首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Messinian evaporites in Cyprus resulted from the interplay of Mediterranean-wide and eustatic sea-level changes and local tectonics, in an inferred above-subduction zone setting. Distinctive Tortonian-early Messinian pre-evaporitic facies include diatomaceous marls and microbial carbonates, overlain by a variety of gypsum facies and then by lagoonal-lacustrine deposits and local palaeosols. Facies analysis and comparisons allow construction of a simple model, in which evaporites formed in semi-isolated small basins not far below global eustatic sea-level. Coarsely crystalline gypsum formedin situ along the margins of small basins and within shallow-water lagoons (< 10 m deep); this comprised common banded-stacked (i.e. layered) selenite, swallowtail selenite, botryoidal selenite and sugary-bedded selenite. Fine-grained gypsum precipitated widely and was reworked into basinal areas (< 70 m deep) by weak traction currents and low-density turbidity currents. Shallow-water derived selenite was also reworked basinwards by high-density turbidity currents and debris flows. Slumps indicate tectonic instability. More detailed basin analysis can be achieved by study of individual sub-basins. In the Polemi sub-basin in the west, a Lower Unit (up to 60 m thick) comprises basinal gypsum, interbedded with gypsum turbidites and mass flow deposits, with slumps. This is overlain by an extensive mega-rudite (up to 20 m thick) including up to metre-sized clasts of marginal gypsum facies. Above, the Upper Unit (up to 70 m thick) includes shallow-water gypsum (e.g. swallowtails), marl and minor microbial carbonates. The Pissouri sub-basin in the south-west exposes marginal facies of the Upper Unit, including deltaic elastics and palaeosols. The Maroni sub-basin in the south exhibits a basinal lower gypsum unit, with laterally equivalent marginal facies (up to 50 m thick), overlain by an extensive mega-rudite (up to 20 m thick). Finally, the Mesaoria subbasin in the north exposes relatively marginal gypsum facies in an unstable tectonic setting. Formation of the Polemi, Pissouri and Mesaoria gypsum sub-basins relates to coeval extensional faulting and graben development. Evaporites in south Cyprus (Maroni sub-basin) formed in elongate basins between former compressional lineaments created by localized Early Miocene thrusting. In the sub-basins of west, south-west and south Cyprus, large-scale slumping of marginal gypsum facies took place towards depocentres (to form megarudite debris flows), triggered by one or several phases of extensional faulting.  相似文献   

2.
A number of Palaeogene to Early Neogene gypsum units are located along the southern margins of the Ebro Basin (North‐east Spain). These marginal units, of Eocene to Lower Miocene age, formed and accumulated deposits of Ca sulphates (gypsum and anhydrite) in small, shallow saline lakes of low ionic concentration. The lakes were fed mainly by ground water from deep regional aquifers whose recharge areas were located in the mountain chains bounding the basin, and these aquifers recycled and delivered Ca sulphate and Na chloride from Mesozoic evaporites (Triassic and Lower Jurassic). In outcrop, the marginal sulphate units are largely secondary gypsum after anhydrite and exhibit meganodules (from 0·5 to >5 m across) and large irregular masses. In the sub‐surface these meganodules and masses are mostly made of anhydrite, which replaced the original primary gypsum. The isotopic composition (11·1 to 17·4‰ for δ18OVSMOW; 10·7 to 15·3‰ for δ34SVCDT) of secondary gypsum in this meganodular facies indicates that the precursor anhydrite derived from in situ replacement of an initial primary gypsum. As a result of ascending circulation of deep regional fluid flows through the gypsum units near the basin margins, the gypsum was partly altered to anhydrite within burial conditions from shallow to moderate depths (from some metres to a few hundred metres?). At such depths, the temperatures and solute contents of these regional flows exceeded those of the ground water today. These palaeoflows became anhydritizing solutions and partly altered the subsiding gypsum units before they became totally transformed by deep burial anhydritization. The characteristics of the meganodular anhydritization (for example, size and geometry of the meganodules and irregular masses, spatial arrangement, relations with the associated lithologies and the depositional cycles, presence of an enterolithic vein complex and palaeogeographic distribution) are compared with those of the anhydritization generated both in a sabkha setting or under deep burial conditions, and a number of fundamental differences are highlighted.  相似文献   

