首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.  相似文献   

2.
Field and laboratory methods have been used to determine the hydraulic properties in a multiple-layer aquifer–aquitard system that is hydrologically connected to a river. First, hypothetical pumping tests in aquifer–aquitard systems were performed to evaluate the feasibility of MODFLOW-PEST in determining these parameters. Sensitivity analyses showed that: the horizontal hydraulic conductivity in the aquifer has the highest composite sensitivity; the vertical hydraulic conductivity has higher composite sensitivity than the horizontal hydraulic conductivity in the aquitard; and a partial penetration pumping well in an aquifer layer can improve the quality of the estimated parameters. This inverse approach was then used to analyze a pumping-recovery test conducted near the Platte River in southeastern Nebraska, USA. The hydraulic conductivities and specific yield were calculated for the aquitard and aquifer. The direct-push technique was used to generate sediment columns; permeameter tests on these columns produced the vertical hydraulic conductivities that are compatible with those obtained from the pumping-recovery test. Thus, the combination of the direct-push technique with permeameter tests provides a new method for estimation of vertical hydraulic conductivity. The hydraulic conductivity, determined from grain-size analysis, is smaller than the horizontal one but larger than the vertical one determined by the pumping-recovery test.  相似文献   

3.
Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997–2006, followed by validation (2007–2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.  相似文献   

4.
在基于MODFLOW-SUB建立的地下水流-地面沉降模型中,设定黏性土夹层内垂向渗透系数为常数,但黏性土夹层在压缩过程中,其垂向渗透系数会随之变化,因而运用该模型预测长期地面沉降可能与实际情况有较大差距。本次研究通过结合沉降过程中黏性土夹层内垂向渗透系数与水头的变化规律对SUB源代码进行改进,建立变渗透系数模型,并以美国地质调查局建立的加州羚羊谷典型结构为基础设计算例,分别对常渗透系数模型和变渗透系数模型进行模拟。结果显示:在开采初期的前20 a,两模型具有较好的一致性;随着开采的持续进行,变渗透系模型计算的累计沉降量逐渐小于常渗透系数模型,80 a内沉降量减少了约15.6%;随着开采量的增大,两模型产生差异的时间逐步提前且最终沉降差值增大;随着夹层厚度的增大,两模型产生差异的时间逐步滞后但最终沉降差值增大。由此表明,常渗透系数模型和变渗透系数模型在开采初期都具有很好的适用性,可以满足模型精度,但随着开采时间的延续,变渗透系数模型可以更好地反映实际压缩沉降过程。  相似文献   

5.
6.
Channel sediment and alluvial aquifer hydraulic properties exert a major control on river–groundwater interactions. Channels and floodplains are often asymmetrical, resulting in differences in sediment hydraulic properties across the river. Floodplain asymmetry is common along Coastal Plain rivers in South Carolina and North Carolina, USA. The Tar River, North Carolina, has an asymmetrical valley. The study objective was to characterize the effects of floodplain asymmetry and geological controls on river–groundwater interactions. Floodplain and river channel sediments adjacent to the river were characterized with split spoon cores and hand auger samples along a 22-km reach. Hydrogeology was characterized with 38 piezometers and water level recorders in and adjacent to the river. Ground penetrating radar was used to define the shallow stratigraphy. Channel sediments were significantly different between the north and south sides of the river. Hydraulic conductivity and groundwater inputs were greater on the side of the river (north) that contained more permeable fluvial deposits. Groundwater chemistry (δ18O, specific conductance) data also suggested greater exchange between surface water and groundwater on the north side of the river channel. A conceptual hydrogeological model illustrates that groundwater movement and contaminant transport to the river differs across the channel due to asymmetrical geology.  相似文献   

7.
A FEFLOW three-dimensional (3D) groundwater model is developed to enhance the understanding of groundwater processes in the complex alluvial stratigraphy of Maules Creek Catchment (New South Wales, Australia). The aquifer vertical heterogeneity is replicated by indexing 204 lithological logs into units of high or low hydraulic conductivity, and by developing a 3D geological conceptual model with a vertical resolution based on the average lithological unit thickness for the region. The model mesh is populated with the indexed geology using nearest neighbour gridding. The calibrated model is successful in simulating the observed flow dynamics and in quantifying the important water-budget components. This indicates that the lateral groundwater flow from the mountainous region is the main inflow component of the system. Under natural conditions, the Namoi River acts as a sink of water, but groundwater abstraction increasingly removes a large amount of water each year causing dewatering of the system. The pumping condition affects the river–aquifer interaction by reversing the flow, from gaining to losing river conditions during the simulation period. The procedure is relevant for the development of groundwater models of heterogeneous systems in order to improve the understanding of the interplay between aquifer architecture and groundwater processes.  相似文献   

