首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The ventilation of the permanent thermocline in the ocean margin of the mid-latitude eastern North Atlantic Ocean was studied by analysis of a historic data set of over 2200 hydrographic stations. This data set contains physical (pressure, temperature, salinity) and bio-geochemical (dissolved oxygen, silica, nitrate and phosphate) parameters. The large-scale structure of the Eastern North Atlantic Central Water in the permanent thermocline is presented. Conservative tracer distributions are described as are those of the non-conservative tracers like apparent oxygen utilization and dissolved nutrients. The hydrographic structure agrees with ventilation of the thermocline by southward subducted Mode Water from the eastern North Atlantic. Estimates of the oxygen diapycnal diffusion term and the distribution of pre-formed nutrients indicate that diapycnal mixing is not important for the large-scale distribution of bio-geochemical tracers in the thermocline. Only along the west Iberian continental slope may enhanced boundary mixing have some local influence on these tracer distributions. From the observed meridional ageing trend a characteristic southward velocity of −1 cm/s and a total subduction of 4.5 Sv between 32 and 52°N east of 20°W are estimated.  相似文献   

2.
Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May–June 1967), PIQUERO (May–June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σθ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through TS diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.  相似文献   

3.
The surface and subsurface waters of the Angola and Agulhas Current systems significantly influence the Benguela region and its living resources, and it is probable that the movement of Central Water, which plays a key role in the coastal upwelling process, is controlled by circulation of underlying Antarctic Intermediate Water (AIW) as well as by the dynamics of the overlying subtropical water. The movement of AIW can be inferred from a study of the t-s characteristics, and the data holdings and data base of the South African Data Centre for Oceanography facilitated this investigation. Key findings of the investigation, some confirming earlier theories and hypotheses, are as follows. The mean depth of the AIW core in the South-East Atlantic is 750 m, and in the South-West Indian Ocean, 1 100 m. Agulhas Current AIW, which is modified by Red Sea Water, becomes fresher en route because of entrainment and mixing of water from the south and west. Most of the Agulhas Current AIW per se retroflects east of 18°E. A poleward movement of AIW along the West Coast to around 32°S may be inferred from the salinity and oxygen data, with a freshening en route analogous to the Agulhas Current. Relatively fresh AIW (s < 34,35 × 10?3) is present off the South-Western Cape, the only part of the Benguela where the overlying virgin Central Water upwells. No statistically significant seasonal differences could be resolved.  相似文献   

4.
5.
Nutrient concentrations and fluxes in the Changjiang Estuary during summer   总被引:5,自引:3,他引:2  
In June 2003 and 2006 concentrations of nutrient were determined in the Changjiang Estuary. The data indicated that phosphate and nitrate did not behave conservatively in the estuary, but silicate behaved conservatively. An important mobilization of phosphate and nitrate was observed from the river up to halfway in the estuary. Both input flux (from river to estuary) and output flux (from estuary to coastal zone) of phosphate, silicate and nitrate were calculated from statistical interpretations of the salinity profiles. There was a large discrepancy between input and output fluxes of phosphate and nitrate. The river fluxes of silicate, phosphate and nitrate (fr) are augmented 5.3%, 28.9% and 36.6% in June 2003 and 1.0%, 62.5%, 31.7% in June 2006 by internal inputs (fi). The phosphate and nitrate fluxes are enhanced through the estuarine process, while silicate flux is unaltered. The authors present some long-term data for nutrient concentrations and the ratios of silicon to nitrogen to phosphorus in the Changjiang Estuary. Silicate level falled in the last two decades, while concentration of nitrate increased. Phosphate concentration had no significant change.  相似文献   