3.
The Upper Miocene and Pliocene evaporite deposits of the Atacama Desert of northern Chile (Hilaricos and Soledad Formations) are among the few non‐marine evaporites in which aridity not only formed the deposits, but has also preserved them almost unaltered under near‐surface conditions. These deposits are largely composed of displacive Ca sulphate and halite together with minor amounts of glauberite, thenardite and polyhalite. However, at the base and top of these deposits, there are also beds of gypsum crystal pseudomorphs that originally formed as free‐growth forms within shallow brine bodies, rather than as displacive sediments. The halite is present as interstitial cement, displacive cubes and shallow‐water, bottom‐growth chevron crusts. Most of the calcium sulphate is presently anhydrite, pseudomorphous after gypsum, that was the primary depositional sulphate mineral. The secondary anhydrite formed under early diagenetic conditions after slight burial (some metres) resulting from the effect of strongly evolved pore brines. The anhydrite has been preserved without rehydration during late diagenetic and exhumation stages on account of the arid environment of the Atacama Desert. Both the Hilaricos and the Soledad Formations contain geochemical markers indicating that these Neogene evaporites had a largely non‐marine origin. Bromine content in the halite is very low (few p.p.m.), indicating neither a sedimentological relation with sea water nor the likelihood of direct recycling of prior marine halites. Moreover, the δ34S of sulphates (+4·5‰ to +9‰) also reflects a non‐marine origin, with a strong volcanic influence, although some recycling of Mesozoic marine sulphates cannot be ruled out. δ34S of dissolved sulphate from hot springs and streams in the area commonly displays positive values (+2‰ to +10‰). Leaching of oxidized sulphur and chlorine compounds from volcanoes and epithermal ore bodies, very common in the associated drainage areas, have been the main contribution to the accumulation of evaporites. The sedimentary and diagenetic evolution of the Hilaricos and Soledad evaporites (based on lithofacies analysis) provides information about the palaeohydrological conditions in the Central Depression of northern Chile during the Neogene. In addition, the diagenesis and exhumation history of these evaporites confirms the persistence of strongly arid conditions from Late Miocene until the present. A final phase of tectonism took place permitting the internal drainage to change and open to the sea, resulting in dissolution and removal of a significant portion of these deposits. Despite the extensive dissolution, the remaining evaporites have undergone little late exhumational hydration.  相似文献   

4.
Extensive deposition of marine evaporites occurred during the Early–Middle Eocene in the South‐eastern Pyrenean basin (north‐east Spain). This study integrates stratigraphic and geochemical analyses of subsurface data (oil wells, seismic profiles and gravity data) together with field surveys to characterize this sedimentation in the foredeep and adjacent platform. Four major evaporite units were identified. The oldest was the Serrat Evaporites unit, with a platform‐slope‐basin configuration. Thick salina and sabkha sulphates accumulated on the platform, whereas resedimented and gravity‐derived sulphates were deposited on the slope, and salt and sulphates were deposited in the deep basin. In the subsequent unit (Vallfogona evaporites), thin sulphates formed on the platform, whereas very thick siliciclastic turbidites accumulated in the foredeep. However, some clastic gypsum coming from the platform (gypsarenites and gypsum olistoliths) was intercalated in these turbidites. The following unit, the Beuda Gypsum Formation developed in a sulphate platform‐basin configuration, where the topography of the depositional surface had become smooth. The youngest unit, the Besalú Gypsum, formed in a shallow setting. This small unit provides the last evidence of marine influence in a residual basin. Sulphur and oxygen isotope compositions are consistent with a marine origin for all evaporites. However, δ34S and δ18O values also suggest that, except for the oldest unit (Serrat Evaporites), there was some sulphate recycling from the older into the younger units. The South‐eastern Pyrenean basin constitutes a fine example of a foreland basin that underwent multiepisodic evaporitic sedimentation. In the basin, depositional factors evolved with time under a structural control. Decreasing complexity is observed in the lithofacies, as well as in the depositional models, together with a diminishing thickness of the evaporite units.  相似文献   

5.
Controversies around the Messinian salinity crisis (MSC) are because of the difficulties in establishing genetic and stratigraphic relationships between its deep and shallow‐water record. Actually, the Sicilian foreland basin shows both shallow and deep‐water Messinian records, thus offering the chance to reconstruct comprehensive MSC scenarios. The Lower Gypsum of Sicily comprises primary and resedimented evaporites separated in space and time by the intra‐Messinian unconformity. A composite unit including halite, resedimented gypsum and Calcare di Base accumulated between 5.6 and 5.55 Ma in the main depocentres; it records the acme of the Messinian Salinity Crisis during a tectonic phase coupled with sea‐level falls at glacials TG14‐TG12. These deposits fully post‐date primary gypsum, which precipitated in shallow‐water wedge‐top and foreland ramp basins between 5.96 and 5.6 Ma. This new stratigraphic framework results in a three‐stage MSC scenario characterized by different primary evaporite associations: selenite in the first and third stages, carbonate, halite and potash salt in the second one associated with hybrid resedimented evaporites.  相似文献   

