首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic finite element models are applied to investigate the effects of topography and medium heterogeneities on the surface deformation and the gravity field produced by volcanic pressure sources. Changes in the gravity field cannot be interpreted only in terms of gain of mass disregarding the ground deformation of the rocks surrounding the source. Contributions to gravity changes depend also on surface and subsurface mass redistribution driven by dilation of the volcanic source. Both ground deformation and gravity changes were firstly evaluated by solving a coupled axisymmetric problem to estimate the effects of topography and medium heterogeneities. Numerical results show significant discrepancies in the ground deformation and gravity field compared to those predicted by analytical solutions, which disregard topography, elastic heterogeneities and density subsurface structures. With this in mind, we reviewed the expected gravity changes accompanying the 1993–1997 inflation phase on Mt Etna by setting up a fully 3-D finite element model in which we used the real topography, to include the geometry, and seismic tomography, to infer the crustal heterogeneities. The inflation phase was clearly detected by different geodetic techniques (EDM, GPS, SAR and levelling data) that showed a uniform expansion of the overall volcano edifice. When the gravity data are integrated with ground deformation data and a coupled FEM modelling was solved, a mass intrusion could have occurred at depth to justify both ground deformation and gravity observations.  相似文献   

2.
Our objectives are as follows. First, we wish to develop a methodology to recover the long-term component of deformation from any set of distributed, time-averaged geodetic strain measurements that were subject to seismic disturbance, given a catalogue of local seismicity that occurred during the measurement period. Second, using seismic and geodetic data sets that span approximately 100 years, we apply this technique in the western Aegean to assess the role of local seismicity in regional deformation. The methodology is developed using a model for crustal deformation constructed from a long-term, smooth regional strain field combined with instantaneous, local perturbations from upper-crustal earthquakes approximated by static elastic dislocations. By inverting geodetic displacements for the smooth field while simultaneously floating influential but uncertain earthquake source parameters, an estimate of the regional component of deformation that is approximately independent of the seismicity can be made. In the western Aegean we find that the horizontal component of regional deformation can be described with minor inaccuracy by a quadratic relative displacement field. The principal horizontal extensional axes calculated from the regionally smooth displacement field agree in orientation with the T-axes of earthquakes in the region. These observations indicate that the instantaneous elastic strain of the 10 km thick seismogenic layer is driven by a stress field that is smooth on the scale of the geodetic network as a whole, 200-300 km.  相似文献   

3.
The interpretation of geodetic data in volcanic areas is usually based on analytical deformation models. Although numerical finite element (FE) modelling allows realistic features such as topography and crustal heterogeneities to be included, the technique is not computationally convenient for solving inverse problems using classical methods. In this paper, we develop a general tool to perform inversions of geodetic data by means of 3-D FE models. The forward model is a library of numerical displacement solutions, where each entry of the library is the surface displacement due to a single stress component applied to an element of the grid. The final solution is a weighted combination of the six stress components applied to a single element-source. The pre-computed forward models are implemented in a global search algorithm, followed by an appraisal of the sampled solutions. After providing extended testing, we apply the method to model the 1993–1997 inflation phase at Mt Etna, documented by GPS and EDM measurements. We consider four different forward libraries, computed in models characterized by homogeneous/heterogeneous medium and flat/topographic free surface. Our results suggest that the elastic heterogeneities of the medium can significantly alter the position of the inferred source, while the topography has minor effect.  相似文献   

4.
ABSTRACT

We employed integrated methods to assess the landslide movement in Sv. Anton town in the Western Carpathians Neogene Volcanic Field (Central Slovakia). The integrated diagnostics required study of the landslide kinematic activity by a combination of Global Navigation Satellite Systems (GNSS) and Electrical Resistivity Tomography (ERT) imaging from November 2013 to March 2015. A topographic model with 2-cm accuracy was constructed from Unmanned Aerial Vehicles (UAV) photogrammetry. Continuous spatial datasets of movement and displacement field vectors were interpolated from the measured movements over the entire study period. Although deformation studies in Slovakia have a long-term tradition, complex interdisciplinary studies in urbanized areas are still lacking. This inspired our main objectives: to identify landslide kinematics and to reconstruct and define the rates of annual landslide movement obtained from geodetic measurement at the monitoring points. Our results demonstrate how landslide integrated diagnostics contribute to the detection of slope instability, with a maximum velocity of 60.82 mm/yr during the summer period. The precipitation effects are consistent with the Sv. Anton landslide displacement acceleration, and the following increases in total monthly precipitations are staggering compared to long-term monthly averages: July precipitation increased by 175.3%, August by 203.3%, and September by 198.1%.  相似文献   

