首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear wave structures of ion acoustic waves (IAWs) in an unmagnetized plasma consisting of nonextensive electrons and thermal positrons are studied in bounded nonplanar geometry. Using reductive perturbation technique we have derived cylindrical and spherical Korteweg-de Vries-Burgers’ (KdVB) equations for IAWs. The presence of nonextensive q-distributed electrons is shown to influence the solitary and shock waves. Furthermore, in the existence of ion kinematic viscosity, the shock wave structure appears. Also, the effects of nonextensivity of electrons, ion kinematic viscosities, positron concentration on the properties of ion acoustic shock waves (IASWs) are discussed in nonplanar geometry. It is found that both compressive and rarefactive type solitons or shock waves are obtained depending on the plasma parameter.  相似文献   

2.
The nonlinear wave structures of ion acoustic waves (IAWs) in an unmagnetized plasma consisting of superthermal electrons and warm ions are studied in bounded nonplanar geometry. Using reductive perturbation technique we have derived cylindrical and spherical Korteweg-de Vries (KdV) equations for IAWs to study the propagation of two-solitons. The presence of superthermally distributed electrons is shown to influence the propagation of two-solitons in nonplanar geometry.  相似文献   

3.
The nonlinear dust acoustic waves in dusty plasmas with two temperature electrons and the combined effects of bounded spherical geometry and the transverse perturbation are studied. Using the perturbation method, a spherical Kadomtsev-Petviashvili (SKP) equation that describes the dust acoustic waves is deduced.  相似文献   

4.
Interaction of Alfvén waves with plasma inhomogeneities generates phase mixing which can lead to dissipate Alfvén waves and to heat the solar plasma. Here we study the dissipation of Alfvén waves by phase mixing due to viscosity and resistivity variations with height. We also consider nonlinear magnetohydrodynamic (MHD) equations in our theoretical model. Non-linear terms of MHD equations include perturbed velocity, magnetic field, and density. To investigate the damping of Alfvén waves in a stratified atmosphere of solar spicules, we solve the non-linear MHD equations in the xz plane. Our simulations show that the damping is enhanced due to viscosity and resistivity gradients. Moreover, energy variations is influenced due to nonlinear terms in MHD equations.  相似文献   

5.
A reductive perturbation technique is employed to solve the fluid-Poisson equations in spherical geometry describing a weakly nonlinear electron–acoustic (EA) waves in unmagnetized plasma consisting of stationary ions, cold electrons and kappa distributed hot electrons. It is shown that a variable coefficient Kadomtsev–Petviashvili (KP) equation governs the evolution of scalar potential describing propagation of EA waves. The influence of suprathermality and geometry effects on propagation of EA solitary waves is investigated. We found that when electrons evolve toward their thermodynamic equilibrium, EA solitons are generated with large amplitudes. Also it is shown that EA solitary structures can be significantly modified by transverse perturbations.  相似文献   

6.
The nonlinear propagation of ion acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of nonthermal electrons, nonthermal positrons, and singly charged adiabatically hot positive ions, whose dynamics is governed by the two dimensional nonplanar Kadomstev-Petviashvili-Burgers (KPB) equation. The shock solution of the KPB equations is obtained numerically. The effects of several parameters and ion kinematic viscosities on the properties of ion acoustic shock waves are discussed in planar and nonplanar geometry. It is shown that the ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be deformed as time goes on. Also, it is seen that the strength and the steepness of the IASWs increases with increasing β, the nonthermal parameter.  相似文献   

7.
Nonlinear cylindrical fast magnetoacoustic waves are investigated in a dissipative magnetoplasma comprising of electrons, positrons, and ions. In this regard, cylindrical Kadomtsev-Petviashvili-Burgers (CKPB) equation is derived using the small amplitude perturbation expansion method. Furthermore, cylindrical Burgers-Kadomtsev-Petviashvili (Cyl Burgers-KP) for a fast magnetoacoustic wave is derived, for the first time, for spatial scales larger than the electron/positron skin depths, c/ω p(e,p). Using the tangent hyperbolic method, the solutions of both planar KPB and Burgers-KP equations are obtained and then subsequently used as an initial profile to solve their respective counterparts in the cylindrical geometry. The effect of positron concentration, kinematic viscosity, and plasma β are explored both for the KPB and the Burgers-KP shock waves and the differences between the two are highlighted. The temporal evolution of the cylindrical fast magnetoacoustic wave is also numerically investigated. The present study may be beneficial to study the propagation characteristics of nonlinear electromagnetic shock waves in planetary magnetospheres.  相似文献   