6.
In the middle Miocene Badenian gypsum basin of the Carpathian Foredeep, west Ukraine, three main zones of gypsum development occur in the peripheral parts of the basin. Zone I consists entirely of stromatolitic gypsum formed in a nearshore zone. Zone II is located more basinward and is characterized by stromatolitic gypsum in the lower part of the section, overlain by a sabre gypsum unit. Zone III occurs in still more basinward areas and is characterized by giant gypsum intergrowths (or secondary nodular gypsum pseudomorphs of these) in the lowermost part, overlain by stromatolitic gypsum, sabre gypsum and then by clastic gypsum units. Correlation between these facies and zones has been achieved using lithological marker beds and surfaces. Of particular importance for correlation is a characteristic marker bed (usually 20–40 cm thick) of cryptocrystalline massive gypsum occurring in zones II and III. The marker was not distinguished in zone I, possibly because this bed is older than the entire gypsum section of that zone. These new results strongly suggest that the deposition of giant gypsum intergrowth facies and stromatolitic gypsum facies was coeval. In some sections of zones I and II, limestone intercalations have been recorded within the upper part of the gypsum sections. Considerable scatter of the δ18O and δ13C values of these limestones indicates variable diagenetic overprints of marine carbonates, but a marine provenance of the limestones is confirmed by microfacies analysis. Some of the limestones are coeval with an intercalation of gypsarenitic, mostly laminated gypsum occurring in the sabre gypsum unit of zones II and III. Badenian gypsum formed in extremely shallow‐water to subaerial environments on broad, very low relief areas of negligible brine depth, which could be affected by rapid transgressions. Stable isotope (δ34S, δ18O) studies of the gypsum demonstrate that the sulphate was of sea‐water origin or was derived from dissolution of Miocene marine evaporites. Investigations of individual inclusions in the gypsum indicate decreased water salinity when compared with modern marine‐derived, calcium sulphate‐saturated water. Groundwater influences are indicated by high calcium sulphate contents of the brines in the evaporite basin. The chemical composition of Badenian waters was thus a mixture of relic sea water (depleted in NaCl), groundwater (enriched in calcium sulphate) and surface run‐off.  相似文献   

7.
A multidisciplinary analysis of intraplate volcanic complexes interbedded with shallow and deeper marine sediments of a Late Miocene carbonate platform (Iblean Plateau, Sicily) has allowed a detailed paleo-environmental reconstruction. Our approach includes sedimentology, physical volcanology, stratigraphy, geochemistry/mineralogy, paleontology and 40Ar/39Ar dating. Four volcanic complexes are distinguished from each other. Two comprise an eastern shallow water platform (diatreme field and Carlentini complex) and two a western deeper water environment representing a seamount belt on the carbonate ramp (Valle Guffari seamount and Mineo complex). The late Miocene volcanism was not time-equivalent: episodic eruptions took place from the Late Tortonian (ca. 9.38 Ma at Mt. Carrubba) to Early Messinian (ca. 6.46 Ma at Valle Guffari). Explosive volcanism of the diatreme field may be related geodynamically to the period of periodic sea-level oscillations at the onset of the Messinian Salinity Crisis. Marine diatomites preserved in the crater areas of two diatremes are the only remnants of Early Messinian diatomites in the eastern Iblean Mountains.  相似文献   

8.
Various workers have suggested that the Upper Miocene (Messinian) evaporites of the Sicilian Basin formed in a topographic basin of considerable relief, filled with hypersaline water. Our studies indicate that this basin contained shallow water, at least during the deposition of the carbonate rocks intercalated between the gypsum beds. We recognize four basic kinds of limestone: (1) pelletal and pisolitic limestone; (2) skeletal limestone; (3) oöitic limestone, and (4) laminated lime-stone-dolostone. Modern analogs suggest that three of these four kinds of carbonate must have formed close to or above sea level. The evidence supporting this contention includes pellets with algal coatings, pisolites, quiet-water oöids, and algal laminates. Therefore we suggest that the evaporites associated with these carbonates may likewise have formed in relatively shallow water. An alternative conclusion would be that the level of the sea, and the salinity, underwent irregular patterns of profound change.  相似文献   

