首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Coupled assimilation for an intermediated coupled ENSO prediction model   总被引:4,自引:0,他引:4  
Fei Zheng  Jiang Zhu 《Ocean Dynamics》2010,60(5):1061-1073
The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind–ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997–2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.  相似文献   

2.
The Argo temperature and salinity profiles in 2005–2009 are assimilated into a coastal ocean general circulation model of the Northwest Pacific Ocean using the ensemble adjustment Kalman filter (EAKF). Three numerical tests, including the control run (CTL) (without data assimilation, which serves as the reference experiment), ensemble free run (EnFR) (without data assimilation), and EAKF experiment (with Argo data assimilation using EAKF), are carried out to examine the performance of this system. Using the restarts of different years as the initial conditions of the ensemble integrations, the ensemble spreads from EnFR and EAKF are all kept at a finite value after a sharp decreasing in the first few months because of the sensitive of the model to the initial conditions, and the reducing of the ensemble spread due to Argo data assimilation is not much. The ensemble samples obtained in this way can well represent the probabilities of the real ocean states, and no ensemble inflation is necessary for this EAKF experiment. Different experiment results are compared with satellite sea surface temperature (SST) data and the Global Temperature-Salinity Profile Program (GTSPP) data. The comparison of SST shows that modeled SST errors are reduced after data assimilation; the error reduction percentage after assimilating the Argo profiles is about 10?% on average. The comparison against the GTSPP profiles, which are independent of the Argo profiles, shows improvements in both temperature and salinity. The comparison results indicated a great error reduction in all vertical layers relative to CTL and the ensemble mean of EnFR; the maximum value for temperature and salinity reaches to 85?% and 80?%, respectively. The standard deviations of sea surface height are employed to examine the simulation ability, and it is shown that the mesoscale variability is improved after Argo data assimilation, especially in the Kuroshio extension area and along the section of 10°N. All these results suggest that this system is potentially useful for improving the simulation ability of oceanic numerical models.  相似文献   

3.
A new 3DVAR-based Ocean Variational Analysis System (OVALS) is developed. OVALS is capable of assimilating in situ sea water temperature and salinity observations and satellite altimetry data. As a component of OVALS, a new variational scheme is proposed to assimilate the sea surface height data. This scheme considers both the vertical correlation of background errors and the nonlinear temperature-salinity relationship which is derived from the generalization of the linear balance constraints to the nonlinear in the 3DVAR. By this scheme, the model temperature and salinity fields are directly adjusted from the altimetry data. Additionally, OVALS can assimilate the temperature and salinity profiles from the ARGO floats which have been implemented in recent years and some temperature and salinity data such as from expendable bathythermograph, moored ocean buoys, etc. A 21-year assimilation experiment is carried out by using OVALS and the Tropical Pacific circulation model. The results show that the assimilation system may effectively improve the estimations of temperature and salinity by assimilating all kinds of observations. Moreover, the root mean square errors of temperature and salinity in the upper depth less than 420 m reach 0.63℃ and 0.34 psu.  相似文献   

4.
A global ocean data assimilation system based on the ensemble optimum interpolation (EnOI) has been under development as the Chinese contribution to the Global Ocean Data Assimilation Experiment. The system uses a global ocean general circulation model, which is eddy permitting, developed by the Institute of Atmospheric Physics of the Chinese Academy of Sciences. In this paper, the implementation of the system is described in detail. We describe the sampling strategy to generate the stationary ensembles for EnOI. In addition, technical methods are introduced to deal with the requirement of massive memory space to hold the stationary ensembles of the global ocean. The system can assimilate observations such as satellite altimetry, sea surface temperature (SST), in situ temperature and salinity from Argo, XBT, Tropical Atmosphere Ocean (TAO), and other sources in a straightforward way. As a first step, an assimilation experiment from 1997 to 2001 is carried out by assimilating the sea level anomaly (SLA) data from TOPEX/Poseidon. We evaluate the performance of the system by comparing the results with various types of observations. We find that SLA assimilation shows very positive impact on the modeled fields. The SST and sea surface height fields are clearly improved in terms of both the standard deviation and the root mean square difference. In addition, the assimilation produces some improvements in regions where mesoscale processes cannot be resolved with the horizontal resolution of this model. Comparisons with TAO profiles in the Pacific show that the temperature and salinity fields have been improved to varying degrees in the upper ocean. The biases with respect to the independent TAO profiles are reduced with a maximum magnitude of about 0.25°C and 0.1 psu for the time-averaged temperature and salinity. The improvements on temperature and salinity also lead to positive impact on the subsurface currents. The equatorial under current is enhanced in the Pacific although it is still underestimated after the assimilation.  相似文献   

