm-2 around 50°N and then to increase again north of 75°N. A sharp rise in the NO2 content was observed south of the subtropical jet but this could possibly be due to the increased depth of the troposphere above the aircraft in these regions.  相似文献   

13.
本文选取多个臭氧总量观测站点,采用"三重制约法"分别对下列3组仪器观测臭氧总量数据进行统计分析,解算出不同观测资料的误差标准差,进而对比研究各种仪器的精度特征:1)1996~2003年期间地基WOUDC(World Ozone and Ultraviolet Radiation Data Centre)观测网络仪器(包括Brewer、Dobson和Filter臭氧测量仪)与星载TOMS(Total Ozone Mapping Spectrometer)和GOME(The Global Ozone Monitoring Experiment)仪器;2)2004~2013年期间WOUDC与星载OMI(ozone monitoring instrument)和SCIAMACHY(scanning imaging absorption spectrometer for atmospheric chartography)仪器;3)2004~2013年期间地基SAOZ(Système D’Analyse par Observations Zénithales)与星载OMI和SCIAMACHY仪器。结果表明,1996~2003年期间TOMS V8和GOME观测精度相当,分别为7.6±2.8 DU/46(其中,7.6±2.8 DU为所分析站点观测资料的平均精度及其标准差,46为站点数目)和7.6±1.5 DU/46。TOMS V8观测精度优于TOMS V7(8.5±3.0 DU/46),验证了前者对后者有所改进。2004~2013年期间OMI和SCIAMACHY在WOUDC地基站点观测精度接近,分别为6.6±1.4 DU/21和6.0±1.6 DU/21。SAOZ地基仪器精度为8.4±3.6 DU/8。对于3类WOUDC地基仪器,Brewer站点观测资料的平均精度最优(7.9±3.3 DU/12),Dobson次之(8.7±2.3 DU/19),Filter最差(14.7±4.0 DU/15)。相比于卫星,3种地面仪器观测平均精度较差(10.5±4.3 DU/46),这主要是由于Filter精度较差引起。中国境内的瓦里关(Brewer)、香河(Dobson)和昆明(Dobson)3个地基站点仪器观测精度均较优,分别为7.8 DU、6.7 DU和6.6 DU。尽管不同站点之间存在一定差异,但整体来说,地基与卫星仪器在中国境内3个站点观测臭氧总量吻合较好。  相似文献   

14.
Vertical column abundances of HCl, ClONO2, HF and HNO3 have been obtained from infrared solar absorption measurements made at Aberdeen, UK (57°N, 2°W) during the periods January 13 1994 - May 8 1994 and November 23 1994 - April 19 1995. The measurements reveal the partitioning of inorganic chlorine (Cly) inside and outside the polar vortex during these two winter and spring periods. Stratospheric temperatures within the northern polar vortex during 1993/94 were not cold throughout January and most of February. The measurements reported here suggest that following a brief period of chlorine activation in late February and early March, the active chlorine within the vortex recovered rapidly to form ClONO2 resulting in in-vortex ClONO2 columns of 7 × 1015 molecules cm-2. In contrast, measurements during January 1995 suggest extensive invortex activation with in-vortex HCl + ClONO2 as low as 3.6×1015 molecules cm-2. High day-to-day variability in the ClONO2 columns observed during February is evidence for the transport of ClONO2 rich air from high to mid latitudes during the late winter. The implications for mid latitude O3 loss are discussed. A preliminary comparison of the HCl, ClONO2, and HNO3 column data from winter 94/95 with a three-dimensional chemical transport model shows that the model generally reproduces well the day-to-day variability and absolute magnitude of the observed columns, especially for HNO3 outside of the vortex.  相似文献   

15.
We outline how ground-based Fourier transform infrared (FTIR) measurements of stratospheric trace species, obtained with high temporal resolution, could be used to detect filaments of polar vortex air at mid-latitudes and therefore test high spatial resolution chemical transport models (CTMs). Vertical column abundances of HCl, ClONO2, HNO3, N2O and HF have been obtained from FTIR solar absorption measurements made throughout the day from Aberdeen, UK (57°N, 2°W) on several days during winter/spring 1993/94 and 1994/95. The short-timescale ( 2 hours) variability observed in the columns is attributed to real atmospheric variations and is often associated with the passage of high latitude air over Aberdeen. This is confirmed by 3D modelling studies which qualitatively reproduce and rationalise the observed changes in the column data on January 19 1994, January 20 1995 and February 26 1995. We describe the viewing geometry of ground-based FTIR measurements and we suggest a measurement strategy which should maximise the information retrieved on horizontal gradients in stratospheric trace species columns from FTIR measurements.  相似文献   