9.
The Passaic Formation of the late Triassic Newark Supergroup is 2700 m thick and was deposited in series of wide, deep to shallow lacustrine environments in the Newark rift basin (eastern North America). The Passaic Formation can be divided into lower, middle, and upper sections based on depositional structures, composition and the distribution and morphology of its evaporites. Evaporites formed as a result of syndiagenetic cementation and/or displacive processes. Evaporitive minerals now include gypsum and anhydrite, although other mineral species, such as glauberite, may have originally existed. Most of the evaporites of the Passaic Formation occur within massive red mudstone and siltstone lithologies in the form of diffuse cements, void-fillings, euhedral crystals, crystal clusters and nodules. These evaporites grew displacively within the fine siliciclastic matrix as a result of changes in the hydrochemical regimes of the rift basin. A well-developed upward increase in the amount of evaporite material is present in the Passaic Formation. This resulted from: (1) long-term, progressive increase in aridity, and (2) significant increase in evaporation surface area of the basin during its tectonic evolution. A nonmarine source for the evaporites is evident from the isotopic data. Sulphate δ34S ranges from 11%. to 3.3%. CDT, while δ18O ranges from + 15.1%. to + 20.9%. SMOW, indicating derivation from early diagenetic oxidation of organic sulphur and pyrite within the organic-rich, lacustrine deposits. The 87Sr/86Sr ratios in sulphate are radiogenic (average 0.71211), showing the interaction of basin waters with detrital components and that the Newark Basin was isolated from the world ocean. Most of the original evaporites show evidence of diagenetic change to polycrystalline and polymineralic pseudomorphs now filled with recrystallized coarse-grained anhydrite (1–3 mm size) and low-temperature albite. Homogenization temperatures of fluid inclusions within the coarse-grained anhydrite indicate crystallization temperatures for anhydrite in the range of 150° to 280°C. Such elevated temperatures resulted from circulation of hot water in the basin. Later exhumation of these rocks caused partial to total replacement of anhydrite by gypsum in the upper part of the section. The resulting increase in volume due to hydration of anhydrite at shallow depths also emplaced non-evaporative satin-spar veins (fibrous gypsum) along bedding planes and in fractures. While the local geology of the Newark rift basin controlled the distribution of facies, the sedimentological development of the Passaic Formation evaporites resulted from the world-wide climatic aridity that prevailed during the late Triassic. because the Newark Basin sequence was only covered with about 3 km of sedimentary overburden that correspond to about 100°C and hence suggests that evaporites have experienced alteration by hot fluids. 5 As the Triassic marks the greatest evaporite formation world-wide and profound sense of parched continentality throughout the world existed before the final break-up of the Pangea, the Passaic Formation evaporites are an example of the influence of these palaeoclimatic conditions at the eastern margin of North America.  相似文献   

10.
A new genetic facies model for deep-water clastic evaporites is presented, based on work carried out on the Messinian Gessoso-solfifera Formation of the northern Apennines during the last 15 years. This model is derived from the most recent siliciclastic turbidite models and describes the downcurrent transformations of a parent flow mainly composed of gypsum clasts. The model allows clearer comprehension of processes controlling the production and deposition of clastic evaporites, representing the most common evaporite facies of the northern Apennines, and the definition of the genetic and stratigraphic relationship with primary shallow-water evaporites formed and preserved in marginal settings. Due to the severe recrystallization processes usually affecting these deposits, petrographic and geochemical analyses are needed for a more accurate interpretation of the large spectrum of recognized gravity-driven deposits ranging from debrisflow to low-density turbidites. Almost all the laminar ‘balatino’ gypsum, previously considered a deep-water primary deposit, is here reinterpreted as the fine-grained product of high to low-density gravity flows. Facies associations permit the framing of the distribution of clastic evaporites into the complex tectonically controlled depositional settings of the Apennine foredeep basin. The Messinian Salinity Crisis occurred during an intense phase of geodynamic reorganization of the Mediterranean area that also produced the fragmentation of the former Miocene Apennine foredeep basin. In this area, primary shallow-water evaporites equivalent to the Mediterranean Lower Evaporites, apparently only formed in semi-closed thrust-top basins like the Vena del Gesso Basin. The subsequent uplift and subaerial exposure of such basins ended the evaporite precipitation and promoted a widespread phase of collapse leading to the resedimentation of the evaporites into deeper basins. Vertical facies sequences of clastic evaporites can be interpreted in terms of the complex interplay between the Messinian tectonic evolution of the Apennine thrust belt and related exhumation–erosional processes. The facies model here proposed could be helpful also for better comprehension of other different depositional and geodynamic contexts; the importance of clastic evaporites deposits has been overlooked in the study of other Mediterranean areas. Based on the Apennine basins experience, it is suggested here that evaporites diffused into the deeper portions of the Mediterranean basin may consist mainly of deep-water resedimented deposits rather than shallow-water to supratidal primary evaporites indicative of a complete basin desiccation.  相似文献   