8.
Basalt-hosted hydrogeologic systems have been proposed for geologic CO2 sequestration based on laboratory research suggesting rapid mineralization rates. However, despite this theoretical appeal, little is known about the impacts of basalt fracture heterogeneity on CO2 migration at commercial scales. Evaluating the suitability of basalt reservoirs is complicated by incomplete knowledge of in-situ fracture distributions at depths required for CO2 sequestration. In this work, a numerical experiment is used to investigate the effects of spatial reservoir uncertainty for geologic CO2 sequestration in the east Snake River Plain, Idaho (USA). Two criteria are investigated: (1) formation injectivity and (2) confinement potential. Several theoretical tools are invoked to develop a field-based approach for geostatistical reservoir characterization and their implementation is illustrated. Geologic CO2 sequestration is simulated for 10?years of constant-rate injection at ~680,000 tons per year and modeled by Monte Carlo simulation such that model variability is a function of spatial reservoir heterogeneity. Results suggest that the spatial distribution of heterogeneous permeability structures is a controlling influence on formation injectivity. Analysis of confinement potential is less conclusive; however, in the absence of confining sedimentary interbeds within the basalt pile, rapid mineralization may be necessary to reduce the risk of escape.  相似文献   

9.
A method to estimate stream conveyance losses, including stream bank seepage and evapotranspiration from riparian areas, was developed for the Truckee River in California and Nevada (USA). Aquifer diffusivity is the primary variable required to compute aquifer head and seepage. Head and seepage conceptual models developed in previous studies were calibrated using stream stage and aquifer head at five sites along the Truckee River. The equations for head require numerical convolution to solve. It was found that head is insensitive to diffusivity and a single value for diffusivity provides good results at all study sites. Also, because releases from storage are usually prescribed as a step increase in flow for a given period of time followed by a step decrease in flow, an analytic solution for volume of seepage can be used in place of numerical convolution. Under typical operating conditions, seepage volume represents a small fraction of the total reservoir releases. Uncertainty in seepage estimates can be reduced with increased accuracy in hydraulic conductivity. This work demonstrates a valuable technique to estimate conveyance losses under natural and managed stream flow.  相似文献   

10.
Delineating capture zones of pumping wells is an important part of safe drinking water and well protection programs. Capture zones or contributing areas of a groundwater extraction well are the parts of the aquifer recharge areas from which the wells draw their water. Their extent and location depend on the hydrogeologic conditions such as groundwater recharge, pumping scenario and the aquifer properties such as hydraulic conductivity, porosity, heterogeneity of the medium and hydraulic gradient. Different methods of delineation can be used depending on the complexity of the hydrogeologic conditions. In this study, a 3-dimensional transient numerical MODFLOW model was developed for the Central Passaic River Basin (CPRB), and used with a MODPATH particle tracking code to determine 3-dimensional transient capture zones. Analytically calculated capture zones from previous studies at the site were compared with the new numerically simulated capture zones. The study results revealed that the analytical solution was more conservative, estimating larger capture zones than the numerical models. Of all the parameters that can impact the size, shape and location of a capture zone, the hydraulic conductivity is one of the most critical. Capture zones tend to be smaller in lower hydraulic conductivity areas.  相似文献   

11.
Effective evaluation, management and abstraction of groundwater resources of any aquifer require accurate and reliable estimates of its hydraulic parameters. This study, therefore, looks at the determination of hydraulic parameters of an unconfined aquifer using both analytical and numerical approaches. A long-duration pumping test data obtained from an unconfined aquifer system within the Tailan River basin in Xinjiang Autonomous Region in the northwest of China is used, in this study, to investigate the best method for estimating the parameters of the aquifer. The pumping test was conducted by pumping from a radial collector well and measuring the response in nine observation wells; all the wells used in the test were partially penetrating. Using two well-known tools, namely AquiferTest and MODFLOW, as an aid for the analytical and numerical approaches, respectively, the parameters of the aquifer were determined and their outputs compared. The estimated horizontal hydraulic conductivity, vertical hydraulic conductivity, and specific yield for the analytical approach are 38.1–50.30 m/day, 3.02–9.05 m/day and 0.204–0.339, respectively, while the corresponding numerical estimates are 20.50–35.24 m/day, 0.10–3.40 m/day, and 0.27–0.31, respectively. Comparing the two, the numerical estimates were found to be more representative of the aquifer in the study area since it simulated the groundwater flow conditions of the pumping test in the aquifer system better than the analytical solution.  相似文献   