6.
The boundary between the Atlantic and Indian sectors of the Southern Ocean is a key spot of the thermohaline circulation, where the following water masses mix up: Indian Central water (ICW), South Atlantic Central Water (SACW), Antarctic Intermediate Water (AAIW), Circumpolar Deep Water (CDW), North Atlantic Deep Water (NADW), Weddell Sea Deep Water (WSDW) and Antarctic Winter Water (WW). An optimum multiparameter analysis based on the distributions of potential temperature, salinity, NO (=O2+9.3×NO3) and silicate during the GoodHope 2004 (GH04) cruise allowed us to (i) define the realms of these water masses; (ii) obtain the water mass proportion weighted-average (archetypal) apparent oxygen utilization (AOU) and dissolved organic carbon (DOC) concentrations of each water mass; and (iii) estimate the contribution of DOC to the oxygen demand of the study area. WW represented only 5.2% of the water volume sampled during GH04, followed by WSDW with 10.8%, NADW with 12.7%, SACW with 15.3%, AAIW with 23.1% and CDW with 32.8%. The distributions of DOC and AOU were mainly explained by the mixing of archetypal concentrations of these variables, 75±5% and 65±3% respectively, which retained the variability due to the basin-scale mineralization from the formation area to the barycentre of each water mass along the GH04 line. DOC accounted for 26±2% and 12±5% of the oxygen demand of the meso- and bathypelagic ocean, respectively. Conversely, local mineralization processes, retained by the residuals of the archetypal concentrations of DOC and AOU, did not contribute to improve significantly the mixing model of DOC.  相似文献   

7.
The southern portion of the Brazilian coast is dominated by coastal lagoons formed by sandy barrier spits with small inlets. This coastal configuration is a barrier to the surface flow of freshwater to the sea; thus, we suspect that a significant amount of freshwater flows through the permeable sands, beneath the barrier spits, where it mixes with seawater. We excavated an 18-m-deep well into the barrier spit which separates the Patos Lagoon from the South Atlantic. Using this well, we were able to sample interstitial waters from discrete layers, at 1-m intervals, which were analyzed for salinity, temperature, pH, nutrients (ammonium, nitrate, phosphate, and silicate), uranium, molybdenum, and barium. Similar analyses were made on surface water samples from the Patos Lagoon estuarine mixing zone.Results of well samples show a continuous increase in salinity with depth reaching 18 at the bottom. Ammonium and silicate are high, generally around 100 and 100–150 μM, respectively, throughout the subterranean profile. Phosphate shows a distinct maximum at about 6 m (ca. 25 μM), and nitrate is generally low in all well samples. Uranium and molybdenum exhibit a minimum in the well profile at about the same location where barium exhibits a maximum (greater than 2 μM). When results are compared to the surface lagoon–seawater mixing data, ammonium, phosphate, silicate, and barium in well samples of similar salinity show considerable enrichment, while a comparison of uranium and molybdenum data indicates significant depletion of these metals in most well samples.Based on these and other data, we deduce that the following processes are active: products of remineralization of organic detritus accumulated in lagoon sediments are advected through permeable sediments to the oceans; dissolution of biogenic solids and/or solid silicates mobilizes silicate; phosphate, uranium, and molybdenum are mobilized from phosphate-rich sediment layers; sulfate reducers remove uranium and perhaps molybdenum from solution throughout most of the well profile; barium is desorbed from solids in the subterranean mixing zone. These results demonstrate that freshwater discharged to the ocean through permeable sediments may have a significantly different composition than that discharged at the surface.  相似文献   

8.
The transfer of upper kilometer water from the Indian Ocean into the South Atlantic, the Agulhas leakage, is believed to be accomplished primarily through meso-scale eddy processes. There have been various studies investigating eddies of the “Cape Basin Cauldron” from specific data sets. The hydrographic data archive acquired during the last century within the Cape Basin region of the South Atlantic provides additional insight into the distribution and water mass properties of the Cape Basin eddies. Eddies are identified by mid-thermocline isopycnal depth anomalies relative to the long-term mean. Positive depth anomalies (the reference isopycnal is deeper than the long-term mean isopycnal depth) mark the presence of anticyclonic eddies; negative anomalies mark cyclonic eddies. Numerous eddies are identified in the whole region; the larger isopycnal displacements are attributed to the energetic eddies characteristic of the Cape Basin and indicate that there is a 2:1 anticyclone/cyclone ratio. Smaller displacements of the less energetic features are almost equally split between anticyclones and cyclones (1.4:1 ratio). Potential temperature, salinity and oxygen relationships at thermocline and intermediate levels within each eddy reveal their likely origin. The eddy core water is not solely drawn from Indian Ocean: tropical and subtropical South Atlantic water are also present. Anticyclones and cyclones carrying Agulhas Water properties are identified throughout the Cape Basin. Anticyclones with Agulhas Water characteristics show a predominant northwest dispersal, whereas the cyclones are identified mainly along the western margin of the African continent, possibly related to their origin as shear eddies at the boundary between the Agulhas axis and Africa. Cyclones and anticyclones carrying pure South Atlantic origin water are identified south of 30°S and west of the Walvis Ridge. Tropical Atlantic water at depth is found for cyclones north of the Walvis Ridge, west of 10°E and for stations deeper than 4000 m, and a few anticyclones with the same characteristics are found south of the ridge.  相似文献   