11.
《Sedimentary Geology》1999,123(1-2):31-62
Evaporites of the Cretaceous to early Tertiary Maha Sarakham Formation on the Khorat Plateau of southeast Asia (Thailand and Laos) are composed of three depositional members that each include evaporitic successions, each overlain by non-marine clastic red beds, and are present in both the Khorat and the Sakon Nakhon sub-basins. These two basins are presently separated by the northwest-trending Phu Phan anticline. The thickness of the formation averages 250 m but is up to 1.1 km thick in some areas. In both basins it thickens towards the basin centre suggesting differential basin subsidence preceding or during sedimentation. The stratigraphy, lithological character and mineralogy of the evaporites and clastics are identical in both basins suggesting that they were probably connected during deposition. Evaporites include thick successions of halite, anhydrite and a considerable accumulation of potassic minerals (sylvite and carnallite) but contain some tachyhydrite, and minor amounts of borates. During the deposition of halite the basin was subjected to repeated inflow of fresher marine water that resulted in the formation of anhydrite marker beds. Sedimentary facies and textures of both halite and anhydrite suggest deposition in a shallow saline-pan environment. Many halite beds, however, contain a curious `sieve-like' fabric marked by skeletal anhydrite outlines of gypsum precursor crystals and are the product of early diagenetic replacement by halite of primary shallow-water gypsum. The δ34S isotopic values obtained from different types of anhydrite interbedded with halite range from 14.3‰ to 17.0‰ (CDT), suggesting a marine origin for this sulphate. Bromine concentration in the halite of the Lower Member begins around 70 ppm and systematically increases upward to 400 ppm below the potash-rich zone, also suggesting evaporation of largely marine waters. In the Middle Member the initial concentration of bromine in halite is 200 ppm, rising to 450 ppm in the upper part of this member. The bromine concentration in the Upper Member exhibits uniform upward increase and ranges from 200 to 300 ppm. The presence of tachyhydrite in association with the potassic salts was probably the result of: (1) the large volumes of halite replacement of gypsum, on a bed by bed basis, releasing calcium back into the restricted waters of the basin; and (2) early hydrothermal input of calcium chloride-rich waters. The borates associated with potash-rich beds likely resulted from erosion and influx of water from surrounding granitic terrains; however, hydrothermal influx is also possible. Interbedded with the evaporites are non-marine red beds that are also evaporative, with displacive anhydrite nodules and beds and considerable amounts of displacive halite. The δ34S isotopic values of this anhydrite have non-marine values, ranging from 6.4‰ to 10.9‰ (CDT). These data indicate that the Khorat and Sakhon Nakhon basins underwent periods of marine influx due to relative world sea-level rise but were sporadically isolated from the world ocean.  相似文献   

12.
Late Miocene platform carbonates from Nijar, Spain, have been extensively dolomitized. Limestones are present in the most landward parts of the platform, in stratigraphically lower units and topographically highest outcrops, suggesting that dolomitizing fluids were derived from the adjacent Nijar Basin. The dolomite crystals range from <10 to ≈100 μm existing as both replacements and cements. Na, Cl and SO4 concentrations in the dolomites range from 200 to 1700 p.p.m., 250–650 p.p.m., and 600–7000 p.p.m., respectively, comparable with other Tertiary and modern brine dolomite values, and also overlapping values from mixing-zone dolomites. Sr concentrations range between 50 and 300 p.p.m., and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 7× seawater brine to freshwater ratios. The δ18O and δ13C of the dolomites range from ?1·0 to +4·2‰ PDB, and ?4·0 to +2·0‰ PDB, respectively. 87Sr/86Sr values (0·70899–0·70928) of the dolomites range from late Miocene seawater to values greater than modern seawater. Mixtures of freshwater with seawater and evaporative brines probably precipitated the Nijar dolomites. Modelled covariations of molar Sr/Ca vs. δ18O and Na/Ca vs. δ18O from these mixtures are consistent with those of the proposed Nijar dolomitizing fluids. Complete or partial dolomite recrystallization is ruled out by well preserved CL zoning, nonstoichiometry and quantitative water–rock interaction modelling of covariations of Na vs. Sr and δ18O vs. δ13C. The possibility of multiple dolomitization events induced by evaporative brines, seawater and freshwater, respectively, is consistent with mineral-mineral mixing modelling. The basin-derived dolomitizing brines probably mixed with freshwater in the Nijar Basin or mixed with fresh groundwater in the platform, and were genetically related either to deposition of the Yesares gypsum or the Feos gypsum. Dolomitization occurred during either the middle Messinian or the early upper Messinian. Nijar dolomitization models may be applicable to dolomitization of other late Miocene platform carbonates of the western Mediterranean. Moreover, the Nijar models may offer an analogue for more ancient evaporite-absent platform carbonates fringing evaporite basins.  相似文献   