5.
为了研究南极现代地壳运动,中国在西南极菲尔德斯海峡地区布设了形变监测网,并用DI-20测距仪和GPS定位仪对该网进行了监测。同时,中国也参加了SCAR组织的全南极GPS联测。本文讨论了将形变参数纳入误差方程的水平形变数据处理方法,并对刚体平移、旋转、均匀应变几种典型形变模型在测边网平差中的运用进行了讨论。通过对经典自由网与秩亏自由网的基准分析,提出对形变参数以及其它附加参数和点位参数分别给定参考基准的方法。相应于上述方法,编制了一系列数据处理程序并将之应用于对西南极菲尔德斯海峡形变监测网的数据分析。本文还利用监测网应变分析原理,对GPS监测数据进行了讨论和分析,结果表明,菲尔德斯断裂地区存在微小的断裂剪切运动,但位移量不大。  相似文献   

6.
DataprocessingandanalysisofcrustaldeormationmonitoringintheFildesregion,WestAntarcticaTX@陈春明@鄂栋臣@邱卫宁Dataprocesingandanalysisofcru...  相似文献   

7.
This work proves the existence of a large deep-seated gravitational slope deformation (DGSD) in a hilly region of the southwestern Alps, whereas DGSD are usually linked with high relief energy in mountain environments. Moreover, we describe the usefulness of applying paleoseismological techniques by means of trench excavation to date and understand the deformation history and genesis of recent morphostructures, and we found evidence of causative relationships between DGSD and surface landslides. The studied DGSD of Mt. Croce della Tola–Mt. Scincina, Italy, is the largest of the western Alps: it is 7-km long and involves a minimum area of 16 km2 with a volume ≥3.5 km3 probably extending further NE beneath Lake Maggiore surface. Several parallel scarps, representing the surface expression of slip-planes, affect the upper part of the slope, whereas the lower part presents a convex profile. DGSD at Mt. Croce della Tola started in the last interglacial period (120–40 ka BP) and the following glacial phase was not able to significantly modify the general slope geometry. Post-glacial deformation also occurred, especially at Mt. Scincina, after 25 ka BP. Post-glacial and active surface landslides developed on the convex lower part of the slope, suggesting that they resulted from instability due to the new profile assumed by the slopes during the deep-seated deformation. The occurrence of Mt. Scincina DGSD with a very low topographic gradient is interpreted as an effect induced by on other large DGSD.  相似文献   

8.
Summary. A novel method is proposed for retrieving the 3-D orientation of axes of symmetry of near-source anisotropy by a non-linear inversion of observed radiation patterns of seismic displacement spectra of Rayleigh waves.
If faulting is generated within an anisotropic source region, body force equivalents for the faulting are in general not a double couple but the sum of three orthogonal dipole forces (Kosevich; Kawasaki & Tanimoto). As a result of the third dipole force, radiation patterns of Rayleigh waves are deformed, the deformation amounting to several per cent of those for an isotropic source medium. The non-linear inversion is carried out to find the optimum fault plane solutions giving the minimum square residual between observed and theoretical radiation patterns in some period range. In order to remove effects of heterogeneity along propagation paths, a pair-event scheme is involved in the inversion, which denotes taking spectral amplitude ratios and differential phases of the seismic displacement spectra of the pair-events having close hypocentres and different fault plane solutions. The uniqueness of the fault plane solutions of the non-linear inversion is afforded a proof by the Monte-Carlo experiment.
The non-linear inversion is repeated for some possible types of symmetry of the near-source orthotropic anisotropy due to the preferred orientation of olivine crystals as mantle materials. Square residuals thus obtained are compared with each other to see which orientation gives the minimum.
The method is applied to pair-events which occurred in the anomalous mantle beneath the Mid-Atlantic Ridge. This leads to a discovery that one type of symmetry of the preferred orientations with a -, b - and c-axes aligned vertical, parallel to and perpendicular to the trend (N11E) of the ridge axis, respectively, is most likely existing in the anomalous mantle.  相似文献   

