首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of the source spectra of local shallow-focus earthquakes on Kamchatka in the range of magnitudes M w = 3.5–6.5 are studied using 460 records of S-waves obtained at the PET station. The family of average source spectra is constructed; the spectra are used to study the relationship between M w and the key quasi-dimensionless source parameters: stress drop Δσ and apparent stress σa. It is found that the parameter Δσ is almost stable, while σa grows steadily as the magnitude M w increases, indicating that the similarity is violated. It is known that at sufficiently large M w the similarity hypothesis is approximately valid: both parameters Δσ and σa do not show any noticeable magnitude dependence. It has been established that M w ≈ 5.7 is the threshold value of the magnitude when the change in regimes described occurs for the conditions on Kamchatka.  相似文献   

2.
This paper presents a seismic hazard evaluation and develops an earthquake catalogue for the Constantine region over the period from 1357 to 2014. The study contributes to the improvement of seismic risk management by evaluating the seismic hazards in Northeast Algeria. A regional seismicity analysis was conducted based on reliable earthquake data obtained from various agencies (CRAAG, IGN, USGS and ISC). All magnitudes (M l, m b) and intensities (I 0, I MM, I MSK and I EMS) were converted to M s magnitudes using the appropriate relationships. Earthquake hazard maps were created for the Constantine region. These maps were estimated in terms of spectral acceleration (SA) at periods of 0.1, 0.2, 0.5, 0.7, 0.9, 1.0, 1.5 and 2.0 s. Five seismogenic zones are proposed. This new method differs from the conventional method because it incorporates earthquake magnitude uncertainty and mixed datasets containing large historical events and recent data. The method can be used to estimate the b value of the Gutenberg-Richter relationship, annual activity rate λ(M) of an event and maximum possible magnitude M max using incomplete and heterogeneous data files. In addition, an earthquake is considered a Poisson with an annual activity rate λ and with a doubly truncated exponential earthquake magnitude distribution. Map of seismic hazard and an earthquake catalogue, graphs and maps were created using geographic information systems (GIS), the Z-map code version 6 and Crisis software 2012.  相似文献   

3.
In this study, the seismicity rate changes that can represent an earthquake precursor were investigated along the Sagaing Fault Zone (SFZ), Central Myanmar, using the Z value technique. After statistical improvement of the existing seismicity data (the instrumental earthquake records) by removal of the foreshocks and aftershocks and man-made seismicity changes and standardization of the reported magnitude scales, 3574 earthquake events with a M w ≥ 4.2 reported during 1977–2015 were found to directly represent the seismotectonic activities of the SFZ. To find the characteristic parameters specifically suitable for the SFZ, seven known events of M w ≥ 6.0 earthquakes were recognized and used for retrospective tests. As a result, utilizing the conditions of 25 fixed earthquake events considered (N) and a 2-year time window (T w), a significantly high Z value was found to precede most of the M w ≥ 6.0 earthquakes. Therefore, to evaluate the prospective areas of upcoming earthquakes, these conditions (N = 25 and T w = 2) were applied with the most up-to-date seismicity data of 2010–2015. The results illustrate that the vicinity of Myitkyina and Naypyidaw (Z = 4.2–5.1) cities might be subject to strong or major earthquakes in the future.  相似文献   

4.
Multifractal behaviour of interevent time sequences is investigated for the earthquake events in the NW Himalaya, which is one of the most seismically active zones of India and experienced moderate to large damaging earthquakes in the past. In the present study, the multifractal detrended fluctuation analysis (MF-DFA) is used to understand the multifractal behaviour of the earthquake data. For this purpose, a complete and homogeneous earthquake catalogue of the period 1965–2013 with a magnitude of completeness M w 4.3 is used. The analysis revealed the presence of multifractal behaviour and sharp changes near the occurrence of three earthquakes of magnitude (M w ) greater than 6.6 including the October 2005, Muzaffarabad–Kashmir earthquake. The multifractal spectrum and related parameters are explored to understand the time dynamics and clustering of the events.  相似文献   