13.
《Sedimentary Geology》2005,173(1-4):345-371
Facies and environmental setting of the Miocene coral reefs in the Late Cenozoic Antalya Basin are studied to contribute towards a better understanding of the time and space relationships of the reef development and the associated basin fill evolution in a tectonically active basin. The Antalya Basin is an extention–compression-related late post-orogenic basin that developed unconformably on a basement comprising a Mesozoic para-authocthonous carbonate platform overthrust by the Antalya Nappes and Alanya Massif metamorphics within the Isparta angle. The Late Cenozoic basin fill consists of thick Miocene to Recent clastic-dominated terrestrial and marine deposits with subordinate marine carbonates and extensive travertines. Late Miocene compressional deformation has resulted into three parts, referred as Aksu, Köprüçay and Manavgat sub-basins, bounded by north–south extending dextral Kırkkavak fault and the westward-verging Aksu thrust.Coralgal reefs are common within the Miocene sequences and are represented by coral assemblages closely similar to that of the circum-Mediterranean fauna. They occur as massive, small, isolated, patch reefs that developed in two contrasting depositional systems (progradational coastal alluvial fan and/or fan-delta conglomerates and transgressive shelf carbonates) during Early–Middle Miocene and Late Miocene. The Early–Middle Miocene reefs are represented by rich and high-diversity hermatypic corals, mainly comprising Tarbellastraea, Heliastraea, Favites, Favia, Acanthastraea, Porites, Caulastraea and Stylophora with occasional presence of solitary (ahermatypic) corals, Lithophyllia, Mussismilia and Leptomusso, locally reflecting relative changes in the bathymetry. Densely packed, massive, domal and hemispherical growth forms bounded by coralline algae and encrusting foraminifera Acervulina construct the reef framework. They occur in the fan-deltas and the transgressive open marine shelf carbonates of the Manavgat and the Köprüçay sub-basins. The Late Miocene reefs occur only in the Aksu sub-basin and are characterized by low-diversity hermatypic corals exclusively dominated by Porites and Tarbelastraea with minor Siderastraea, Favites and Platygyra. They developed on alluvial fan/fan-delta complexes and shallow marine shelf carbonates.The Miocene coral reef growth and development in the Antalya Basin are characterized by large- to small-scale, transgressive–regressive reefal cycles which are closely related to the complex interaction of sporadic influxes of coarse terrigeneous clastics derived from the tectonically active basin margins and the related sea-level fluctuations.  相似文献   

14.
This paper concerns the evaporite units, depositional systems, cyclicity, diagenetic products and anhydritization patterns of the Calatayud Basin (nonmarine, Miocene, central Spain). In outcrop, the sulphate minerals of these shallow lacustrine evaporites consist of primary and secondary gypsum, the latter originating from the replacement of anhydrite and glauberite. In the evaporative systems of this basin, gypsiferous marshes of low salinity can be distinguished from central, saline lakes of higher salinity. In the gypsiferous marsh facies, the dominant, massive, bioturbated gypsum was partly replaced by synsedimentary chert nodules and siliceous crusts. In the saline lake facies, either cycles of gypsiferous lutite‐laminated gypsarenite or irregular alternations of laminated gypsum, nodular and banded glauberite, thenardite and nodular anhydrite precipitated. Early replacement of part of the glauberite by anhydrite also occurred. Episodes of subaerial exposure are represented by: (1) pedogenic carbonates (with nodular magnesite) and gypsiferous crusts composed of poikilitic crystals; and (2) nodular anhydrite, which formed in a sabkha. Additionally, meganodular anhydrite occurs, which presumably precipitated from ascending, highly saline solutions. The timing of anhydritization was mainly controlled by the salinity of the pore solutions, and occurred from the onset of deposition to moderate burial. Locally, a thick (>200 m) sequence of gypsum cycles developed, which was probably controlled by climatic variation. A trend of upward‐decreasing salinity is deduced from the base to the top of the evaporite succession.  相似文献   