5.
Estimation of ocean circulation is investigated via assimilation of satellite measurements of the dynamic ocean topography (DOT) into the global finite-element ocean model (FEOM). The DOT was obtained by means of a geodetic approach from carefully cross-calibrated multi-mission altimeter data and GRACE gravity fields. The spectral consistency was achieved by consistently filtering both, the sea surface and the geoid. The filter length is determined by the spatial resolution of the gravity field and corresponds to approximately 241 km half width for the GRACE-based gravity field model ITG-Grace03s.The assimilation of the geodetic DOT was performed by employing a local singular evolutive interpolated Kalman (SEIK) filter in combination with the method of weighting of observations. It is shown that this approach leads to a successful assimilation technique that reduced the RMS difference between the model and the data from 16 cm to 5 cm during one year of assimilation. The ocean model returns an optimized mean dynamic ocean topography. The effects of assimilation on transport estimates across several hydrographic World Ocean Circulation Experiment (WOCE) sections show improvements compared to the FEOM run without data assimilation. As a result of the assimilation, DOT estimates are available in the polar or coastal regions where the geodetic estimates from satellite data alone are not adequate. Furthermore, more realistic features of the ocean can be seen in these areas compared to those obtained using the filtered data fields.  相似文献   

6.
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography—the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99–110, 2012; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie 2012). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.  相似文献   

7.
Numerical modeling with application to tracking marine debris   总被引:1,自引:0,他引:1  
This paper describes different numerical models of ocean circulation the output of which can be applied to study patterns and pathways of drifting marine debris. The paper focuses on model output that is readily available rather than on numerical models that could be configured and run locally. These include operational models from the US Navy (the Navy Layered Ocean Model (NLOM), Coastal Ocean Model (NCOM), and Hybrid Coordinate Ocean Model (HYCOM)), data assimilating reanalysis models (the Simple Ocean Data Assimilation (SODA), the Global Ocean Data Assimilation Experiment (GODAE) models), and the European Center for Medium-Range Weather Forecasts (ECMWF) ocean reanalysis (Ocean Reanalysis System, ECMWF/ORA-S3). The paper describes the underlying physics in each model system, limitations, and where to obtain the model output.  相似文献   

8.
Assimilation of SLA and SST data into an OGCM for the Indian Ocean   总被引:6,自引:0,他引:6  
 Remotely sensed observations of sea-level anomaly and sea-surface temperature have been assimilated into an implementation of the Miami Isopycnic Coordinate Ocean Model (MICOM) for the Indian Ocean using the Ensemble Kalman Filter (EnKF). The system has been applied in a hindcast validation experiment to examine the properties of the assimilation scheme when used with a full ocean general circulation model and real observations. This work is considered as a first step towards an operational ocean monitoring and forecasting system for the Indian Ocean. The assimilation of real data has demonstrated that the sequential EnKF can efficiently control the model evolution in time. The use of data assimilation requires a significant amount of additional processing and computational resources. However, we have tried to justify the cost of using a sophisticated assimilation scheme by demonstrating strong regional and temporal dependencies of the covariance statistics, which include highly anisotropic and flow-dependent correlation functions. In particular, we observed a marked difference between error statistics in the equatorial region and at off-equatorial latitudes. We have also demonstrated how the assimilation of SLA and SST improves the model fields with respect to real observations. Independent in situ temperature profiles have been used to examine the impact of assimilating the remotely sensed observations. These intercomparisons have shown that the model temperature and salinity fields better resemble in situ observations in the assimilation experiment than in a model free-run case. On the other hand, it is also expected that assimilation of in situ profiles is needed to properly control the deep ocean circulation. Received: 8 January 2002 / Accepted: 8 April 2002  相似文献   

