首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In 2001–2003, 45 flares of hard X ray (HXR) and gamma ray radiation, identified with a particular active region (AR) that produced each event, were recorded during the experiments onboard the Russian Solar Observatory CORONAS-F using the SONG (solar neutrons and gamma ray quanta) instrument. The solar corona structure and dynamics above these ARs is studied on the basis of the microwave observations with two Russian radio telescopes RATAN-600 and Siberian Solar Radio Telescope (SSRT). The results are illustrated using the active region NOAA 9601 and flare of September 5, 2001 (~ 1430 UT) as an example. The flare is interesting because the energy of its gamma radiation exceeded 1 MeV, while its power was only M6.0 in soft X rays. Such a combination of the event characteristics is not too frequent, which indicates that the spectrum of the studied event was rather hard. The type of the source of microwave radiation above NOAA 9601 has been determined. Some properties of this-type sources of a diagnostic value for detecting ARs capable of producing HXR and gamma radiation are indicated.  相似文献   

2.

This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  相似文献   

3.
The following has been indicated for the cyclotron emission of microwave sources based on a simple modeling of a unipolar sunspot magnetosphere by the magnetic monopole, submerged in subphotospheric layers, and a temperature, changing with altitude as hyperbolic tangent. At insignificant changes in the sunspot magnetic field strength, originating as a result of oscillations of a sunspot as an integrated structure, the oscillation amplitude (in percent) of brightness temperatures of the Stokes I and V parameters at a wavelength of 1.76 cm (NoRH) is an order of magnitude as large as the magnetic field strength amplitude. This amplitude is of the same order of magnitude as the field oscillation amplitude at a wavelength of 5.2 cm (SSRT).  相似文献   

4.
An upgrade of the Siberian Solar Radio Telescope (SSRT) [Smolkov et al., 1986; Grechnev et al., 2003] to a multiwave radio heliograph has been started. The radio heliograph being created will be designed mainly to measure coronal magnetic fields, to determine the locations of solar-flare energy release, and to investigate coronal mass ejections. These tasks define the parameters of next-generation radio heliographs. A high spatial resolution, a high image acquisition rate, and a high sensitivity are required simultaneously. All these parameters should be realized in the widest possible frequency range—from fractions to tens of GHz). The expected parameters of the future SSRT-based radio heliograph are listed below: spatial resolution 12″–24″, temporal resolution 0.02–1.0 s, frequency range 4–8 GHz, sensitivity up to 100 K, left-hand and right-hand circular polarizations, data rate 0.5–20 Mb s−1 (normal and flare modes). In this paper, we describe the broadband antennas, analog optical data transmission lines, and correlator used in the 10-antenna radio heliograph prototype.  相似文献   

5.
This paper continues the cycle of authors’ works on the detection of precursors of large flares (M5 and higher classes) in active regions (ARs) of the Sun by their microwave radiation and magnetographic characteristics. Generalization of the detected precursors of strong flares can be used to develop methods for their prediction. This paper presents an analysis of the development of NOAA AR 12242, in which an X1.8 flare occurred on December 20, 2014. The analysis is based on regular multiazimuth and multiwavelength observations with the RATAN-600 radio telescope in the range 1.65–10 cm with intensity and circular polarization analysis and data from the Solar Dynamics Observatory (SDO). It was found that a new component appeared in the AR microwave radiation two days before the X-flare. It became dominant in the AR the day before the flare and significantly decreased after the flare. The use of multiazimuth observations from RATAN-600 and observations at 1.76 cm from the Nobeyama Radioheliograph made it possible to identify the radio source that appeared before the X-flare with the site of the closest convergence of opposite polarity fields near the neutral line in the AR. It was established that the X-flare occurred 20 h after the total gradient of the magnetic field of the entire region calculated from SDO/HMI data reached its maximum value. Analysis of the evolution of the microwave source that appeared before the X-flare in AR 12242 and comparison of its parameters with the parameters of other components of the AR microwave radiation showed that the new source can be classified as neutral line associated sources (NLSs), which were repeatedly detected by the RATAN-600 and other radio telescopes 1–3 days before the large flares.  相似文献   

