首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
裂隙岩体在天然地质因素和人工扰动作用下处于加卸载环境是普遍存在的,裂隙面的几何特征和加卸载环境对裂隙渗流特性的影响在实际工程中不可忽视。采用试验和数值模拟相结合的方法,利用热-流-固三场耦合渗流试验系统,开展了应力加卸载作用下不同粗糙度裂隙岩芯试件的渗透试验,自主开发程序将激光扫描裂隙面的三维形貌信息导入到ABAQUS软件,模拟应力作用下的粗糙裂隙渗流。试验和数值模拟一致表明,粗糙裂隙的宽度和渗透率都随载荷的增加而减小,随着载荷的增加,裂隙接触刚度增大,裂隙的宽度和渗透率对载荷变化的敏感性降低;由于点接触产生的塑性变形不可恢复,卸载阶段的裂隙宽度和渗透率增加幅度减小,且小于加载阶段同载荷条件下的宽度和渗透率;裂隙渗透率、宽度与粗糙度呈正相关关系,且粗糙度越大,接触应力分布越不均匀;裂隙内流场符合群岛流,粗糙度越大群岛流现象越明显。  相似文献   

2.
在复杂应力和长期渗流侵蚀作用下岩体裂隙的表面形貌不断发生改变,导致岩体裂隙的渗流特性演化机理更加复杂。开展不同粗糙程度的石灰岩裂隙渗透试验,对比试验结果和渗透试验前后裂隙表面形貌特征,分析应力和渗流侵蚀耦合作用对粗糙裂隙表面形貌的改造影响,研究其渗流特性的演变规律。结果表明,在应力作用下粗糙程度不同的裂隙其渗流量随时间均呈现先快速减小,后趋于稳定的变化规律;不同粗糙度裂隙的等效水力隙宽和渗透率在试验初始时刻基近相等,随后均呈不断减小的趋势,但在应力和渗流侵蚀耦合作用下裂隙表面粗糙度越大,其等效水力隙宽和渗透率的下降幅值越大,试验结束时其稳定值越小;粗糙起伏程度小的裂隙,其渗流路径较均匀,流线平直,而粗糙起伏程度大的裂隙,表面出现沟槽流现象,渗流路径曲折延长;当裂隙表面粗糙凹凸体增多,与渗透水流的接触面积增大,应力和渗流侵蚀作用对裂隙表面形貌的溶蚀改造增强,使表面整体形态更粗糙起伏,而表面形态影响其渗流路径,致使裂隙表面沟槽流现象加剧,反过来影响裂隙渗流特性的演变规律。  相似文献   

3.
在复杂应力和长期渗流侵蚀作用下岩体裂隙的表面形貌不断发生改变,导致岩体裂隙的渗流特性演化机理更加复杂。开展不同粗糙程度的石灰岩裂隙渗透试验,对比试验结果和渗透试验前后裂隙表面形貌特征,分析应力和渗流侵蚀耦合作用对粗糙裂隙表面形貌的改造影响,研究其渗流特性的演变规律。结果表明,在应力作用下粗糙程度不同的裂隙其渗流量随时间均呈现先快速减小,后趋于稳定的变化规律;不同粗糙度裂隙的等效水力隙宽和渗透率在试验初始时刻基近相等,随后均呈不断减小的趋势,但在应力和渗流侵蚀耦合作用下裂隙表面粗糙度越大,其等效水力隙宽和渗透率的下降幅值越大,试验结束时其稳定值越小;粗糙起伏程度小的裂隙,其渗流路径较均匀,流线平直,而粗糙起伏程度大的裂隙,表面出现沟槽流现象,渗流路径曲折延长;当裂隙表面粗糙凹凸体增多,与渗透水流的接触面积增大,应力和渗流侵蚀作用对裂隙表面形貌的溶蚀改造增强,使表面整体形态更粗糙起伏,而表面形态影响其渗流路径,致使裂隙表面沟槽流现象加剧,反过来影响裂隙渗流特性的演变规律。  相似文献   