9.
The coastal upwelling has profound influence on the surrounding ecosystem by supplying the nutrient-replete water to the euphotic zone. Nutrient biogeochemistry was investigated in coastal waters of the eastern Hainan Island in summer 2015 and autumn 2016. From perspectives of nutrient dynamics and physical transport, the nutrient fluxes entered the upper 50 m water depth(between the mixed layer and the euphotic zone) arisen from the upwelling were estimated to be 2.5-5.4 mmol/(m2·d),...  相似文献   

10.
A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×103 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.  相似文献   

11.
Behaviour of silicate, nitrate and phosphate in the Mandovi Estuary was studied during the premonsoon season. The study shows that silicate is removed from the water column while nitrate showed an internal source. This nitrate source has been identified as the wash water from an iron ore screening plant which discharges the muddy waste directly into the river. Applying mixing relations, the distribution of this nitrate both up- and downstream of the outfall has been studied. Phosphate showed very low concentrations in the low salinity region; however, its concentration increased slightly towards the higher salinity region.  相似文献   

12.
北冰洋水体对格陵兰海混合增密对流的可能影响分析   总被引:2,自引:1,他引:1  
格陵兰海内发生的等密度混合后产生的增密对流是重要的对流现象之一。北冰洋正在发生快速变化,其内水团变性以及环流系统的改变都将使格陵兰海等密度混合对流发生明显变化,继而对全球气候变化产生影响。以往关于等密度混合对流的研究很少,大都集中在对流发生海域。由于等密度混合的主体是大西洋回流水与北冰洋流出水体,本文目的是探讨北极内部不同海域的水体会对混合增密对流造成的可能影响。文中定义了有效对流速度,强调水平温度梯度和垂向层化强度是影响有效对流速度的决定性因素;水平温度差越大,垂向层化越弱,产生的对流越强。发生在东格陵兰极锋处的有效对流都是大西洋的水体,一部分是在格陵兰海回流的大西洋回流水;一部分是在北冰洋潜沉并回流的北极大西洋水,该水体在北冰洋循环的时间越长,温度差越大,产生的有效对流越强。而横越北冰洋的太平洋水因密度过低而不能参与等密度混合对流,加拿大海盆主盐跃层之上的水体也都不能参与对流。北冰洋几个海盆深层水的温度差异明显,有可能与格陵兰海深层水形成有效对流;但是,由于深层水流速低、湍流混合弱、水平温度梯度小,是否可以产生有效对流尚不清楚。  相似文献   

13.
The distribution of five dominant calanoid copepods was related to different water masses in the Angola-Benguela Front system. Five water bodies were identified by principal component analysis, on the basis of abiotic parameter such as temperature, salinity, dissolved oxygen, phosphate, silicate, nitrate and nitrite. These parameters were reduced to single factors and arranged along two principal component axes. The copepod species incuded females and copepodites C5 of Calanoides carinatus and females of Metridia lucens, Centropages brachiatus, Nannocalanus minor and Aetideopsis carinata. The water bodies identified in the frontal system were related to currents, upwelling processes, an oxygen minimum layer and biological modification. The different copepod species, as well as the two ontogenetic stages of C. carinatus, showed clear preference for specific water bodies, and their behavioural and physiological adaptations to the environment are discussed.  相似文献   