5.
Seismic source characteristics in the Kachchh rift basin and Saurashtra horst tectonic blocks in the stable continental region (SCR) of western peninsular India are studied using the earthquake catalog data for the period 2006–2011 recorded by a 52-station broadband seismic network known as Gujarat State Network (GSNet) running by Institute of Seismological Research (ISR), Gujarat. These data are mainly the aftershock sequences of three mainshocks, the 2001 Bhuj earthquake (M w 7.7) in the Kachchh rift basin, and the 2007 and 2011 Talala earthquakes (M w ≥ 5.0) in the Saurashtra horst. Two important seismological parameters, the frequency–magnitude relation (b-value) and the fractal correlation dimension (D c) of the hypocenters, are estimated. The b-value and the D c maps indicate a difference in seismic characteristics of these two tectonic regions. The average b-value in Kachchh region is 1.2 ± 0.05 and that in the Saurashtra region 0.7 ± 0.04. The average D c in Kachchh is 2.64 ± 0.01 and in Saurashtra 2.46 ± 0.01. The hypocenters in Kachchh rift basin cluster at a depth range 20–35 km and that in Saurashtra at 5–10 km. The b-value and D c cross sections image the seismogenic structures that shed new light on seismotectonics of these two tectonic regions. The mainshock sources at depth are identified as lower b-value or stressed zones at the fault end. Crustal heterogeneities are well reflected in the maps as well as in the cross sections. We also find a positive correlation between b- and D c-values in both the tectonic regions.  相似文献   

6.
The purpose of this study is to quantify the magnitudes of surface conduction and pore water conduction from the measured electrical conductivity of kaolinite, with the ultimate goal of estimating the electrical conductivity of kaolinite with a wide range of pore water conductivities (σ w = 0.013–3.356 S/m) and porosities (n = 0.368–1.0). Therefore, the theoretical background of the electrical conductivity in soils was reviewed, and electrical conductivity measurements on kaolinite were performed using both slurry and consolidation tests in this study. The results of this study demonstrate that the variations of measured electrical conductivity (σ mix) with n are debatable according to the values of σ w, because a decrease in n results in both an increase in surface conduction (K s) and a decrease in pore water conduction (K w); this causes the relative magnitude of K s compared to that of K w to vary with σ w and n. Consequently, this study develops the relation between the porosity-normalized K s/K w and 1/σ w. Additionally, the surface conductivity of the tested kaolinite is back-calculated and compared with the previous relationship between K s and zeta potential of kaolinite. The measured and estimated σ mix values are compared with the varying pore water conductivity and porosity values.  相似文献   

7.
It is shown that the approximation of the complex, tidally distorted shape of a star as a circular disc with local line profiles and a linear limb-darkening law, which is usually applied when deriving equatorial stellar rotation velocities from line profiles, leads to overestimation of the equatorial velocity V rot sin i and underestimation of the component mass ratio q = M x /M v . A formula enabling correction of the effect of these simplifying assumptions on the shape of a star is used to re-determine the mass ratios q and the masses of the black holes M x and visual components M v in low-mass X-ray binary systems containing black holes. Taking into account the tidal–rotational distortion of the stellar shape can significantly increase the mass ratios q = M x /M v , reducing M v , while M x changes only slightly. The resulting distribution of M v attains its maximum near M v ? 0.35M , in disagreement with the results of population synthesis computations realizing standard models for Galactic X-ray novae with black holes. Possible ways to overcome this inconsistency are discussed. The derived distribution of M x also differs strongly from the mass distribution for massive stars in the Galaxy.  相似文献   

8.
The earthquake hazard parameters and earthquake occurrence probabilities are computed for the different regions of the North Anatolia Fault Zone (NAFZ) using Bayesian method. A homogenous earthquake catalog for M S magnitude which is equal or larger than 4.0 is used for a time period between 1900 and 2015. Only two historical earthquakes (1766, M S = 7. 3 and 1897, M S = 7. 0) are included in Region 2 (Marmara Region) where a large earthquake is expected in the near future since no large earthquake has been observed for the instrumental period. In order to evaluate earthquake hazard parameters for next 5, 10, 20, 50, 100 years, M max (maximum regional magnitude), β value, λ (seismic activity or density) are computed for the different regions of NAFZ. The computed M max values are changed between 7.11 and 7.89. While the highest magnitude value is calculated in the Region 9 related to Tokat-Erzincan, the lowest value in the Region 10 including the eastern of Erzincan. The “quantiles” of “apparent” and “true” magnitudes of future time intervals of 5, 10, 20, 50, and 100 years are calculated for confidence limits of probability levels of 50, 70 and 90 % of the 10 different seismic source regions. The region between Tokat and Erzincan has earthquake hazard level according to the determined parameters. In this region the expected maximum earthquake size is 7.8 with 90 % occurrence probability in next 100 years. While the regional M max value of Marmara Region is computed as 7.61, expected maximum earthquake size is 7.37 with 90 % occurrence probability in next 100 years.  相似文献   