4.
《岩土力学》2017,(9):2473-2479
根据采动过程中裂隙岩体的应力变化,用法向载荷、剪切载荷和渗透水压分别模拟开采过程中采场的水平应力、垂向应力和水头压力,应用JAM-600型剪切-渗流耦合试验系统对裂隙岩体进行压剪-渗流藕合试验,探讨在恒定法向荷载(CNL)和法向刚度(CNS)条件下,裂隙岩体的法向载荷、裂隙粗糙度与渗透水压对试样的位移、应力和渗流性的影响规律,分析剪切位移大小和岩体裂隙的剪胀特性对裂隙岩体的剪切应力、法向位移、节理水力开度及渗透率影响规律。研究表明:剪切应力和水头压力对裂隙水力开度起促进作用,水平地应力对水力开度变化起抑制作用。随着剪切位移变化,水力开度可分为变小或持平、增大、稳定3个阶段。裂隙表面粗糙度越大,裂隙岩体的刚度越小,则水力开度最终稳定值越大。由于裂隙岩体的剪胀作用渗透率先变小后增大,剪切位移增大,渗透率增大;法向荷载增大,试件的渗透率越小;裂隙表面越粗糙,其渗透率越大,其研究结果可为岩体透水通道形成时的孕育、萌生和爆发的导渗灾变演化过程提供理论基础。  相似文献   

5.
考虑应力历史的岩石单裂隙渗流特性试验研究   总被引:1,自引:0,他引:1  
杨金保  冯夏庭  潘鹏志 《岩土力学》2013,34(6):1629-1635
通过开展单裂隙花岗岩不同围压加、卸载和不同水力梯度作用下的渗透试验,研究应力历史对裂隙渗透性能演化的影响。试验结果表明:在围压加载过程中,渗流流量与渗透压差大致呈线性关系;在渗透压差相同的条件下,围压越小,流量越大,随着围压上升,裂隙渗流流量持续减小,但随着围压的进一步增大,流量的减小有减缓的趋势。在围压相同以及渗透压差相同的条件下,单裂隙花岗岩在卸载条件下的渗流特性与加载条件下相比,其渗流流量明显降低,且卸载过程中渗流流量与渗透压差开始偏离线性关系。从试验前、后裂隙面粗糙度系数值的对比可以看出,由于法向应力挤压以及渗流流体的冲蚀作用,试验后裂隙面粗糙度系数明显降低。卸载的过程中,裂隙渗透性能的恢复具有明显的滞后效应,表明在法向应力和流体冲蚀的共同作用下,裂隙产生了不可恢复的非弹性变形。  相似文献   

6.
岩体裂隙粗糙程度对裂隙渗流特性的影响显著。利用三维光学扫描系统获取岩体裂隙面点云数据,结合SURFER和GEOMAGIC STUDIO等软件计算裂隙面节理粗糙度系数JRC和表面粗糙比率Rs,建立JRC与Rs的定量关系,开展应力、渗流和化学耦合作用下石灰岩裂隙渗流试验,研究JRC和Rs对粗糙裂隙渗流特性的影响。结果表明:JRC与Rs呈对数函数关系,其平方根R2为0.912 8,该表征公式与裂隙渗流试验结果最大相对误差MRE、平均绝对误差MAE和均方根误差RMSE分别为6.93%、0.34和0.27。JRC与渗流量、稳定期渗透率分别呈二次函数和对数函数关系,Rs和各参数的拟合关系与JRC相同。JRC值越大,渗流量和渗透率越小,且三场耦合作用下裂隙面JRC和Rs值均有所增大。该表征方法可用于岩体裂隙面粗糙度估算,由裂隙面JRC值可预测该裂隙渗流量和稳定时刻渗透率。  相似文献   