9.
We present results from interpretation of a 3D seismic data set, located within the NW German sedimentary basin, as part of the Southern Permian Basin. We focused on the development of faults, the timing of deformation, the amount of displacement during multiphase deformation, strain partitioning, and the interaction between salt movements and faulting. We recognised the central fault zone of the study area to be the Aller-lineament, an important NW-trending fault zone within the superimposed Central European Basin System. From structural and sedimentological interpretations we derived the following evolution: (1) E–W extension during Permian rifting, (2) N–S extension within cover sediments, and E–W transtension affecting both basement and cover, contemporaneously during Late Triassic and Jurassic, (3) regional subsidence of the Lower Saxony Basin during Late Jurassic/Early Cretaceous, (4) N–S compression within cover sediments, and E–W transpression affecting both basement and cover, contemporaneously during Late Cretaceous/Early Tertiary inversion and (5) major subsidence and salt diapir rise during the Cenozoic. We suggest that the heterogeneity in distribution and timing of deformation in the working area was controlled by pre-existing faults and variations in salt thickness, which led to stress perturbations and therefore local strain partitioning. We observed coupling and decoupling between pre- and post-Zechstein salt units: in decoupled areas deformation occurred only within post-salt units, whereas in coupled areas deformation occurred in both post- and pre-salt units, and is characterised by strike-slip faulting.  相似文献   

10.
In the regional geodetic network of the Russian Far East, an active fault zone of the Kamchatka peninsula has been selected in order to study the relation between seismic activity and deformation. This paper provides the first results of a detailed and high-precision 3-km long levelling profile, along which geodetic data have been collected weekly for almost three years. The data processing and analytical methods that were originally used have been elaborated for this particular type of very small local network. In the active fault zone, two distinct ways of releasing accumulated potential energy, i.e. seismicity and 'fault superintensive movements', have been registered. The inverse correlation that is discovered between deformation rate and seismic activity could be useful in earthquake forecasts.  相似文献   

11.
The effect of intensive grazing and browsing of domestic stock and wildlife on the number of species and abundance of vegetation was investigated in the Hoanib River catchment, north-western Namibia. The seasonal abundance of ground cover, bare earth, canopy cover, annual grass, perennial grass and annual forbs were measured in each of the focus-study areas. In three of the focus areas where the ranges of both domestic stock and wildlife were restricted either by fencing or water availability, impact on the vegetation was greatest. The final focus area was a more ‘open range’ system that allowed for the free movement of wildlife. Under these conditions the species abundance and availability of browsing and grazing was greater than the other focus areas during both the wet and dry seasons. However, very little difference in abundance and availability of vegetation was observed between focus areas in both seasons regardless of landuse. There is generally a low abundance of perennial grasses and browse species affording the ecosystem little resistance and resilience to disturbance caused by grazing and drought.  相似文献   

12.
This paper interprets a stone‐banked lobe on the upper western face of Mt Rufus, at an altitude of 1380 m in western Tasmania, Australia. The morphology of the deposit resembles that of a solifluction lobe. Field observations show vertical and downslope movement of pebbles, cobbles and small boulders over a single winter season. The movement is largely related to frost pull (10–15 cm) and shallow freeze–thaw processes promoting the downslope (up to 50 cm yr–1) creep of material and the accumulation of coarse clasts at the lobe riser. The climate of Mt Rufus is strongly maritime and this is reflected in the limited duration and depth of penetration of frozen ground at this site during the 2013 winter. Despite the relatively mild climatic conditions, freeze–thaw processes are clearly the dominant geomorphic force operating at the site. These findings support observations of active stone‐banked lobes on sub‐Antarctic islands where intense freezing is absent. Both there and at Mt Rufus, movement is dominated by freeze–thaw processes operating in the upper c. 20 cm of the regolith. These are typical landforms of marginal freeze–thaw settings.  相似文献   