9.
This paper presents the first boundary equations describing the relationship between earthquake parameters (magnitude M S and macroseismic intensity I P at the observation point on the MSK-64 scale) and clastic dikes (having maximal thickness m cd , visible height h cd , and the index of manifestation intensity of dikes in the cross section I cd ). As was expected, the maximal size of dikes grows with an increase in the earthquake magnitude and macroseismic intensity. Analysis of the dependences showed that it is better to use all three parameters for estimation of the minimal threshold M S or I P from clastic dikes, and, in the absence of data on seismogenic rupture, the maximal calculated value should be used. Some limitations in application and the advantages of the equations obtained are discussed with respect to characterizing earthquakes of the pre-instrumental period.  相似文献   

10.
We have determined the main parameters of the old precataclysmic variable stars MS Peg and LM Com. The radial velocities of the components, reflection effects in the spectra, and light curves of the systems are studied based on model stellar atmospheres subject to external irradiation. Forty-seven moderate-resolution spectra for MS Peg and 57 for LM Com obtained with the 6-m telescope of the Special Astrophysical Observatory are used to derive the refined orbital periods of 0.1736660 days and 0.2586873 days, respectively; the orbital eccentricities do not exceed e=0.04. The mass (M w =0.49e) and radius (e w =0.015R) of the MS Peg primary calculated using the gravitational redshift correspond to those for a cooling carbon white dwarf with a thin hydrogen envelope. The parameters of the red dwarf (M r =0.19M, Teff=3560 K, R r =0.18R) are close to those derived from evolutionary tracks for main-sequence M stars with solar chemical composition. The radius (R r =0.22R) and temperature (Teff=3650 K) of the LM Com secondary exceed theoretical estimates for main-sequence stars with masses of M r =0.17M. The luminosity excess of the red dwarf in LM Com can be explained by a prolonged (T>5×106 yrs) relaxation of the M star to its normal state after the binary leaves the common-envelope stage. For both systems, theoretical U, B, V, and R light curves and spectra calculated using the adopted sets of parameters are generally consistent with the observations. This confirms the radiative origin of the hot spots, the unimportance of horizontal radiative transport, and the absence of large-scale velocity fields with high values (Vtrans>50 km/s) at the surfaces of the secondaries. Most of the emission lines in the spectra of these objects are formed under conditions close to thermalization, enabling modeling of their pro files in an LTE approximation. A strong λ3905 Å emission line has been identified as the 3s23p4s 1P0-3s23p2 1S SiI λ3905.52 Å line formed in the atmosphere of the hot spot. The observed intensity can be explained by non-LTE “superionization” of SiI atoms by soft UV radiation from the white dwarf. We suggest a technique for identifying binaries whose cool components are subject to UV irradiation based on observations of λ3905 Å emission in their spectra.  相似文献   

11.
The results of hydrodynamical calculations of radially pulsating helium stars with masses 0.5MM≤0.9M, bolometric luminosities 600L≤5×103L, and effective temperatures 1.5×104 K≤Teff≤3.5×104 K are presented. The pulsation instability of these stars is due to the effects of ionization of iron-group elements in layers with temperatures T~2×105 K. The calculations were carried out using opacities for the relative mass abundances of hydrogen and heavy elements X=0 and Z=0.01, 0.015, and 0.02. Approximate formulas for the pulsation constant Q over the entire range of pulsation instability of the hot helium stars in terms of the mass M, radius R, effective temperature Teff, and heavy-element abundance Z are derived. The instability of BX Cir to radial pulsations with the observed period Π=0.1066 d occurs only for a mass M≥0.55M, effective temperature Teff≥23000 K, and heavy-element abundance Z≥0.015. The allowed mass of BX Cir is in the range 0.55MM≤0.8M, which corresponds to luminosities 800LM≤1400L and mean radii 1.7R?R?2.1R.  相似文献   

12.
Orbital-period variations of the eclipsing binaries FK Aql and FZ Del are analyzed. For each of the systems, a superposition of two cyclic variations of their orbital periods is found. FK Aql may be a quadruple system that contains two more bodies, besides the eclipsing binary, with masses M 3 ? 1.75M and M 4 ? 1.47M , and the corresponding periods 15 and 82 yrs. This could also be a triple system with a third body of mass M 3 ? 1.75M and a period of the long-period orbit P 3 = 15 yrs, or with a third body of mass M 3 ? 1.30M and a period of the long-period orbit P 3 = 82 yrs. FZ Del may be a quadruple system with the additional componentmasses M 3 ? 0.2M and M 4 ? 0.3M , with the periods 10.2 and 53.7 yrs. This could also be a triple system with a third-body mass M 3 ? 0.2M and a period of the long-period orbit P 3 = 10.2 yrs. In both systems, the residual period variations could be due to magnetic cycles of the secondary. The period variations of the eclipsing binary FZ Del could also be due to apsidal motion, together with the influence of a third body or the effects of magnetic activity.  相似文献   