7.
王辰霖  张小东  杜志刚 《岩土力学》2019,40(6):2140-2153
应用三轴加载煤岩渗流试验装置,对预制贯通裂隙煤样开展循环加卸载轴压渗透率试验,分析循环加卸载轴压作用下预制裂隙煤样渗透率的变化规律及其之间的差异。研究结果表明:预制裂隙煤样渗透率与轴压呈负指数函数关系,渗透率对应力敏感性随加卸载次数增加而降低。加载阶段渗透率差值与卸载阶段渗透率差值随加卸载次数增加而降低,渗透率差值与应力敏感性系数呈正相关性。加载阶段与卸载阶段渗透率存在明显差值,渗透率产生明显损失量,其随加卸载次数增加而降低。竖直裂隙煤样渗透率与应力敏感性系数明显高于水平裂隙煤样与完整煤样,水平裂隙煤样渗透性与完整煤样渗透性相差不大,但水平裂隙煤样应力敏感性系数高于完整煤样。竖直裂隙煤样渗透率差值与渗透率损失量明显高于水平裂隙煤样与完整煤样,水平裂隙煤样渗透率差值高于完整煤样,但两者渗透率损失量相差不大。循环加卸载轴压结束后,完整煤样渗透率损失率最大,水平裂隙煤样渗透率损失率居中,竖直裂隙煤样渗透率损失率最小;竖直裂隙煤样渗透率恢复率最大,水平裂隙煤样渗透率恢复率居中,完整煤样渗透率恢复率最小。  相似文献   

8.
岩体粗糙裂隙非线性渗透特性是岩体渗流研究的重要课题。针对Javadi所提T模型中亚裂隙中速度恒定这一假设的不足,将其修正为速度与开度成正比的经验关系,考虑黏性压降和局部压降,提出了新的低速下粗糙裂隙非线性渗流模型(MT模型)。为了验证MT模型的正确性,对5种不同粗糙裂隙进行了低流量的饱和渗流试验,将现有模型及MT模型的预测值与试验结果进行对比,分析表明MT模型与试验结果更为吻合,且模型适用于粗糙性系数JRC≤10的低粗糙度裂隙,雷诺数小于1 000的低流速情况。对MT模型进行分析,初步揭露了粗糙裂隙的非线性渗流机制,即小雷诺数下的Darcy流和大雷诺数下的Forchheimer流,并用临界雷诺数区分两种流动行为。分析了裂隙的粗糙度和开度对非线性渗流特性的影响,表明裂隙越粗糙或开度越小,则临界雷诺数越小,非线性作用将越强。提出了临界雷诺数与水力开度和绝对粗糙度的经验关系式,同时指出该关系式适用于JRC≤10的低粗糙度裂隙。  相似文献   

9.
利用3D打印技术制作出30个含10级粗糙度(JRC=1~20)、3种厚度(1.5、3.0、5.0mm)的裂隙插片,通过模具浇筑成贯通充填裂隙类岩石试件,并对所制备的试件开展渗透性试验,研究在不同围压水平下不同粗糙度、不同隙宽贯通充填裂隙的渗流特性。试验结果表明:(1)不同粗糙度和隙宽贯通充填裂隙渗透率均随围压增加而减小,且在围压加载初期,裂隙渗透率的降低速度明显要高于围压加载中后期,最大渗透率降差达到78%。(2)围压加载初期,隙宽较小时,裂隙渗透率有随粗糙度增加而减小的趋势,且离散性较大;随着围压和隙宽的增加,粗糙度对裂隙渗透性的影响迅速减小。(3)对于10级不同粗糙度贯通充填裂隙,围压加载过程中,均有隙宽越大,裂隙渗透率越大的规律;且在围压较小时,粗糙度越大,不同隙宽贯通充填裂隙渗透率的差值越大,但随着围压的升高,这种影响逐渐被消除。(4)围压对贯通充填裂隙渗透率的影响处于主导地位,两者之间的关系可用幂函数进行描述。  相似文献   