6.
A weak active region (NOAA 11158) appeared on the solar disk near the eastern limb. This region increased rapidly and, having reached the magnetic flux higher than 1022 Mx, produced an X-class flare. Only weak field variations at individual points were observed during the flare. An analysis of data with a resolution of 45 s did not indicate any characteristic features in the photospheric field dynamics during the flare. When the flux became higher than 3 × 1022 Mx, active region NOAA 10720 produced six X-class flares. The field remained quiet during these flares. An increase in the magnetic flux above ~1022 Mx is a necessary, but not sufficient, condition for the appearance of powerful flares. Simple active regions do not produce flares. A flare originates only when the field distribution in an active region is complex and lines of polarity inversion have a complex shape. Singular lines of the magnetic field can exist only above such active regions. The current sheets, in the magnetic field of which the solar flare energy is accumulated, originate in the vicinity of these lines.  相似文献   

7.
The ordinary mode of gyrosynchrotron radiation was identified to be predominant in some segments of flare loops in solar flares of July 19, 2012, and October 22, 2014. These events were studied by investigation of the quasi-transverse propagation effect on the observed polarization. The analysis involved reconstruction of the magnetic field topology at the linear force-free approximation based on the data of the SDO HMI space telescope and the subsequent simulation of radio emission of flare loops with the GX Simulator software package. The quasi-transverse propagation effect was established to be characteristic for both events, but its influence on the radio emission polarization at a frequency of 17 GHz was observed only in the October 22, 2014 flare.  相似文献   

8.
The powerful solar flares that occurred on September 4–10, 2017 are analyzed based on a quantitative diagnostics method for proton flares developed at the Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation (IZMIRAN) in the 1970–1980s. We show that the fluxes and energy spectra of the protons reached the Earth with the energies of tens of MeV qualitatively and quantitatively correspond to the intensity and frequency spectra of the microwave radio bursts in the range of 2.7–15.4 GHz. Specifically, the flare of September 4 with a peak radio flux S ~ 2000 sfu at the frequency f ~ 3 GHz (i.e., with the soft radio spectrum) was accompanied by a significant proton flux J (>10 MeV) ~100 pfu and a soft energy spectrum with the index γ ~3.0, while the strong flare on September 10 with S ~ 21000 sfu at f ~ 15 GHz (i.e., with the hard radio spectrum) led to a very intense proton event with J (>10 MeV) ~1000 pfu with a hard spectrum (γ ~ 1.4), including the ground level enhancement (GLE72). This is further evidence that microwave radio data can be successfully used in diagnostics of proton flares independently of a specific source of particle acceleration at the Sun, in particular, with the IZMIRAN method.  相似文献   

9.
High temporal resolution solar observations in the decimetric range (1–3 GHz) can provide additional information on solar active regions dynamics and thus contribute to better understanding of solar geoeffective events as flares and coronal mass ejections. The June 6, 2000 flares are a set of remarkable geoeffective eruptive phenomena observed as solar radio bursts (SRB) by means of the 3 GHz Ondrejov Observatory radiometer. We have selected and analyzed, applying detrended fluctuation analysis (DFA), three decimetric bursts associated to X1.1, X1.2 and X2.3 flare-classes, respectively. The association with geomagnetic activity is also reported. DFA method is performed in the framework of a radio burst automatic monitoring system. Our results may characterize the SRB evolution, computing the DFA scaling exponent, scanning the SRB time series by a short windowing before the extreme event. For the first time, the importance of DFA in the context of SRB monitoring analysis is presented.  相似文献   

10.
The results of a three-dimensional MHD simulation and data obtained using specialized spacecraft made it possible to construct an electrodynamic model of solar flares. A flare results from explosive magnetic reconnection in a current sheet above an active region, and electrons accelerated in field-aligned currents cause hard X rays on the solar surface. In this review, we considered works where the boundary and initial conditions on the photosphere were specified directly from the magnetic maps, obtained by SOHO MDI in the preflare state, in order to simulate the formation of a current sheet. A numerical solution of the complete set of MHD equations, performed using the new-generation PERESVET program, demonstrated the formation of several current sheets before a series of flares. A comparison of the observed relativistic proton spectra and the simulated proton acceleration along a magnetic field singular line made it possible to estimate the magnetic reconnection rate during a flare (∼107 cm s−1). Great flares (of the X class) originate after an increase in the active region magnetic flux up to 1022 Mx.  相似文献   