13.
A multidisciplinary approach has been adopted to study the slope movements and landscape evolution at the archaeological site of Machu Picchu and its immediate surroundings. The basic event in the paleogeomorphological evolution of the area was the large-scale slope movement, which destroyed the originally higher ridge between Mt. Machupicchu and Mt. Huaynapicchu. Within remnants of that primary deformation, several younger generations of slope movements occurred. The laboratory analyses of granitoids revealed highly-strained zones on the slopes of Mt. Machupicchu, which strongly affect the largest slope deformation. The borders of the largest slope deformation are structurally predisposed by the existence of fault zones. The majority of various types of slope movements on the so-called Front Slope (E facing) and Back Slope (W facing) are influenced by the alignment between topography and joints. Along with slope movements, fluvial erosion and tectonic disturbance of the rocks have been affecting the evolution of the landscape. A monitoring network for dilatometric and extensometric measurements was used to detect the present-day activity of rock displacements within the archaeological site. In addition to standard mapping of surface hydrogeological phenomena, eleven express slug tests were conducted to verify the infiltration potential of precipitation. The results of these surveys indicate that recent large-scale slope movement as suggested by some previous studies is doubtful, and the detected movements can be explained by individual movements of rock blocks or several other mechanisms including sinking of archaeological structures, subsurface erosion and annual changes in the water content of the soils.  相似文献   

14.
The banks of the River Danube are one of the most susceptible areas to mass wasting in Hungary. In 2007, a large slump began to develop along the Danube at Dunaszekcső and jeopardized properties on land and navigation in the river. Several factors such as geological, hydrogeological and morphological conditions, recurrent flooding and erosion by the Danube led to a gradual development of the large rotational slide. Slope failure has been monitored using GPS, precise levelling techniques and tiltmeters since October 2007. The expected location of the maximum lateral displacement and extrusion was indicated by GPS measurements from the middle of November 2007. The main phase of the slope failure evolution, i.e. the rapid movement on 12 February 2008 was indicated by accelerated tilting of the southern moving block prior to slumping. Small rise of the relatively stable part of the slope was measured after the rapid movements, which may be explained either by the elastic rebound along the slip surface, or by the intrusion of some plastic material into the lower section of the slope.Comparison of geodetic datasets and field observations with the timing of rainfall and water level changes of the Danube suggested that hydrological properties (subsurface flow processes, soil physical properties, infiltration, and perched water table) were primarily responsible for initiation of the studied slump. A model of slope failure evolution is proposed here based on the monitoring and field observations.  相似文献   

15.
High resolution seismic reflection surveys over one of the most active and rapidly extending regions in the world, the Gulf of Corinth, have revealed that the gulf is a complex asymmetric graben whose geometry varies significantly along its length. A detailed map of the offshore faults in the gulf shows that a major fault system of nine distinct faults limits the basin to the south. The northern Gulf appears to be undergoing regional subsidence and is affected by an antithetic major fault system consisting of eight faults. All these major faults have been active during the Quaternary. Uplifted coastlines along their footwalls, growth fault patterns and thickening of sediment strata toward the fault planes indicate that some of these offshore faults on both sides of the graben are active up to present. Our data ground‐truth recent models and provides actual observations of the distribution of variable deformation rates in the Gulf of Corinth. Furthermore they suggest that the offshore faults should be taken into consideration in explaining the high extension rates and the uplift scenarios of the northern Peloponnesos coast. The observed coastal uplift appears to be the result of the cumulative effect of deformation accommodated by more than one fault and therefore, average uplift rates deduced from raised fossil shorelines, should be treated with caution when used to infer individual fault slip rates. Seismic reflection profiling is a vital tool in assessing seismic hazard and basin‐formation in areas of active extension.  相似文献   

16.
Studies of interseismic strain accumulation are crucial to our understanding of continental deformation, the earthquake cycle and seismic hazard. By mapping small amounts of ground deformation over large spatial areas, InSAR has the potential to produce continental-scale maps of strain accumulation on active faults. However, most InSAR studies to date have focused on areas where the coherence is relatively good (e.g. California, Tibet and Turkey) and most analysis techniques (stacking, small baseline subset algorithm, permanent scatterers, etc.) only include information from pixels which are coherent throughout the time-span of the study. In some areas, such as Alaska, where the deformation rate is small and coherence very variable, it is necessary to include information from pixels which are coherent in some but not all interferograms. We use a three-stage iterative algorithm based on distributed scatterer interferometry. We validate our method using synthetic data created using realistic parameters from a test site on the Denali Fault, Alaska, and present a preliminary result of  10.5 ± 5.0  mm yr−1 for the slip rate on the Denali Fault based on a single track of radar data from ERS1/2.  相似文献   