14.
2012年夏季海南岛东岸上升流区的混合观测   总被引:1,自引:0,他引:1  
The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity K_ρ is O(10–6 m~2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to K_ρ≈O(10–4 m~2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.  相似文献   

15.
During the first year of the Northeast Pacific GLOBEC program we examined the spatial distributions of dissolved and particulate organic carbon and nitrogen in the surface waters off the Oregon and Washington coasts of North America. Eleven east–west transects were sampled from nearshore waters to 190 km offshore. Hydrographic data and the distribution of inorganic nutrients were used to characterize three distinct water sources: oligotrophic offshore water, the Columbia River plume, and the coastal upwelling region inshore of the California Current. Warm, high salinity offshore water had very low levels of inorganic nutrients, particulate organic carbon (POC) and dissolved organic carbon (DOC). Warm, low salinity water in the Columbia River plume was relatively low in nitrate, but showed a strong negative correlation between salinity and silicate. The river plume water had the highest levels of total organic carbon (TOC) (up to 180 μM) and DOC (up to 150 μM) observed anywhere in the sampling area. Cold, high salinity coastal waters had high nutrient levels, moderate to high levels of POC and particulate organic nitrogen (PON), and low to moderate levels of DOC and dissolved organic nitrogen (DON). Each of these regions has characteristic C:N ratios for particulate and dissolved organic material. The results are compared to concentrations and partitioning of particulate and dissolved organic carbon and nitrogen in other regions of the North Pacific and North Atlantic Oceans.  相似文献   

16.
The intermediate water masses in the eastern Atlantic Ocean between 31°N and 53°N were studied by analysis of the distributions of potential temperature, salinity, dissolved nutrients and oxygen. Sub-surface salinity minima are encountered everywhere in the area. At the northern and southern boundary they are connected with the presence of Sub-Arctic Intermediate Water and Antarctic Intermediate Water, respectively, but towards the European ocean margin the sub-surface salinity minima shift to shallower density levels. The sub-surface salinity minima observed west of the Iberian Peninsula represent a water mass formed by winter convection in the Porcupine Sea Bight and the northern Bay of Biscay. These minima gain salt by diapycnal mixing with the underlying Mediterranean Sea Outflow water and with the overlying permanent thermocline. The core of Antarctic Intermediate Water appears to contribute to the formation of Mediterranean Sea Outflow Water since it becomes entrained into the overflow near Gibraltar. This entrainment gives rise to an enhanced concentration of the nutrients in the Mediterranean water in the North Atlantic. The deep salinity minimum, due to the presence of Labrador Sea Water, is restricted mainly to the Porcupine Abyssal Plain. In the Bay of Biscay this water type is strongly modified by enhanced diapycnal mixing near the continental slope. At all intermediate levels the continental slope in the Bay of Biscay seems to be a focal point for water mass modification by diapycnal mixing. Below the core of the Mediterranean Sea Outflow Water the Labrador Sea Water is also strongly modified. Its salinity is strongly enhanced by diapycnal mixing with the overlying core of Mediterranean Sea Outflow Water. An analysis of the oxygen and nutrient data indicates that the large spatial concentration differences at the level of the Labrador Sea Water are caused mainly by ageing of the water. The youngest water is observed at 52°N, and, especially in the Bay of Biscay and off south-west Portugal, the water at levels of about 1700 dbar are strongly enriched in nutrients and depleted in oxygen.  相似文献   