9.
Besides providing an estimate of the changing ocean state, an important result of the dynamically consistent estimating the circulation and climate of the ocean (ECCO) state estimate approach is the provision of a posterior model–data residuals which contain important information about elements in the assimilated observations that are inconsistent with the model dynamics or with the information present in other ocean data sets that are being used as constraints in the assimilation procedure. Based on decreased GECCO2 model–data residuals, upon using the altimeter data through the ESA climate change initiative (cci) sea-level (SL) project, we show here that the recently reprocessed ESA SL_cci altimeter data set (SL1) has been improved relative to the earlier AVISO altimetry data set and is now more consistent with the GECCO2 estimate and with the information about the changing ocean state embedded in other ocean data sets. The improvement can be shown to exist separately for both TOPEX/POSEIDON and ERS data sets. The study reveals that especially in regions characterized by small sea surface height (SSH) variability and small signal-to-noise ratio in the SSH data, improvements can be on the order of 30% of previously existing model–data residuals. However, in some regions we can find degradations, particulary in those where GECCO2 has little skill in representing the altimeter data and where evaluation of the products with GECCO2 is thus not advisable. Upon the assimilation of the new SL1 data set, the GECCO2 synthesis was further improved. However, adding the sea surface temperature (SST) from the SST_cci project as additional constrain, no further impact can be identified.  相似文献   

10.
Application of altimetry data assimilation on mesoscale eddies simulation   总被引:3,自引:0,他引:3  
Mesoscale eddy plays an important role in the ocean circulation. In order to improve the simulation accuracy of the mesoscale eddies, a three-dimensional variation (3DVAR) data assimilation system called Ocean Variational Analysis System (OVALS) is coupled with a POM model to simulate the mesoscale eddies in the Northwest Pacific Ocean. In this system, the sea surface height anomaly (SSHA) data by satellite altimeters are assimilated and translated into pseudo temperature and salinity (T-S) profile data. Then, these profile data are taken as observation data to be assimilated again and produce the three-dimensional analysis T-S field. According to the characteristics of mesoscale eddy, the most appropriate assimilation parameters are set up and testified in this system. A ten years mesoscale eddies simulation and comparison experiment is made, which includes two schemes: assimilation and non-assimilation. The results of comparison between two schemes and the observation show that the simulation accuracy of the assimilation scheme is much better than that of non-assimilation, which verified that the altimetry data assimilation method can improve the simulation accuracy of the mesoscale dramatically and indicates that it is possible to use this system on the forecast of mesoscale eddies in the future.  相似文献   

11.
The characterization of model errors is an essential step for effective data assimilation into open-ocean and shelf-seas models. In this paper, we propose an experimental protocol to properly estimate the error statistics generated by imperfect atmospheric forcings in a regional model of the Bay of Biscay, nested in a basin-scale North Atlantic configuration. The model used is the Hybrid Coordinate Ocean Model (HYCOM), and the experimental protocol involves Monte Carlo (or ensemble) simulations. The spatial structure of the model error is analyzed using the representer technique, which allows us to anticipate the subsequent impact in data assimilation systems. The results show that the error is essentially anisotropic and inhomogeneous, affecting mainly the model layers close to the surface. Even when the forcings errors are centered around zero, a divergence is observed between the central forecast and the mean forecast of the Monte Carlo simulations as a result of nonlinearities. The 3D structure of the representers characterizes the capacity of different types of measurement (sea level, sea surface temperature, surface velocities, subsurface temperature, and salinity) to control the circulation. Finally, data assimilation experiments demonstrate the superiority of the proposed methodology for the implementation of reduced-order Kalman filters.  相似文献   