13.
Piles supporting transmission towers, offshore structures (such as wind turbines), or infrastructures in seismic areas are frequently subjected to either one-way or two-way cyclic lateral loadings. Relatively little attention, however, has been paid to compare and understand the effects of different loading regimes (one-way or two-way cycling) on lateral responses of piles in soft clay. For this reason, a series of field tests in soft clay are carried out to compare one-way and two-way cyclic responses of single piles and of jet-grouting reinforced piles. The field tests reveal that the single pile subjected to two-way cycling experiences much more rapid degradation in lateral stiffness and capacity, but accumulates much smaller residual pile deflection (δ p), than the single pile under one-way cycling. This is because the reverse part of the two-way cycling also generates plastic strain, causing additional softening and strength reduction in the soil surrounding the pile. After each cycling, non-zero bending moment (i.e. locked in moment, or M L) is retained in the single piles, and the M L increases with the δ p. The one-way cycling leads to two times larger M L than the two-way cycling, as it causes greater δ p. The maximum M L in the pile after one-way cycling can be up to 40% of the maximum bending moment induced during the previous cyclic loading stage. After application of jet-grouting surrounding the upper part of the single pile, it greatly reduces degradation of lateral pile stiffness, accumulation of δ p and therefore development of M L. Compared to the field measurements, the API (API RP 2A-WSD, recommended practice for planning, designing, and constructing fixed offshore platform-working stress design, 21st edn. API, Washington, 2000) code underestimates the lateral stiffness of the pile under one-way cycling, while overestimates that of the pile under two-way cycling, leading to a non-conservative prediction of bending moment in the latter pile.  相似文献   

14.
We refine the 1-D velocity model of the Central India Tectonic Zone (CITZ) using well-selected arrival times of P- and S-phases of 354 local earthquakes of magnitude (Mw) between 2.0 and 5.8, recorded by national seismic network from May 1997 to March 2016. Further, we have determined the source mechanisms of 26 selected local events using moment tensor inversion to characterize the dynamics beneath the CITZ. The best-fit simulation between observed and synthetic waveforms obtained the nodal and auxiliary planes of the each faults associated with the earthquake moment magnitude (Mw) for each event. Depth of the fault plane along the CITZ varies from 5 to 38 km. From this study, we found that the western part along the CITZ shows minimum focal depth and reaches maximum 38 kms at Jabalpur in the eastern part. This complex nature of earthquake dynamics occurrence along the CITZ. We propose that the curviplanar the CITZ dominated with sinistral curvature is subjected to compression along the longer ~E–W segments and transtension along shorter segments with ~NE–SW orientations. The occurrences of normal faulting, intrusion of mafic plutons and CLVD mechanisms for earthquakes are interpreted to be linked to the transtension zones and reverse mechanisms associated with the compressions along ~E–W segments.  相似文献   

15.
Estimates of the masses of supermassive black holes (M bh ) in the nuclei of disk galaxies with known rotation curves are compared with estimates of the rotational velocities V m and the “indicative” masses of the galaxies M i . Although there is a correlation between M bh and V m or M i , it is appreciably weaker than the correlation with the central velocity dispersion. The values of M bh for early-type galaxies (S0-Sab), which have more massive bulges, are, on average, higher than the values for late-type galaxies with the same rotational velocities. We conclude that the black-hole masses are determined primarily by the properties of the bulge and not the rotational velocity or the mass of the galaxy.  相似文献   

16.
Two main goals are considered in this paper: (1) modification and computation of the local coefficients of the space-time windows in the well-known declustering algorithm introduced by Gardner and Knopoff (1974) and (2) checking the independence of the Iranian mainshocks obtained from applying the new modified model. First, 21 of the well-documented earthquake sequences of Iran in the time period of 1972 to 2008 with the mainshock magnitude ranged from M w = 5.4–7.1 were used to define the new local space-time windows of declustering. Generally, using these Iranian earthquake sequences led to introduce bigger space-time windows for the new model in comparison to the Gardner and Knopoff’s (1974) windows. In the next step, to control the independence of Iranian mainshocks, the events of the Iranian earthquake catalog in the time span of 1964–2010 with moment magnitude of M w = 3.5–7.4 were used. In this respect, dependent events corresponding to the seven seismotectonic zones of Iran were removed using the new modified space-time windows. After declustering, the mainshock catalog was examined by the Kolmogorov–Smirnov goodness-of-fit test, and it was found to follow a Poisson distribution in all the studied seismotectonic zones of Iran. The same test on times between successive declustered events shows that the inter-event times of all catalogs follow an exponential distribution.  相似文献   