15.
Peritidal carbonates of the Lower Jurassic (Liassic) Gibraltar Limestone Formation, which form the main mass of the Rock of Gibraltar, are replaced by fine and medium crystalline dolomites. Replacement occurs as massive bedded or laminated dolomites in the lower 100 m of an ≈460‐m‐thick platform succession. The fine crystalline dolomite has δ18Ο values either similar to, or slightly higher than, those expected from Early Jurassic marine dolomite, and δ13C values together with 87Sr/86Sr ratios that overlap with sea‐water values for that time, indicating that the dolomitizing fluid was Early Jurassic sea water. Absence of massive evaporitic minerals and/or evaporite solution‐collapse breccias in these carbonate rocks indicates that the salinity of sea water during dolomitization was below that of gypsum precipitation. The occurrence of peritidal facies, a restricted microbiota and rare gypsum pseudomorphs are also consistent with penesaline conditions (salinity 72–199‰). The medium crystalline dolomite has some δ18Ο and δ13C values and 87Sr/86Sr ratios similar to those of Early Jurassic marine dolomites, which indicates that ambient sea water was again a likely dolomitizing fluid. However, the spread of δ18Ο, δ13C and 87Sr/86Sr values indicates that dolomitization occurred at slightly increased temperatures as a result of shallow (≈500 m) burial or that dolomitization was multistage. These data support the hypothesis that penesaline sea water can produce massive dolomitization in thick peritidal carbonates in the absence of evaporite precipitation. Taking earlier models into consideration, it appears that replacement dolomites can be produced by sea water or modified sea water with a wide range of salinities (normal, penesaline to hypersaline), provided that there is a driving mechanism for fluid migration. The Gibraltar dolomites confirm other reports of significant Early Jurassic dolomitization in the western Tethys carbonate platforms.  相似文献   

16.
Chemical and water isotope ratios data for groundwaters from the Pozzo del Sale area in the Irpinia sector of the Southern Apennines are presented. The water chemistry of the aquifer system may initially be regarded as the result of easy and common, low temperature interaction between meteoric water and Late Messinian evaporites, which produce Ca-bicarbonate and Na-chloride passing through Ca-sulfate waters. However, a closer inspection reveals a more complicated geochemical setting consisting of: (1) two further Na-sulfate and Ca(Mg)-sulfate waters; (2) the existence of different meteoric recharge areas; (3) the mixing between the different groundwaters and allochthonous fluids from terrestrial mud volcanoes. The salinization mechanism and the local mineralogy were inferred by classical and novel ternary and binary diagrams. The presence of MgSO4- and Na2SO4-bearing minerals of non-marine or mixed origin other than gypsum and halite within the local evaporites suggests a mineralogical heterogeneity within the local Messinian evaporites. The paleoenvironment of this sector of the Gessoso–Solfifera Formation might have been composed of relatively small playa-lakes fed by seawater but also large amounts of continental waters of meteoric origin.  相似文献   

17.
The Ipubi Formation in the Araripe Basin (Northeast Brazil) has evaporite-lutite successions rich in gypsum, a mineral of great regional economic relevance, a highlighted stratigraphic mark, and also a natural boundary for underlying successions potentially analogous to “Pre-Salt” hydrocarbon reservoirs of the Brazilian coastal basins. In this study, syngenetic and diagenetic aspects of the Ipubi Formation at Santana do Cariri (Ceará State) were investigated by means of facies analysis, petrography, and mineralogical/chemical analyses of evaporites and shales.The results show that the contact relationship between evaporites and marly shales, without signs of subaerial exposure and laterally adjacent, was associated with shallow, calm and somewhat anoxic waterbodies, locally salt-supersaturated (brines) but under seasonal variations of water levels. This scenario could have shared place with hydrothermal phenomena in a playa lake depositional system. Regarding diagenesis, although there is evidence supporting pseudomorphic replacement of gypsum by anhydrite, the burial of the Ipubi Formation would have been limited due to the frequent occurrence of gypsum without any trace of chemical replacement.  相似文献   