12.
The greater Agulhas Current is one of the most energetic current systems in the global ocean. It plays a fundamental role in determining the mean state and variability of the regional marine environment, affecting its resources and ecosystem, the regional weather and the global climate on a broad range of temporal and spatial scales. In the absence of a coherent in-situ and satellite-based observing system in the region, modelling and data assimilation techniques play a crucial role in both furthering the quantitative understanding and providing better forecasts of this complicated western boundary current system. In this study, we use a regional implementation of the Hybrid Coordinate Ocean Model and assimilate along-track satellite sea level anomaly (SLA) data using the Ensemble Optimal Interpolation (EnOI) data assimilation scheme. This study lays the foundation towards the development of a regional prediction system for the greater Agulhas Current system. Comparisons to independent in-situ drifter observations show that data assimilation reduces the error compared to a free model run over a 2-year period. Mesoscale features are placed in more consistent agreement with the drifter trajectories and surface velocity errors are reduced. While the model-based forecasts of surface velocities are not as accurate as persistence forecasts derived from satellite altimeter observations, the error calculated from the drifter measurements for eddy kinetic energy is significantly lower in the assimilation system compared to the persistence forecast. While the assimilation of along-track SLA data introduces a small bias in sea surface temperatures, the representation of water mass properties and deep current velocities in the Agulhas system is improved.  相似文献   

13.
14.
The Land Information System (LIS) is an established land surface modeling framework that integrates various community land surface models, ground measurements, satellite-based observations, high performance computing and data management tools. The use of advanced software engineering principles in LIS allows interoperability of individual system components and thus enables assessment and prediction of hydrologic conditions at various spatial and temporal scales. In this work, we describe a sequential data assimilation extension of LIS that incorporates multiple observational sources, land surface models and assimilation algorithms. These capabilities are demonstrated here in a suite of experiments that use the ensemble Kalman filter (EnKF) and assimilation through direct insertion. In a soil moisture experiment, we discuss the impact of differences in modeling approaches on assimilation performance. Provided careful choice of model error parameters, we find that two entirely different hydrological modeling approaches offer comparable assimilation results. In a snow assimilation experiment, we investigate the relative merits of assimilating different types of observations (snow cover area and snow water equivalent). The experiments show that data assimilation enhancements in LIS are uniquely suited to compare the assimilation of various data types into different land surface models within a single framework. The high performance infrastructure provides adequate support for efficient data assimilation integrations of high computational granularity.  相似文献   

15.
Nested non-assimilative simulations of the West Florida Shelf for 2004–2005 are used to quantify the impact of initial and boundary conditions provided by Global Ocean Data Assimilation Experiment ocean products. Simulations are nested within an optimum interpolation hindcast of the Atlantic Ocean, the initial test of the US Navy Coupled Ocean Data Assimilation system for the Gulf of Mexico, and a global ocean hindcast that used the latter assimilation system. These simulations are compared to one that is nested in a non-assimilative Gulf of Mexico model to document the importance of assimilation in the outer model. Simulations are evaluated by comparing model results to moored Acoustic Doppler Current Profiler measurements and moored sea surface temperature time series. The choice of outer model has little influence on simulated velocity fluctuations over the inner and middle shelf where fluctuations are dominated by the deterministic wind-driven response. Improvement is documented in the representation of alongshore flow variability over the outer shelf, driven in part by the intrusion of the Loop Current and associated cyclones at the shelf edge near the Dry Tortugas. This improvement was realized in the simulation nested in the global ocean hindcast, the only outer model choice that contained a realistic representation of Loop Current transport associated with basin-scale wind-driven gyre circulation and the Atlantic Meridional Overturning Circulation. For temperature, the non-assimilative outer model had a cold bias in the upper ocean that was substantially corrected in the data-assimilative outer models, leading to improved temperature representation in the simulations nested in the assimilative outer models.  相似文献   

16.
Tropical instability waves (TIWs) are not easily simulated by ocean circulation models primarily because such waves are very sensitive to wind forcing. In this study, we investigate the impact of assimilating sea surface height (SSH) observations on the control of TIWs in an observing system simulation experiment (OSSE) context based on a regional model configuration of the tropical Atlantic. A Kalman filtering method with suitable adaptations is found to be successful when altimetric data are assimilated in conjunction with sea surface temperature and some in situ temperature/salinity profiles. In this rather realistic system, the TIW phase is roughly controlled with a single nadir observing satellite. However, a right correction of the TIW structure and amplitude requires at least two nadir observing satellites or a wide swath observing satellite. The significant impact of orbital parameters is also demonstrated: in particular, the Jason or GFO satellite orbits are found to be more suitable than the ENVISAT orbit. More generally, it is found that as soon as adequate sub-sampling exists (with periods of 5–10?days), the length of the repetitivity cycle of orbits does not have a significant impact.  相似文献   