17.
The winter water mass distributions in the western Gulf of Mexico, affected by the collision of a Loop Current anticyclonic ring, during January 1984 are analyzed. Two principal modes of Gulf Common Water (GCW) formation, arising from the dilution of the Caribbean Subtropical Underwater (SUW), are identified. Within the western gulf continental slope to the east of Tamiahua, the GCW is formed by the collision of anticyclonic rings. During these collision events, the SUW, entrapped at the core (200 m depth) of these features, is diluted by low salinity (36.1S36.3) water from the uppermost layer of the main thermocline. The end product of this mixture is GCW, which is further diluted by low salinity coastal water within the western gulf continental shelf. The second GCW formation mode is associated to the northerly wind stress which propagates over the western gulf during winter. During January, 1984, this wind stress gave rise to a 175 m mixed layer. This convective mixing destroyed the static stability of the summer thermocline and allowed for the partial dilution of the SUW with low salinity (S36.3) water from the western gulf continental shelf. Within the western gulf's upper 2000 m, the following water masses were identified to be present: GCW, SUW, Tropical Atlantic Central Water and associated dissolved oxygen minimum stratum, Antarctic Intermediate Water remnant, a mixture of the Caribbean Intermediate Water and the upper portion of North Atlantic Deep Water (NADW), and the NADW itself. The topographic distribution of these water masses' strata was dictated by the cyclonic-anticyclonic baroclinic circulation that evolved from the anticyclone's collision to the east of Tamiahua. Between the cyclonic and anticyclonic domains, the maximum pressure differential of these water masses' core occurrences was 150 to 280 dbar. The topographic transition zone defined by these strata occurred between the cyclonic and anticyclonic domains and coincided unambiguously with the anticyclone's collision zone. Within the continental shelf, we identified low temperature (12°C) and low salinity (31) coastal waters contributed by river runoff. Driven by the northerly wind stress, these coastal waters were advected toward the south hugging the coastline. The coastal and continental shelf waters demarcated a sea surface temperature, salinity, and dissolved oxygen discontinuity region that coincided with the horizontal baroclinic flow transition zone associated to the anticyclone's collision.  相似文献   

18.
ChemicalcharacteristicsandestimationontheverticalfluxofN,P,SiinupwellingareaofTaiwanStrait¥ChenShuituandRuanWuqi(FujianInstit...  相似文献   

19.
We use data from a hydrographic cruise in November 2003 over Sedlo Seamount, in conjunction with historical hydrographic and altimeter data, to describe the circulation patterns near the seamount and within the region. A mixing model that incorporates two water types and two water masses assesses the water composition within the region, and an inverse model provides estimates of mass transports within different water strata. Eastern North Atlantic Central Water dominates for the upper neutral-density (γn) levels, γn<27.2, and Western North Atlantic Central Water does so in the 27.2⩽γn⩽27.7 band. In the 27.5⩽γn⩽27.8 band Mediterranean Water constitutes slightly more than 10%, except in the northwestern portion where this water type is less abundant. For 27.7⩽γn⩽27.9 Labrador Sea Water becomes the predominant water mass. The results from the inverse model and direct velocity measurements draw a gross picture of central waters flowing northwest along the northeastern margin of the seamount, while the net fluxes of Labrador Sea Water are relatively small. The central water flow appears to be topographically guided, with a region of high eddy kinetic energy over a spur that stretches southeast from the Mid-Atlantic Ridge. A gross calculation suggests the existence of significant net nutrient transport into the seamount that would support an enhanced level of primary production.  相似文献   

20.
Processes relating to the formation of dense shelf water and intermediate water in the Okhotsk Sea were studied by examining oxygen isotope ratios (δ18O), salinity, and temperature. The salinity and δ18O of the cold dense shelf water on the northern continental shelf showed peculiar relationship. The relationship indicates that 3% of the mixed-layer water, having salinity of 32.6, froze and the remaining 97% became dense shelf water of salinities of more than 33.2 (σθ>26.7) during the sea ice formation. The salinity–δ18O relationship also shows that 20% of the Okhotsk Sea Intermediate Water at the σθ=26.8 level was derived from the dense shelf water. The remaining 80% came from the Western Subarctic Pacific water modified by diapycnal mixing of water affected by the surface cooling and freshening within the Okhotsk Sea. The mixing with dense shelf water contributes to only 26% of the temperature difference or 8% of the salinity difference between the original Pacific water and the Okhotsk Sea Intermediate Water at σθ=26.8. This result suggests that the cold and less saline properties of the Okhotsk Sea Intermediate Water are produced mainly by diapycnal mixing, rather than by mixing of the Pacific water with the dense shelf water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号