18.
This study investigates the controls on three-dimensional stratigraphic geometries and facies of shallow-water carbonate depositional sequences. A 15 km2 area of well-exposed Mid to Late Miocene carbonates on the margin of the Níjar Basin of SE Spain was mapped in detail. An attached carbonate platform and atoll developed from a steeply sloping basin margin over a basal topographic unconformity and an offshore dacite dome (Late Miocene). The older strata comprise prograding bioclastic (mollusc and coralline algae) dominated sediments and later Messinian Porites reefs form prograding and downstepping geometries (falling stage systems tract). Seven depositional sequences, their systems tracts and facies have been mapped and dated (using Sr isotopes) to define their morphology, stratigraphic geometries, and palaeo-environments. A relative sea-level curve and isochore maps were constructed for the three Messinian depositional sequences that precede the late Messinian evaporative drawdown of the Mediterranean. The main 3D controls on these depositional sequences are interpreted as being: (i) local, tectonically driven relative sea-level changes; (ii) the morphology of the underlying sequence boundary; (iii) the type of carbonate producers [bioclastic coralline algal and mollusc-dominated sequences accumulated in lows and on slopes of < 14° whereas the Porites reef-dominated sequence accumulated on steep slopes (up to 25°) and shallow-water highs]. Further controls were: (iv) the inherited palaeo-valleys and point-sourced clastics; (v) the amount of clastic sediments; and (vi) erosion during the following sequence boundary development. The stratigraphy is compared with that of adjacent Miocene basins in the western Mediterranean to differentiate local (tectonics, clastic supply, erosion history, carbonate-producing communities) versus regional (climatic, tectonic, palaeogeographic, sea-level) controls.  相似文献   

19.
Southern Egypt is mostly covered by clastic sediments belonging to the Paleozoic and the Mesozoic. The Precambrian basement rocks bound the Etbai area to the east and Gabgaba area to the west. The basement extends further west forming dissected small and major exposures in southern Egypt, south of latitude 23° 30′ N but are covered by Cretaceous-Lower Tertiary sediments further north, the Western Limestone Plateau. The clastic sediments in southeast Egypt, on the western side of the basement rocks in-between latitudes 22° N and 24° 35′ N, built two sub-basins, Kom Ombo (Garara) sub-basin in the north and south Nile Valley sub-basin in the south. These are separated by a dissected basement wall. The two sub-basins have different lithostratigraphic successions, Paleozoic (Early to Late) in the south Nile Valley sub-basin whereas Late Paleozoic-Mesozoic-Tertairy in the Kom Ombo sub-basin. The platform clastic sediments within both sub-basins were possibly supplied from an easterly located Paleotethys extending to North Gondwana. The Oxfordian opening of the Indian Ocean associated with rise in sea level supplied more waters to the north and sediments by passed the filled southern Nile Valley sub-basin and reached the adjacent Kom Ombo sub-basin defining a depositional shift. On the other hand, during the Jurassic, Northern Egypt received Neotethys waters that filled deeper sub-basins (e.g., the Maghara sub-basin), hence the difference in lithology between Jurassic northern and southern sediments. Since the Jurassic, most of Egypt received Tethys waters. In the drilled wells studied, the younger top sediments surrounding the well sites are related to the Tethys geostratigraphy. The sub-basins in southern Egypt are controlled by N-S faults defining constant subsiding basins. The E-W Guinea–Nubia Lineament bounds the northern side of the Kom Ombo sub-basin, where it is closed by a northern basement arch.  相似文献   

20.
The Rabigh area, a coastal region north of Jeddah city, Saudi Arabia contains raised Quaternary coral reefal terraces and reworked coral fragments mixed with sand and gravel. This area has a thin exposure Lower Miocene shallow marine carbonate rocks that laterally pass into evaporites. The Miocene carbonate and evaporite rocks conformably overly the Lower Miocene siliciclastic sequence, are in turn capped by the Harrat basaltic boulders. The Miocene carbonates are made up of dolomitic packstone, wackestone and mudstone, whereas the overlying Quaternary reefal terraces are composed of coral boundstone and grainstones.The Quaternary reefal terraces of Rabigh area have been dated using the uranium-series dating method to obtain precise dates for these corals. The calculated ages (128, 212 and 235 ka) indicate that deposition took place during high sea level stands associated with interglacial times during Oxygen Isotope Stages (OIS) 5 and 7. The youngest age (128 ka) clearly corresponds to stage 5e of the last interglacial period. The obtained ages correlate well with those of the emerged reefs on the Sudanese and Egyptian coasts at the western side of the Red Sea. The broad distribution of wet climate, pluvial deposits on the continents and high sea level stands indicate a wide geographical range of the interglacial events of the Oxygen Isotope Stages (OIS) 5 and 7.The oxygen and carbon isotopic composition of the Miocene and Quaternary carbonate rocks in Rabigh area show a broad range of δ13C and δ18O. The Quaternary carbonate rocks have significantly higher δ13C than the Miocene ones, but low δ13C values of the Miocene samples likely indicate a high contribution of carbon from organic sources at the time of deposition. Linear trends are evident in both groups of samples supporting the likelihood of secondary alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号