12.
 Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38–40 m, 125–128 m, 131–137 m, 149–158 m, and 183–198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1–2 km of the eastern Snake River Plain. Received: 16 February 1996 · Accepted: 1 April 1996  相似文献   

13.
The impact of groundwater withdrawals on the interaction between multi-layered aquifers with different water qualities in the Viterbo geothermal area (central Italy) was studied. In this area, deep thermal waters are used to supply thermal spas and public pools. A shallow overlying aquifer carries cold and fresh water, used for irrigation and the local drinking-water supply. Starting with a conceptual hydrogeological model, two simplified numerical models were implemented: a steady-state flow model of the entire groundwater system, and a steady-state flow and heat transport model of a representative area, which included complex interactions between the aquifers. The impact of increased withdrawals associated with potential future development of the thermal aquifer must be considered in terms of the water temperature of the existing thermal sources. However, withdrawals from the shallow aquifer might also influence the discharge of thermal sources and quality of the water withdrawn from the shallow wells. The exploitation of the two aquifers is dependent on the hydraulic conductivity and thickness of the intervening aquitard, which maintains the delicate hydrogeological equilibrium. Effective methods to control this equilibrium include monitoring the vertical gradient between the two aquifers and the residual discharge of natural thermal springs.  相似文献   

14.
The complexity of alluvial-pluvial fan depositional systems makes the detailed characterization of their heterogeneity difficult, yet such a detailed characterization is commonly needed for construction of reliable groundwater models. Traditional models mainly focus on using a single aquifer property to qualitatively or semi-quantitatively characterize the heterogeneity of aquifer, so that they are unable to quantitatively reflect the synthetic heterogeneity of all aquifer properties. In this paper, we propose the heterogeneity synthetic index (HSI) for quantitative characterization of synthetic heterogeneity of an aquifer. The proposed calculation process involves four steps: (1) estimation of the hydraulic conductivity of a sediment sample using the cloud-Markov model, (2) establishment of the sedimentary microfacies distribution model through the Markov chain, (3) characterization of the distribution model of hydrogeological parameters using the improved sequential simulation method according to the “facies-controlled modeling” technique, and (4) application of the entropy weight method to calculate the weight coefficient of the above aquifer properties. The HSI of an aquifer is calculated by superposition of these models according to the corresponding weight coefficient. This approach was applied to the Luancheng aquifer deposit in the southeast Hutuo River alluvial-pluvial fan in the North China Plain (NCP). The results have demonstrated that aquifer 3 which was formed in the middle Pleistocene has the strongest heterogeneity, with an HSI of 0.25–0.75. Aquifer 4 formed in the early Pleistocene shows an intermediate heterogeneity, with the HSI ranging 0.35–0.75. The weakest heterogeneity was found in aquifers 1 and 2 formed in the Holocene and late Pleistocene, with HSI values of 0.40–0.75 and 0.40–0.80, respectively. The heterogeneity of all the four aquifers is relatively strong in the radial direction of the Huai River alluvial-pluvial fan due to the abrupt change of microfacies. In contrast, in the radial direction of the Hutuo River alluvial-pluvial fan, the microfacies change mildly, and the continuity of hydrogeological parameters is better, which has resulted in weaker heterogeneity of the four aquifers in this direction. Findings suggest that the sedimentary environment has significant effects on the aquifer heterogeneity. Considering that there are many aquifer properties, HSI can quantitatively characterize the synthetic heterogeneity of the aquifer and describe the influence of each aquifer property on the synthetic heterogeneity of the aquifer according to its weight coefficient. Thus the HSI approach can be successfully used to deal with the spatial heterogeneity of aquifer and provide a foundation for studies on contaminant transport.  相似文献   