10.
开展了不同围压下的裂隙岩体渗流试验,提出了一种简单的裂隙隙宽测量方法,并研究了渗流过程裂隙的变形特征;基于Forchheimer非线性渗流方程,计算了非线性系数及渗透率,分析了围压与非线性系数及渗透率的关系。研究结果表明,随着围压增大,岩样的渗透率减小,非线性渗流系数增大;裂隙粗糙度越大,越容易引起非线性渗流;裂隙水力开度与力学开度随围压变化趋势一致,水力开度约为力学开度的5%。  相似文献   

11.
砂岩三轴循环加卸载条件下的渗透率研究   总被引:6,自引:0,他引:6  
渗透率是地下工程的流-固耦合分析中的一个关键因素。对多孔红砂岩进行了三轴压缩试验,在不同变形阶段实施了轴向应力循环加卸载,并在试验全过程中测量轴向渗透率,得到了试样破坏全过程的渗透率演化规律。从平均应力和循环加卸载对渗透率的影响等两方面进行了深入分析,结果表明,(1)随着轴向变形的增加,初始压密阶段和弹性变形试样渗透率均匀减小;进入塑性变形阶段,渗透率与轴向变形的曲线逐渐趋于水平,低围压条件下渗透率略有增加。(2)轴向加载使骨架颗粒被压缩,引起孔隙减小,造成渗透率减小;采用经验公式定量描述了渗透率和平均应力之间的关系。(3)轴向应力循环加卸载过程中,骨架颗粒的不可恢复变形引起渗透率产生不可恢复现象。(4)峰值后渗透率只发生少许突跳,说明对于多孔砂岩,孔隙和裂隙对渗透率的影响相当,且渗透率的突跳程度随着围压的升高而降低。  相似文献   

12.
《岩土力学》2017,(4):1203-1210
为了研究层流状态下粗糙单裂隙面的渗流特性,基于格子Boltzmann方法,建立了压力作用下单裂隙面渗流的数值模型。采用D2Q9模型模拟离散速度分布方向,在宏观尺度上,上、下边界设置为不透水边界(u_x=u_y=0),左、右边界为压力边界(左侧压力p_(in)大于右侧压力p_(out))在微观尺度上,左、右边界及光滑裂隙表面采用非平衡态外推格式,粗糙裂隙表面采用标准反弹格式。编制了相应的计算程序,验证了光滑平板裂隙流的立方定律。采用分段随机裂隙长及裂隙宽的方法生成了粗糙裂隙面,并基于格子Boltzmann方法研究了不同粗糙裂隙面方案的渗流特性。研究结果表明:对于粗糙裂隙面,渗流特征极大程度取决于裂隙表面形貌,随着相对粗糙度的增加,裂隙渗流规律明显偏离立方定律。为此,考虑裂隙面相对粗糙度的影响,根据不同裂隙粗糙面方案的数值计算结果,提出了层流状态下粗糙裂隙面渗流的立方定律修正公式,为系统研究复杂粗糙裂隙的水力特性奠定了一定的基础。  相似文献   

13.
裂隙水流运动规律的研究对岩溶地区水资源合理开发利用以及裂隙岩体渗流理论发展具有重要意义。为探讨立方定律在矩形狭缝平行裂隙中的有效性以及裂隙水流运动特性,对不同尺寸的矩形狭缝平行裂隙水流运动进行数值模拟,基于模拟结果,利用极限流速和极限雷诺数的概念对立方定律在矩形狭缝裂隙中的有效性进行了验证,提出适用于矩形狭缝裂隙的修正立方定律。分析了矩形狭缝裂隙渗透系数随裂隙开度、宽度以及宽度与开度比值的变化,结果表明:裂隙开度越大,宽度越大,渗透系数越大,渗透系数随裂隙宽度与裂隙开度比值的增大而增大,二者之间呈指数关系。对裂隙水流流速分布剖面进行分析,结果表明:裂隙开度越大,流速分布越偏离泊肃叶分布,且离裂隙中心线越近,绝对偏差越大,相对偏差沿质点位置呈波动变化,变幅较小;流速越大,流速分布越偏离泊肃叶分布,在裂隙中心线处最大,离裂隙壁越近,偏差越小,而相对偏差随流速的变化幅度相对较小,表现为集中型;裂隙宽度越大,对流速分布影响越小。  相似文献   