17.
We have obtained the first estimates of the masses of the components of the Her X-1/HZ Her X-ray binary system taking into account non-LTE effects in the formation of the H γ absorption line: m x = 1.8 M and m v = 2.5 M . These mass estimates were made in a Roche model based on the observed radial-velocity curve of the optical star, HZ Her. The masses for the X-ray pulsar and optical star obtained for an LTE model lie are m x = 0.85 ± 0.15 M and m v = 1.87 ± 0.13 M . These mass estimates for the components of Her X-1/HZ Her derived from the radial-velocity curve should be considered tentative. Further mass estimates from high-precision observations of the orbital variability of the absorption profiles in a non-LTE model for the atmosphere of the optical component should be made.  相似文献   

18.
The evolution of Population I stars with initial masses 60 M M ZAMS ≤ 120 M is computed up to the Wolf-Rayet stage, when the central helium abundance decreases to Y c ≈ 0.05. Several models from evolutionary sequences in the core helium-burning stage were used as initial conditions when solving the equations of radiative hydrodynamics for self-exciting stellar radial pulsations. The low-density envelope surrounding the compact core during the core helium burning is unstable against radial oscillations in a wide range of effective temperatures extending to T eff ~ 105 K. The e-folding time of the amplitude growth is comparable to the dynamical time scale of the star, and, when the instability ceases growing, the radial displacement of the outer layers is comparable to the stellar radius. Evolutionary changes of the stellar radius and luminosity are accompanied by a decrease in the amplitude of radial pulsations, but, at the effective temperature T eff ≈ 105 K, the stellar oscillations are still nonlinear, with a maximum expansion velocity of the outer layers of about one-third the local escape velocity. The period of the radial oscillations decreases from 9 hr to 4 min as stellar mass decreases from M = 28 M to M = 6 M in the course of evolution. The nonlinear oscillations lead to a substantial increase of the radii of the Lagrangian mass zones compared to their equilibrium radii throughout the instability region. The instability of Wolf-Rayet stars against radial oscillations is due to the action of the κ mechanism in the iron-group ionization zone, which has a temperature of T ~ 2 × 105 K.  相似文献   

19.
We apply the general concept of seismic risk analysis based on morphostructural analysis of the territory, pattern recognition of earthquake-prone nodes, and the Unified Scaling Law for Earthquakes, USLE, in another seismic region of Russia to the west from Lake Baikal, i.e., Altai–Sayan Region. The USLE generalizes the empirical Gutenberg–Richter relationship making use of apparently fractal distribution of earthquake sources of different size: \( \log_{10} N\left( {M,L} \right)\, = \,A\, + \,B \cdot \left( {5\, - \,M} \right)\, + \,C \cdot \log_{10} L, \) where N (M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The local estimates of A, B, and C allow determination of the expected maximum credible magnitude in a given time interval and the associated spread around ground shaking parameters (e.g., peak ground acceleration, PGA, or macroseismic intensity, I0). Compilation of the corresponding seismic hazard map of Altai–Sayan Region and its rigorous testing against the available seismic evidences in the past is used to model regional maps of specific earthquake risks for population, cities, and infrastructures.  相似文献   

20.
We analyze previously published geodetic data and intensity values for the M s = 8.1 Shillong (1897), M s = 7.8 Kangra (1905), and M s = 8.2 Nepal/Bihar (1934) earthquakes to investigate the rupture zones of these earthquakes as well as the amplification of ground motions throughout the Punjab, Ganges and Brahmaputra valleys. For each earthquake we subtract the observed MSK intensities from a synthetic intensity derived from an inferred planar rupture model of the earthquake, combined with an attenuation function derived from instrumentally recorded earthquakes. The resulting residuals are contoured to identify regions of anomalous intensity caused primarily by local site effects. Observations indicative of liquefaction are treated separately from other indications of shaking severity lest they inflate inferred residual shaking estimates. Despite this precaution we find that intensites are 1–3 units higher near the major rivers, as well as at the edges of the Ganges basin. We find evidence for a post-critical Moho reflection from the 1897 and 1905 earthquakes that raises intensities 1–2 units at distances of the order of 150 km from the rupture zone, and we find that the 1905 earthquake triggered a substantial subsequent earthquake at Dehra Dun, at a distance of approximately 150 km. Four or more M = 8 earthquakes are apparently overdue in the region based on seismic moment summation in the past 500 years. Results from the current study permit anticipated intensities in these future earthquakes to be refined to incorporate site effects derived from dense macroseismic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号