16.
大气臭氧变化在全球气候和环境中具有重要作用,是当今大气科学领域的重要研究对象之一。对比分析了中国科学院大气物理研究所河北香河大气综合观测试验站2014~2016年Dobson和Brewer两种臭氧总量观测仪器探测结果的一致性,并使用1979~2016年Dobson观测数据分析了香河地区臭氧总量的长期变化趋势。结果表明:进行有效温度修正后,两种臭氧总量仪器观测结果一致性较好,平均偏差仅为-0.14DU(多布森单位),平均绝对偏差为8.00 DU,标准差为36.09 DU,相关系数达0.964。整体来说,两类仪器观测臭氧总量吻合较好。SO2浓度对Dobson仪器数据精度有一定影响,两组仪器数据在SO2浓度为0~0.2DU、0.2~0.4DU和0.4DU大气条件情况下的平均偏差分别为4.8 DU、7.0 DU和8.0 DU,平均偏差随SO2浓度升高而增大。过去38年香河地区的臭氧总量季节差异性强,春、冬两季臭氧总量高,夏、秋两季臭氧总量相对低,季节变化趋势差异明显。从长期变化上看,臭氧总量变化波动有不同的周期,在4个大的时间段变化趋势不同,2000~2010年臭氧层有显著恢复,但最近几年又有变薄的趋势。  相似文献   

17.
Summary The study on the characteristics of aerosol in Seoul during springtime from 1998 to 2003 is performed by the size-resolved number concentrations of aerosol. Asian dust events occur in spring most frequently, but it has been often observed in wintertime since 1999. Since 2000, the number of Asian dust days has been increasing, and the intensity has been more severe until 2002. However, there were only 3 dust days in Seoul during the spring of 2003, since the synoptic cyclone was relatively not intense enough to rise and transport dust to Korean peninsula, and the air stream was usually tiled to north of Korean peninsula. In addition, the precipitation was relatively plentiful and the air temperature was cold enough not to keep dry soil condition.Haze is the suspended particles in the air, reducing visibility by scattering light, and it is often a mixture of aerosols and photochemical smog. Dry particles with diameters of the order of 0.1µm, are small enough to scatter short wavelengths of light. Haze occurs well in winter and spring, and severe haze is observed in the afternoon. The occurrence frequency of haze has been decreasing since 2000 except in May of 2003.During Asian dust events from 1998 to 2003, the number concentration of aerosol with diameters from 0.3µm to 0.5µm decreases notably, but that larger than 1µm increases rapidly. On the other hand, for the haze events the number concentration from 0.3µm to 0.5µm increases notably, but that larger than 1µm decreases.  相似文献   

18.
Daily and zonal (latitudinal belt) averages of heat and momentum fluxes were computed using bulk aerodynamic formulae, from the meteorological parameters measured onboard M. S. Thuleland during the sixth Indian scientific expedition to Antarctica (26th November, 1986 to 22nd March, 1987). Both estimates showed significant variations, the momentum flux showing the largest variation. The maximum values of sensible and latent heat fluxes were observed over the 30°–40° S and 10°–20° S zones during the southern summer and fall respectively while the minimum values of latent heat flux were observed in the 60°–70° S zone for both seasons. The sensible heat flux minimum was observed in the 50°°60° S and 60°–70° S zones for summer and fall, respectively. Higher momentum flux values over the 40°–50° S zone in summer shifted to the 50°–60° S zone during fall.  相似文献   

19.
Vertical columns of HF, HCl, HNO3, ClONO2, N2O, ClO and COF2 were measured at Harestua, Norway (60.22° N, 10.75° E, Elevation 600 a.s.l.) beginning on 24 November 1994 and concluding on 1 May 1995 during Phase-III of the SESAME (Second European Stratospheric Arctic and Mid-latitude Experiment) measurement campaign. The vertical columns of HCl, HNO3 and ClONO2 measured on 81 days were compared with columns calculated by the 3-D Cambridge model SLIMCAT. In addition the results were also interpreted by comparison with a photochemical trajectory model. Good agreement was seen for HCl while the nitrogen compounds showed larger discrepancies, especially for ClONO2. Evidence for chlorine activation was seen with 65% reduction of the chlorine reservoirs (HCl + ClONO2) while the levels of ClO were greatly enhanced. Interpretation of the loss with the trajectory model indicated condensation of chlorine on PSCs. The vertical column ratio of COF2 and HF was measured to 0.21 outside the vortex and a factor of two lower inside. The recovery of ClONO2 was seen to be much faster than that of HCl in the early spring.  相似文献   

20.
Observations made with a monostatic sodar and from a 120 m instrumented tower have been used to study the variations in the atmospheric boundary layer at Tarapur (19° 50 N, 72° 41 E) during the solar eclipse of February 16, 1980. Atmospheric instability was reduced below normal values during the eclipse but the atmosphere at no time became stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号