14.
地下工程中破碎岩体往往处于三向应力状态,此类岩体具有孔隙率大、渗透性高等特点,在地应力与高水头作用下易发生渗流失稳破坏,诱发突水灾害。为研究三轴应力下破碎砂岩的渗透特性,运用自主研发的破碎岩石三轴渗流试验系统,采用稳态渗透法进行5种粒径破碎砂岩的渗流试验,得到了三轴应力下破碎砂岩渗透特性变化规律,推导了有效应力与渗流速度之间的关系。试验结果表明:三轴应力下破碎砂岩的有效应力与渗流速度呈线性关系,且轴向位移越大时,随有效应力的增加渗流速度减小的幅度越小;三轴应力下5种粒径破碎砂岩的孔压梯度与渗流速度服从Forchheimer关系,两者之间的相关系数达0.95以上;轴向位移恒定时,随着围压的增大,破碎砂岩渗透率k减小,非Darcy流β因子增大,各级轴向位移下,破碎砂岩的渗透率与围压之间呈指数函数关系;随着孔隙率的减小,5种粒径的破碎砂岩渗透率呈减小趋势,非Darcy流β因子整体增大,且渗透率量级为10-14~10-11 m2,非Darcy流β因子的量级为106~1012 m-1。  相似文献   

15.
裂隙是油气储层主要的储集空间及流体渗流通道,影响油气的运移规律,是油气勘探开发的重要指标。以冀中坳陷任丘油田任10井为例,运用数值模拟方法研究了裂隙开展宽度和裂隙面粗糙度对岩石渗流特性的影响规律。研究结果表明,(1)裂隙开展宽度较小时,孔隙内流体压力仅在入口处小范围内呈扇形分布,裂隙中压力分布曲线呈正切函数型,流体流速在裂隙和孔隙中都较小;随着裂缝开展宽度的增加,孔隙内流体压力逐渐增大,裂隙中压力分布曲线逐渐向直线型转变,流体流速在入口处先减小后稳定,在裂隙中先增加后稳定;(2)裂隙面粗糙度对裂隙岩石渗流特性的影响与裂隙开展宽度有关,在裂隙开展宽度较大时,裂隙面粗糙度对流体压力的分布影响较大;随着裂隙面粗糙度增大,孔隙内流速逐渐增大,而裂隙中流速逐渐减小;(3)随着裂隙开展宽度的增大,影响裂隙流体流动的主控因素逐渐由裂隙开展宽度转变为裂隙面粗糙度。  相似文献   

16.
天然岩体中存在着大量的孔隙和裂隙,这些缺陷不仅改变了岩体的力学性质,也严重影响了岩体的渗流特性。在对现有裂隙岩体渗流特性研究成果进行分析的基础上,讨论了岩体单个裂隙的力学性质和渗流对单个裂隙岩体产生的力学作用,研究了岩体单裂隙渗透系数与岩体三维应力的关系,考虑了裂隙粗糙度对渗流的影响以及不同方向应力对渗透性影响的差异,分析了单个裂隙岩体在三向应力作用下的渗流特征,得出了裂隙所受三维应力与渗透系数关系式,认为垂直于裂隙面的应力对岩体渗透性起主导作用,岩体渗透系数随垂直裂隙面应力的增加而迅速减小。通过与渗流规律试验结果对比分析,证明了所得单个裂隙岩体渗透系数表达式的正确性。  相似文献   