17.
A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/m2 is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/m2. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced.  相似文献   

18.
A series of numerical experiments for data assimilation with the Ensemble Kalman Filter (EnKF) in a shallow water model are reported. Temperature profiles measured at a North Sea location, 55°30ˊ North and 0°55ˊ East (referred to as the CS station of the NERC North Sea project), are assimilated in 1-D simulations. Comparison of simulations without assimilation to model results obtained when assimilating data with the EnKF allows us to assess the filter performance in reproducing features of the observations not accounted for by the model. The quality of the model error sampling is tested as well as the validity of the Gaussian hypothesis underlying the analysis scheme of the EnKF. The influence of the model error parameters and the frequency of the data assimilation are investigated and discussed. From these experiments, a set of optimal parameters for the model error sampling are deduced and used to test the behavior of the EnKF when propagating surface information into the water column.  相似文献   

19.
In order to predict eutrophication events in coastal areas we tested an assimilation scheme based on sequential data assimilation of SeaWiFS chlorophyll data into a coupled 3D physical–biogeochemical model. The area investigated is a semi-enclosed estuarine system (Gulf of Fos–North-western Mediterranean Sea) closely linked to the Rhone River delta. This system is subjected to episodic eutrophication caused by certain hydrodynamic conditions and intermittent nutrient inputs. The 3D hydrodynamic model Symphonie was coupled to the biogeochemical modelling platform Eco3M. Surface chlorophyll concentrations were derived from SeaWiFS data using the OC5 algorithm and were sequentially assimilated using a singular evolutive extended Kalman filter. Assimilation efficiency was evaluated through an independent in situ data set collected during a field survey that took place in May 2001 (ModelFos cruise). An original approach was used in constructing the state vector and the observation vector. By assimilating pseudo-salinity extracted from the model biogeochemical dynamics in both open sea and plume region were respected. We proved that substantial improvements were made in short-term forecasts by integrating such satellite-estimated chlorophyll maps. We showed that missing freshwater inputs could be corrected to a certain extent by the assimilation process. Simulated concentrations of surface chlorophyll and other basic components of the pelagic ecosystem such as nitrates were improved by assimilating surface chlorophyll maps. Finally we showed the coherent spatial behaviour of the filter over the whole modelled domain.  相似文献   

20.
The TOPEX/POSEIDON (T/P) satellite altimeter mission has provided estimates of global mean sea level since late 1992 with a precision of approximately 4 mm. Over the first 3.5 years of the mission, T/P has observed a mean sea level rise of +0.5 mm/year when on-board estimates of the instrument drift are employed (and after correcting for a recently discovered software error), and +2.8 mm/year when an additional external tide gauge-based calibration estimate is used. A preliminary estimate of the error in the latter estimate is 1.3 mm/year, however this issue requires more research. Characterization of the observed sea level variations using Empirical Orthogonal Functions (EOFs) indicates that most of the mean sea level rise can be described by a single mode of the EOF expansion. The spatial characteristics of this mode suggests it is related to the El Nino Southern Oscillation (ENSO) phenomena. EOF analysis of sea level variations from the Semtner/Chervin ocean circulation model reveal a nearly identical mode, although its effect on mean sea level is unknown due to a constant volume constraint used in the model. EOF analysis of measured sea surface temperature (SST) variations also show a mode with similar temporal and spatial structure. However, the concentration of the observed sea level rise in this mode does not preclude the possibility that multiple phenomena have contributed to this mode, thus a link between the observed sea level rise and the ENSO phenomena is only weakly suggested. The absolute value of the observed mean sea level rise will depend on refinements currently being made in the instrument calibration techniques. In addition, the possibility of interannual and decadal variations of global mean sea level requires that a much longer time series of satellite altimetry be collected before variations caused by climate change can be unambiguously detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号