11.
This paper reports the obtained analysis data on the spatio-temporal evolution of sources of microwave and hard X-ray pulsations for the SOL2011-06-07T06:16 event based on the observation data of the RHESSI spectrometer and the Nobeyama radioheliograph. The position of the considered pulsation sources changes from one pulsation to another. The motion of the X-ray sources is predominantly longitudinal in nature in relation to the inversion line of the magnetic polarity. The obtained analysis data on the evolution of X-ray sources are in good agreement with the results of the radio image analysis. The radio brightness center at 34 GHz changes its position from one pulsation to another along the inversion line of the magnetic polarity throughout the burst. According to the AIA/SDO telescope data, the flare region images in the ultraviolet range demonstrate a well-defined eruption of the magnetic flux rope. The flare energy release can likely be triggered by the erupting magnetic flux rope; the successive interaction of different parts of it with different loops of the surrounding magnetic arcade can result in their successive “ignition” and, as a consequence, lead to the observed changes in the position of X-ray and microwave sources from one pulsation to another.  相似文献   

12.
The morphological peculiarities of the 1N (N09W22) two-ribbon spotless flare on March 16, 1981, as well as its connection with a magnetic field, have been considered. In contrast to major flares of the active region, this spotless flare is characterized by a large-scale development process, a large distance from the magnetic neutral line, and the absence of the spread of the ribbons. The development of the flare had four periods. At the beginning of each period, a sharp increase in the brightness of the flare was observed along with a simultaneous decrease in the area of the flare ribbons. The areas of the ribbons varied synchronously during all of the periods. However, the situation changed abruptly near the maximum: the area of one of the ribbons increased, whereas the area of the other ribbon decreased. In our opinion, this behavior is a manifestation of real physical processes in the flare source and was a precursor of the beginning of the flare decay. The magnetic field and its topology, as well as the cellular structure of the chromosphere, were primarily responsible for the evolution of the flare. Almost all of the mottles and bright parts of the flare were localized in the immediate vicinity of magnetic hills with field intensities from 80 to 250 G. The main structural elements of the flare have been identified. A phenomenon called the tunnel effect has been revealed: the flare progresses inside a tunnel formed by the system of dark arch structures (filaments). The results indicate that spotless flares apparently constitute a specific class of flare phenomena and the study of them is of great interest for understanding of the origin of solar flares.  相似文献   

13.
The evolution of the microwave radiation from four active regions, where strong X-ray flares (X-class, GOES) occurred in 2011, has been studied. Daily multiwavelength RATAN-600 radio observations of the Sun in the 1.6–8.0 cm range have been used. It has been indicated that the radiosource above the photospheric magnetic field neutral line (above the region with the maximal convergence of the fields opposite in sign) becomes predominant in the structure of the active region microwave radiation one to two days before a powerful flare as in the eruptive events previously studied with RATAN-600. The appearance of such a radiosource possibly reflects the current sheet formation in the corona above the active region. The energy necessary for a flare is stored in the magnetic field of active region, which can be considered as a factor for predicting a powerful flare.  相似文献   

14.
The following results have been achieved in this work. The distribution of the recurrence times of solar flare events is generally lognormal. The typical flare recurrence times at the cycle 23 minimum and maximum are different: the average times (100–200 min) are most typical of the maximum; at the same time, the minimum is simultaneously characterized by short (several tens of seconds) and long (from several hundreds to a thousand of minutes). The minimal flare recurrence time tends to decrease in an active region with increasing sunspot group area in this region. The average flare recurrence times in an active region have typical values of 120m, 210m, 300m, 400m, and 530m, which is close to the typical periods of long-period sunspot oscillations. The total number of flares in an active region depends on the sunspot area in this region and the flare energy release rate.  相似文献   

15.
爆发型太阳活动是日地系统中重要的扰动源。本文介绍日地系统学中最剧烈的爆发型太阳活动-太阳耀斑的观测研究进展。综述了最近两个太阳周的地面与空间观测所得到的耀斑的物理图象和统计性质,简单讨论了空间观测设备的发展和面临的研究课题。  相似文献   