17.
崔溦  邹旭  李正  江志安  谢武 《岩土力学》2020,41(11):3553-3562
由于存在大量粗糙不规则裂隙,使得岩体中流体运动极为复杂。针对天然粗糙岩石裂隙渗流试验存在物理模型隐蔽性和不可重复性等难点,基于三维Weierstrass-Mandelbrot分形函数构建了粗糙节理面的裂隙通道,采用3D打印技术获得了透明精细的裂隙模型,使用微流体控制仪研究了不同试验条件下的裂隙渗流扩散运动,分析了裂隙通道流量与压力水头、裂隙宽度和分形维数之间的关系。研究结果表明:与平行板立方定律近似,在分形裂隙中,裂隙通道流量与压力水头成线性关系;单宽流量与裂隙通道的宽度成近似的三次方关系;考虑分形维数影响时,相同条件下流过裂隙通道的流量随着分形维数的增加而增加;粗糙裂隙渗流立方定律可采用与分形维数相关的幂指数函数进行修正。  相似文献   

18.
《地下水》2016,(5)
基岩裂隙介质的空间变异性导致裂隙渗流情况十分复杂。在等效连续介质模型的基础上,建立数值分析模型研究了裂隙宽度和渗透系数对单裂隙渗流的影响。利用单裂隙立方定律对裂隙流量进行解析计算,并在单一变量研究原则下,利用MODFLOW创建了光滑平行板单裂隙介质的数值模型。据等效理论,将单裂隙宽度放大10倍的条件下,解析解计算结果比模拟结果高出6个数量级;不同裂隙宽度条件下,数值模拟结果与解析计算结果都表现出通过单个裂隙的水流量随着裂隙的宽度的增加而增加;不同渗透系数条件下,稳定流与非稳定流条件下得到的流量都随渗透系数的减小而变小。  相似文献   

19.
为研究开采过程中煤岩力学行为及渗透率演化规律,运用含瓦斯煤热-流-固耦合渗流伺服试验系统,进行了不同加卸载条件下原煤力学及渗流试验,分析了加卸载应力作用对煤岩变形及渗流规律的影响,得到了剪胀角随塑性剪切应变的变化关系,发现了塑性剪切应变在1.6%左右会出现剪胀角急剧变化的现象。根据试验现象和结果,考虑煤岩结构对渗透率的影响,对煤岩在弹性阶段和屈服损伤后的结构进行简化,基于火柴棍模型及渗流理论分析,从应变的角度出发,探讨了加卸载应力对煤岩渗透率的影响,建立了两个不同阶段的渗透率模型(即弹性阶段和损伤阶段),基于不同阶段的渗透率模型和剪胀角规律,构建了煤岩全过程渗透率模型。所构建的渗透率模型与试验结果对比吻合效果较好,验证了该模型的适用性,可以为实现煤与瓦斯共采提供一定的理论依据。  相似文献   

20.
有效应力对裂缝型低渗透砂岩油藏压力响应的影响   总被引:6,自引:4,他引:2  
李宜强  班凡生  高树生  薛慧 《岩土力学》2008,29(6):1649-1654
为了研究裂缝孔隙型低渗油藏中流体在双重介质之间的渗流规律及其影响,建立了双重介质间流体窜流的数学模型,并利用拉氏变换数值反演方法给出近似解析解;通过数值计算,研究窜流压力的动态特征,分析储容系数及窜流系数对压力响应的影响;通过压敏试验研究了有效应力对双重介质低渗油藏渗流能力的影响。研究结果表明:储容系数主要决定双重介质之间发生窜流现象的早晚,储容系数越大,发生窜流的时间越晚;储容系数越小,发生窜流的时间越早。窜流系数主要决定双重介质之间发生窜流压力的大小,窜流系数越大,发生窜流的压力越小;窜流系数越小,发生窜流的压力越大。有效应力对裂缝型低渗透油藏的渗流能力影响很大,有效应力的增加能够大大降低裂缝型油藏渗透率和孔隙度,以致降低储层的储容系数和窜流系数,从而影响双重介质间窜流压力的动态特征。因此,在裂缝型低渗透砂岩油藏开采中,保持压力、防止储层伤害是非常重要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号