8.
Erdélyi  Róbert  Ballai  István 《Solar physics》1999,186(1-2):67-97
Nonlinear theory of driven magnetohydrodynamic (MHD) waves in the slow dissipative layer in isotropic steady plasmas developed by Ballai and Erdélyi (Solar Phys. 180 (1998)) is used to study the nonlinear interaction of sound waves with one-dimensional isotropic steady plasmas. An inhomogeneous magnetic slab with field-aligned plasma flow is sandwiched by a homogeneous static magnetic-free plasma and by a homogeneous steady magnetic plasma. Sound waves launched from the magnetic-free plasma propagate into the inhomogeneous region interacting with the localised slow dissipative layer and are partially reflected, dissipated or transmitted by this region. The nonlinearity parameter, introduced by Ballai and Erdélyi, is assumed to be small and a regular perturbation method is used to obtain analytical wave solutions. Analytical studies of resonant absorption of sound waves show that the efficiency of the process of resonant absorption strongly depends on both the equilibrium parameters and the characteristics of the resonant wave. We also find that a steady equilibrium shear flow can significantly influence the nonlinear resonant absorption in the limits of thin inhomogeneous layer and weak nonlinearity. The presence of an equilibrium flow may therefore be important for the nonlinear resonant MHD wave phenomena. A parametric analysis also shows that the nonlinear part of resonant absorption can be strongly enhanced by the equilibrium flow.  相似文献   

9.
Ion acoustic (IA) solitary and rogue waves are studied in an unmagnetized plasma consisting of non-degenerate warm ions, relativistically degenerate electrons and positrons. By using the reductive perturbation technique, the evolution of IA solitary waves is described by the Korteweg-de Vries (KdV) equation. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency then the KdV equation is also used to study the nonlinear evolution of modulationally unstable modified IA wavepackets through the derivation of nonlinear Schrödinger equation. It is found that the characteristics of the IA solitary and rogue waves are substantially influenced by the intrinsic plasma parameters. The relevance of the present investigation involving IA solitary and rogue waves in astrophysical plasma environments is also highlighted.  相似文献   

10.
A set of multi-fluid equations and Maxwell’s equations are carried out to investigate the properties of nonlinear fast magnetoacoustic solitary waves with the combined effects of dusty plasma pressure and transverse perturbation in the bounded cylindrical geometry. The reductive perturbation method has been applied to the dynamical system causeway and the derived two dimensional cylindrical Kadomtsev–Petviashvili equation (CKP) predicts different natures of solitons in complex plasma. Under a suitable coordinate transformation the CKP equation can be solved analytically. The change in the soliton structure due to mass of dust, ion temperature, ion density, and dust temperature is studied by numerical calculation of the CKP equation. It is noted that the dust cylindrical fast magnetoacoustic solitary waves in warm plasmas may disappear slowly because of an increase in dust mass. The present analysis could be helpful for understanding the nonlinear ion-acoustic solitary waves propagating in interstellar medium and pulsar wind,which contain an excess of superthermal particles.  相似文献   

11.
The formation and propagation of dust-acoustic (DA) solitary and rogue waves are studied in a non-relativistic degenerate Thomas-Fermi thermal dusty plasma incorporating transverse velocity perturbation effects. The electrons and ions are described by the Thomas-Fermi density distributions, whereas the dust grains are taken as dynamic and classical. By using the reductive perturbation technique, the cylindrical Kadomtsev-Petviashvili (CKP) equation is derived, which is then transformed into a Korteweg-deVries (KdV) equation by using appropriate variable transformations. The latter admits a solitary wave solution. However, when the carrier waves frequency is much smaller than the dust plasma frequency, the DA waves evolve into the nonlinear modulation instability, generating modulated wave packets in the form of Rogue waves. For the study of DA-rogue waves, the KdV equation is transformed into a self-focusing nonlinear Schrödinger equation. The variation of dust temperature and the electron density affects the nonlinearity and dispersion coefficients which suppress the amplitudes of the DA solitary and rogue waves. The present results aim to describe the nonlinear electrostatic excitations in astrophysical degenerate dense plasma.  相似文献   