17.
The deformation and strength characteristics of roadbed slope under seismic loading in permafrost regions are simulated numerically. The seismic response of roadbed at different positions and inclinati...  相似文献   

18.
Relationships between tectonic framework and gravity-driven phenomena have been investigated in an area of the Central Apennines (Italy) characterised by high relief. The north–south, half-dome shaped Maiella anticline lies in the easternmost part of the Apennine fold-and-thrust belt. Its backlimb is bordered by the Caramanico Fault, a normal fault with a maximum downthrown of about 3.5 km that separates the western slope of the Maiella Massif from the Caramanico Valley. The southwestern Maiella area is affected by deep-seated gravitational slope deformation indicated by major double crest lines, down-hill and up-hill facing scarps, a pattern of crossing trenches, bulging at the base of slopes and the presence of different types of landslide and talus slope deposits.The onset and development of deep-seated gravitational slope deformations and the location of Quaternary, massive rockslope failures have been strongly influenced by the structural framework and tectonic pattern of the anticline. Deep-seated gravitational slope deformation at Mt. Macellaro–Mt. Amaro ridge has developed along the Maiella western, reverse slope in correspondence with the anticline axial culmination; it is bordered at the rear by a NNW–SSE oriented, dextral, strike-slip fault zone and has an E–W direction of rock mass deformation. Closer to the southern plunging area of the anticline, gravity-driven phenomena show instead a N–S and NW–SE direction, influenced by bedding attitude.3D topographic models illustrate the relationship between deep-seated gravitational slope deformation and massive rockslope failures. The Campo di Giove rock avalanche, a huge Quaternary failure event, was the result of an instantaneous collapse on a mountaine slope affected by a long-term gravity-driven deformation.  相似文献   

19.
The White Mountains of California have a cold semi-arid climate that has led to the development of large areas of periglacial patterned ground. Rates of activity vary widely, and no present activity has been noted below 3600 m. Three distinct scales of patterned ground—having average diameters of 3–5 m, 0.5–1.0 m, and 0.1–0.5 m—exist together in a nested fashion at a favorable location at 3914 m. Vertical heave, horizontal displacement, and surface rotation were investigated on landforms of each scale, to determine rates of activity and the spatial and temporal variation of heave. No movement was detected in the largest landforms, but frost boils located in the centers of the larger sorted polygons were highly active. Rates of heave increased dramatically at the beginning of the thaw season, approaching 3.6 mm per day. Dowels were heaved an average of 16.8 cm over ten months. Disks used as surface markers demonstrated exceptional rotational and radial displacement over a nine-month period; 29% of the markers were overturned. The processes responsible for the observed movement in the White Mountains are discussed in relation to processes affecting other alpine environments.  相似文献   

20.
Digital photogrammetry and kinematic global positioning system (GPS) techniques are investigated and compared over a volcanic area as operational approaches to map the topography and monitor surface displacements. The use of terrestrial and airborne GPS to support the photogrammetric survey allowed for operational and processing time reduction without loss of accuracy. A digital elevation model (DEM) is obtained from the processing of the high-resolution digital imagery survey, which provides detailed information over a large area. The internal accuracy of the derived DEM has been verified by the comparison of two sets of data obtained from imagery acquired in different epochs; the observed root-mean-square error of residuals ranges from a few centimetres to 15 cm depending on the morphological features. Kinematic and pseudo-kinematic GPS surveys are performed to derive accurate 3-D coordinates at monumented benchmarks and accurate elevation profiles along footpaths. The average repeatability of the GPS measurements on benchmarks is 1 cm for measurement durations of 2–3 min. The standard deviation of interpolated vertical coordinates obtained at the crossings of kinematic GPS profiles is 4.3 cm. The high quality of these GPS coordinates justifies their use also for the validation of the photogrammetric DEM. A comparison of 6000 common points provides a standard deviation of residuals of 18 cm. The results show that the deformation pattern of a volcanic area can be rapidly and accurately monitored even in the absence of geodetic benchmarks. The integration of aerial photogrammetry with GPS kinematic surveys may be considered as an optimal approach for deriving high-resolution mapping products to be used in support of studies of volcanic dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号