16.
文中选了5 个典型活动区, 分析了这些活动区的磁场, 与活动区相应的CMEs, 太阳爆发事件和太阳质子事件我们发现, 对于E ≥10meV 的太阳质子事件有相应的源活动区, 源耀斑和CME; 活动区矢量磁场有剪切, 磁场剪切越强质子事件越强; 多数在质子耀斑发生前出现磁流浮现; 太阳10cm 射电爆发持续时间长文中结果还佐证了Shealy 等的结果: X 射线耀斑的长持续时间与CME 的发生正相关另外,在5 个活动区中, 有三个大耀斑发生前没有明显的磁剪切作为它们的先兆, 它们是非质子源耀斑这是Moore, Hagyard 和Davis 的磁场强剪切是耀斑产生的必要条件的反例  相似文献   

17.
We present a detailed study of a 1B/M6.9 impulsive flare combining high time resolution (1 ms) and instantaneous emission source localization observations at submillimeter frequencies (212 GHz), obtained with the solar submillimeter telescope (SST), and Hα data from the Hα solar telescope for argentina (HASTA). The flare, starting at 16:34 UT, occurred in active region (AR) 9715 (NOAA number) on November 28, 2001, and was followed by an Hα surge. We complement our data with magnetograms from the Michelson Doppler Imager (SOHO/MDI). SST observed a short impulsive burst at 212 GHz, presenting a weak bulk emission (of about 90 sfu) composed of a few shorter duration structures. The integrated Hα and the 212 GHz light curves present a remarkable agreement during the impulsive phase of the event. The delay between both curves stays below 12 s (the time resolution of the Hα telescope). The flare as well as the surge are linked to new flux emergence very close to the main AR bipole. Taking into account the AR magnetic field evolution, we infer that magnetic field reconnection, occurring at low coronal levels, could have been at the origin of the flare; while in the case of surge this would happen at the chromospheric level.  相似文献   

18.
在本文里, 我们对CME 和太阳耀斑现象的各种相互关系进行了讨论希望本文的内容能够引起天文、空间物理和地球物理等人员的兴趣, 促进CME的综合研究  相似文献   

19.
We study the annual frequency of occurrence of intense geomagnetic storms (Dst < –100 nT) throughout the solar activity cycle for the last three cycles and find that it shows different structures. In cycles 20 and 22 it peaks during the ascending phase, near sunspot maximum. During cycle 21, however, there is one peak in the ascending phase and a second, higher, peak in the descending phase separated by a minimum of storm occurrence during 1980, the sunspot maximum. We compare the solar cycle distribution of storms with the corresponding evolution of coronal mass ejections and flares. We find that, as the frequency of occurrence of coronal mass ejections seems to follow very closely the evolution of the sunspot number, it does not reproduce the storm profiles. The temporal distribution of flares varies from that of sunspots and is more in agreement with the distribution of intense geomagnetic storms, but flares show a maximum at every sunspot maximum and cannot then explain the small number of intense storms in 1980. In a previous study we demonstrated that, in most cases, the occurrence of intense geomagnetic storms is associated with a flaring event in an active region located near a coronal hole. In this work we study the spatial relationship between active regions and coronal holes for solar cycles 21 and 22 and find that it also shows different temporal evolution in each cycle in accordance with the occurrence of strong geomagnetic storms; although there were many active regions during 1980, most of the time they were far from coronal holes. We analyse in detail the situation for the intense geomagnetic storms in 1980 and show that, in every case, they were associated with a flare in one of the few active regions adjacent to a coronal hole.  相似文献   

20.
For electron acceleration during solar flares, it is very important to determine the pitch-angle and energy dependences of the electron distribution function. At present, this cannot be done directly from observations. Therefore, it is necessary to perform a numerical simulation of the propagation of accelerated electrons in the magnetic field of the flare loop (loops) and calculate the X-ray and radio emissions. For the solar flare of November 10, 2002, we have obtained qualitative and quantitative agreements of modeled X-ray and radio maps with the RHESSI satellite and Nobeyama Radioheliograph data. We have determined the flare model parameters that agree with observations. The pitch-angle anisotropy of electrons determined by highly directional functions of the S(α) = cos8(α) type, the energy spectrum consist of two electron populations, the low-energy part of the spectrum up to an energy of break of 350 keV is characterized by a power law with the exponent δ1 = 2.7–2.9, and the energy spectrum is more rigid above 420 keV (δ2 = 2–2.3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号