15.
This study evaluates the alternative conceptual models for groundwater modelling. A true model was created with a synthetic alluvial fan-plain hydrogeological framework. Various alternative conceptual models were evaluated for groundwater flow simulations. The first alternative model is a single aquifer layer model; the second alternative model is a 3-layer aquifer model; and the third model is a 5-layer model consisting of 3 aquifers separated by 2 aquitards. All models could fit very well to the observations with optimized values of hydraulic conductivities. However, the single aquifer layer model can only compute water balance components with good accuracy. The 3-layer aquifer model can be used for water balance computation and groundwater head simulation with small errors. The 5-layer model is capable of simulating water budget, groundwater head distribution and travel times with high accuracy. Multi-model analysis found only the 3rd alternative model superior.  相似文献   

16.
Idaho State University and the US Geological Survey, in cooperation with the US Department of Energy, conducted a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The Kds were determined to aid in assessing the variability of strontium Kds and their effects on chemical transport of strontium-90 in the Snake River Plain aquifer system. Data from batch experiments done to determine strontium Kds of five sediment-infill samples and six standard reference material samples were analyzed by using multiple linear regression analysis and the stepwise variable-selection method in the statistical program, Statistical Product and Service Solutions, to derive an equation of variables that can be used to predict strontium Kds of sediment-infill samples. The sediment-infill samples were from basalt vesicles and fractures from a selected core at the INEEL; strontium Kds ranged from ~201 to 356 ml g-1. The standard material samples consisted of clay minerals and calcite. The statistical analyses of the batch-experiment results showed that the amount of strontium in the initial solution, the amount of manganese oxide in the sample material, and the amount of potassium in the initial solution are the most important variables in predicting strontium Kds of sediment-infill samples.  相似文献   

17.
A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.  相似文献   

18.
19.
Numerical models encompassing source zones and receptors, based on representative conceptual models and accounting for aquifer heterogeneity, are needed to understand contaminant migration and fate; however, aquifer characterization seldom provides the necessary data. This study aimed to develop a workflow for field characterization and data integration, which could: (1) be adapted to the definition of subwatershed-scale aquifer heterogeneity (over 10 km2) and (2) adequately support mass transport model development. The study involved the field investigation of a shallow granular aquifer in a 12-km2 subwatershed in Saint-Lambert-de-Lauzon, Canada, in which a decommissioned landfill is emitting a leachate plume managed by natural attenuation. Using proven field methods, the characterization sequence was designed to optimize each method in terms of location, scale of acquisition, density and quality. The emphasis was on the acquisition of detailed indirect geophysical data that were integrated with direct hydraulic and geochemical data. This report focuses on the first qualitative and geostatistical data integration steps of the workflow leading to the development of a hydrogeological conceptual model. This is a prerequisite for further integration steps: prediction of hydrofacies and hydraulic conductivity (K), geostatistical simulations of K, studies of geochemical processes and numerical modeling.  相似文献   

20.
The Pliocene-Holocene lavas of the Snake River Plain, Idaho, U.S.A., have a bimodal composition range, consisting predominantly of basalts (olivine-tholeiites), with subordinate intercalated tholeiitic andesites but with very few analyses falling between these groups. The more-magnesian of the tholeiitic andesites contain more total Fe, alkalis, TiO2 and P2O5 but less SiO2 than the less-magnesian basalts. Derivation of the tholeiitic andesites from the basalts by low-pressure fractional crystallization or by major-element crustal contamination does not seem possible, although some minor-element exchange with ancient crust apparently has occurred. Two lavas, representative of the least-magnesian basalts and the most-magnesian tholeiitic andesites, respectively, have been subjected to anhydrous experimental studies within their melting ranges at pressures up to 35kb. Both appear to show four-phase points on their liquidi at about 8kb and these are thought to have genetic significance. Microprobe analyses of the interstitial glasses in partially-crystalline runs on the basalt between 8 and 12kb show that these reproduce all the characteristic features of the Snake River Plain most-magnesian tholeiitic andesites, notably their reduced Si-saturation. The compositions of the most Mg-rich Snake River Plain basalts are such that they may perhaps be primary magmas, produced by partial fusion of a relatively Fe-rich spinel-lherzolite upper mantle at 50 to 60km depth; a proposal which accords well with the geophysics of this currently-active region. Partial crystallization of batches of this magma, delayed during ascent within the crust at depths of about 30 km, is thought to have given rise to the tholeiitic andesites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号