12.
Where spatial gradients in the amplitude of an Alfvén wave are non-zero, a nonlinear magnetic-pressure gradient acts upon the medium (commonly referred to as the ponderomotive force). We investigate the nature of such a force in inhomogeneous 2.5D MHD plasmas by analysing source terms in the nonlinear wave equations for the general case of inhomogeneous B and ρ, and consider supporting nonlinear numerical simulations. Our equations indicate that there are two distinct classes of ponderomotive effect induced by Alfvén waves in general 2.5D MHD, each with both a longitudinal and transverse manifestation. i) Geometric effects: Gradients in the pulse geometry relative to the background magnetic field cause the wave to sustain cospatial disturbances, the longitudinal and transverse daughter disturbances – where we report on the transverse disturbance for the first time. ii) ?(c A) effects: Where a pulse propagates through an inhomogeneous region (where the gradients in the Alfvén-speed profile c A are non-zero), the nonlinear magnetic-pressure gradient acts to accelerate the plasma. Transverse gradients (phase mixing regions) excite independently propagating fast magnetoacoustic waves (generalising the result of Nakariakov, Roberts, and Murawski (Solar Phys. 175, 93, 1997)) and longitudinal gradients (longitudinally dispersive regions) perturb along the field (thus creating static disturbances in β=0, and slow waves in β≠0). We additionally demonstrate that mode conversion due the nonlinear Lorentz force is a one-way process, and does not act as a mechanism to nonlinearly generate Alfvén waves due to propagating magnetoacoustic waves. We conclude that these ponderomotive effects are induced by an Alfvén wave propagating in any MHD medium, and have the potential to have significant consequences on the dynamics of energy transport and aspects of dissipation provided the system is sufficiently nonlinear and inhomogeneous.  相似文献   

13.
A study is presented of the nonlinear self-modulation of low-frequency electrostatic dust acoustic waves (DAWs) propagating in a dusty plasma, within the theoretical framework of the nonextensive statistics proposed by Tsallis. Using the reductive perturbation method (RPM), the nonlinear Schrödinger equation (NLSE) which governs the modulational instability (MI) of the DAWs is obtained. The presence of the nonextensive electron/ion distribution is shown to influence the MI of the waves. Furthermore it is observed that nonextensive distributed ions has more effect on the MI of the DAW than electrons.  相似文献   

14.
Linear and nonlinear analysis of low frequency magnetoacoustic waves propagating at an angle θ with the ambient magnetic field are investigated in dense electron-positron-ion (e-p-i) plasmas using the quantum magnetohydrodynamic (QMHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived in the small amplitude limit. The stability of KPB equation is also presented. The variation of the nonlinear fast and slow magnetoacoustic shock waves with the positron concentration, kinematic viscosity, obliqueness parameter θ, and the magnetic field, are also investigated. It is observed that the aforementioned plasma parameters significantly modify the propagation characteristics of two dimensional nonlinear magnetoacoustic shock waves in dissipative quantum magnetoplasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.  相似文献   

15.
The evolutionary state of slow forward shock waves is examined with the use of two MHD numerical codes. Our study is intended to be exploratory rather than a detailed parametric one. The first code is one-dimensional (with three components of velocity and magnetic field) which is used to follow a slow shock that propagates into a positive gradient of density versus distance. It is found that the slow shock evolves into an extraneous (intermediate) shock wave. The second code has a spherical, one-dimensional, planar geometry (with two velocity and magnetic field components) which is used to follow a spiral interplanetary magnetic field. It is found that a slow shock type perturbation can generate a forward slow shock; a fast forward shock is generated in the front of the slow shock; a contact discontinuity is formed behind the slow shock, and a compound nonlinear MHD wave is formed behind the contact discontinuity with a fast reverse shock formed further behind. Thus, we demonstrate that the evolution of a slow shock into (solely) a fast shock, as suggested by Whang (1987), is much more complicated.  相似文献   

16.
A theoretical investigation of the one dimensional dynamics of nonlinear electrostatic dust ion-acoustic (DIA) waves in an unmagnetized dusty plasma consisting of ion fluid, non-thermal electrons and fluctuating immobile dust particles has been made by the reductive perturbation technique. The basic features of DIA solitary and shock waves are studied by deriving the Korteweg-de Vries (KdV) and KdV Burger equations, respectively. It is shown that the special patterns of nonlinear electrostatic waves are significantly modified by the presence of the non-thermal electron component. In particular, the rarefactive solitary and shock structures are found with smaller amplitude in comparison to the isothermal case. The transition from DIA solitary to shock waves is also studied which is related to the contributions of the dispersive and dissipative terms. It is found that the dust charge fluctuation is a source of dissipation, and is responsible for the formation of the dust ion-acoustic shock waves. Furthermore, the dissipative effect becomes important and may prevail over that of dispersion as the population of non-thermal electrons present decreases. The present investigation may be of relevance to electrostatic solitary structures observed in many space dusty plasma, such as Saturn’s E-ring.  相似文献   

17.
The propagation of nonlinear waves in a quantum plasma is studied. A quantum magnetohydrodynamic (QHD) model is used to take into account the effects of quantum force associated with the Bohm potential. Using the standard reductive perturbation technique, nonlinear Kadomtsev-Petviashvili (KP) equation is obtained to study the properties of ion acoustic waves (IAWs). For such waves the amplitude of the solitary waves is independent of the quantum parameter H (the ratio of the electron plasmon to electron Fermi energy), whereas the width and energy of the soliton increases with H.  相似文献   

18.
A theoretical investigation has been performed on the nonlinear propagation of nonplanar (cylindrical and spherical) Gardner solitons (GSs) associated with the positron-acoustic (PA) waves in a four component plasma system consisting of nonthermal distributed electrons and hot positrons, mobile cold positrons, and immobile positive ions. The well-known reductive perturbation method has been employed to derive the modified Gardner (MG) equation. The basic features (viz. amplitude, polarity, speed, etc.) of nonplanar PA Gardner solitons (GSs) have been examined by the numerical analysis of the MG equation. It has been observed that the properties of the PA GSs in a nonplanar geometry differ from those in a planar geometry. It has been also investigated that the presence of nonthermal (Cairns distributed) electrons and hot positrons significantly modify the amplitude, polarity, speed, and thickness of such PA GSs. The results of our investigation should play an important role in understanding various interstellar space plasma environments as well as laboratory plasmas.  相似文献   

19.
The nonlinear amplitude modulation of dust-ion acoustic wave (DIAW) is studied in the presence of nonextensive distributed electrons in dusty plasmas with stationary dust particles. Using the reductive perturbation method (RPM), the nonlinear Schrödinger equation (NLSE) which governs the modulational instability (MI) of the DIAWs is obtained. Modulational instability regions and the growth rate of nonlinear waves are discussed. It is shown that the wave characters are affected by the value of nonextensive parameter and also relative density of plasma constituents.  相似文献   

20.
It is usually assumed that the ions of cosmic rays contribute nothing to the observable electromagnetic radiation. However, this is true only when these ions are moving in a vacuum or a quiet (nonturbulent) plasma. In the case of fast ions in a turbulent plasma, there is an effective nonlinear mechanism of radiation which is discussed in this paper. The fast ion (relativistic or nonrelativistic) moving in the plasma creates a polarization cloud around itself which also moves with the particles. The turbulent plasma waves may scatter on the moving electric field of this polarization cloud. In the process of this scattering an electromagnetic wave with frequency (2.7) is generated. Let 1 and k1 be the frequency and wave vector of turbulent plasma waves,V is the velocity of the ion, and is the angle between the wave vector of electromagnetic radiation and the direction of the ion velocity. The method of calculating the probability of the conversion of plasma waves (k1) into electromagnetic waves (k) by scattering on an ion with velocityV is described in detal in Section 2 (Equation (2.14)).The spectral coefficients of spontaneous radiation in the case of scattering of plasma waves on polarization clouds created by fast nonrelativistic ions are given in (3.6) for an ion energy distribution function (3.4) and in (3.8) for more general evaluations. The Equations (3.9)–(3.13) describe the spectral coefficients of spontaneous emission for different modes of plasma turbulence (Langmuir (3.9), electron cyclotron in a weak (3.10) or strong (3.11) magnetic field and ion acoustic (3.12)–(3.13) waves). The coefficients of reabsorption or induced emission are given by Equations (3.14) and (3.16)–(3.19). There is a maser effect in the case of scattering of plasma waves on a stream of ions. The effective temperature of the spontaneous emission is given by Equation (3.15). The spectral coefficients of radiation due to scattering of plasma waves on relativistic ions are calculated in the same manner (Equations (4.14)–(4.15)). The total energy loss due to this radiation is given in Equations (4.23)–(4.25). The coefficients of induced emission are given in (4.26)–(4.28).The results are discussed in Section 5. It is shown that the loss of energy by nonlinear plasma radiation is much smaller than the ionization loss. However, the coefficients of synchrotron radiation of electrons and nonlinear radiation of ions under cosmic conditions may be comparable in the case of a weak magnetic field and fairly low frequencies (5.5)–(5.6). Usually the spectrum of nonlinear plasma radiation is steeper than in the case of synchroton radiation. Equation (5.10) gives the condition for nonlinear radiation to prevail over thermal radiation.Translated by D. F. Smith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号