首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
In most countries worldwide regulatory bodies set effluent discharge limits into rivers and other natural water bodies. These limits specify the maximum permissible concentration of defined pollutants that may be discharged into the water body. This limit is conceptually based on the self-purification (assimilative) capacity of the receiving water. However, this self-purification constant is itself a function of the water's pollutant loading. Umguza River situated south west of Zimbabwe, is fed by tributaries that drain an urban catchment and as such is prone to pollution due to human activities in the catchment. This study investigated the levels of pollution in Umguza River that would affect its self-purification capacity. This was achieved by characterising the spatial distribution of a selected range of water quality parameters as well as determining the self-purification capacity of a stretch of the river. Critical pollutant concentrations were determined for some of the parameters that showed high values along the stretch. The selected parameters of interest were dissolved oxygen, suspended solids, phosphates, nitrates, COD, turbidity, ammonia, pH, alkalinity and temperature. The study was carried out from January 2014 to April 2014. The self-purification capacity was determined using a formula that compares the mass flux of a pollutant upstream and downstream of the selected stretch of the river. Statistical analysis was used to establish relationships between the pollutants and the self-purification capacity of the river. The study found that the levels of ammonia and phosphates were very high compared to the regulated limits (2 mg/l vs 0.5 mg/l; and 8 mg/l vs 0.5 mg/l respectively). It was also found that the self-purification capacity varied significantly across pollutants. It was therefore concluded that a critical pollutant concentration exists above which the river completely loses its natural ability to assimilate and decrease its pollutant load over time. It was also concluded that the self-purification capacity depends on the pollutant of concern in the river. It is recommended that the self-purification capacity of a river be determined before regulatory bodies set effluent discharge limits. It is also recommended that the water quality of water bodies draining pollution prone catchments be monitored regularly, besides just monitoring the discharge points.  相似文献   

2.
The processes that control run‐off quantity and quality in urban watersheds are complex and not well understood. Although impervious surface coverage has traditionally been used to examine altered hydrologic response in urban watersheds, several studies suggest that other elements of the urban landscape, particularly those associated with urban infrastructure and the drainage system, play an equally important role. The relative importance of impervious surfaces, stormwater ponds, expansion of the drainage network, and drainage network structures in controlling hydrologic response was examined in the subwatersheds of the Kromma Kill, an urban watershed located in Albany County, NY. In this study, geographic information systems was used to compute geospatial land surface and drainage network properties of 5 Kromma Kill subwatersheds. In these same subwatersheds, water quantity (rainfall and run‐off) and quality (macroinvertebrates, nitrate, total nitrogen, dissolved oxygen, total dissolved solids, and nonpurgable organic carbon) parameters were measured. Strong and significant correlations were identified between land surface and drainage network properties and field observations. Causal relationships were then tested using the Environmental Protection Agency's Stormwater Management Model. Field and model analyses suggest that whereas percent imperviousness is a dominant control on water quality, drainage density and slope are equally important. However, for water quantity, whereas imperviousness is positively correlated with increased run‐off volumes, drainage network properties and slope are the dominant controls on run‐off volumes. Results have important implications for stormwater management plans, especially those aimed at reducing the effective impervious surface coverage of urban watersheds. Reducing the percentage of effective imperviousness in a watershed is not a “one size fits all” solution and can help to meet some management objectives, such as reducing nitrogen concentrations and improving water quality, but may not serve as the most effective, and therefore economical, solution for every management objective including reducing run‐off volumes.  相似文献   

3.
This research investigates the potential impacts of climate change on stormwater quantity and quality generated by urban residential areas on an event basis in the rainy season. An urban residential stormwater drainage area in southeast Calgary, Alberta, Canada is the focus of future climate projections from general circulation models (GCMs). A regression‐based statistical downscaling tool was employed to conduct spatial downscaling of daily precipitation and daily mean temperature using projection outputs from the coupled GCM. Projected changes in precipitation and temperature were applied to current climate scenarios to generate future climate scenarios. Artificial neural networks (ANNs) developed for modelling stormwater runoff quantity and quality used projected climate scenarios as network inputs. The hydrological response to climate change was investigated through stormwater runoff volume and peak flow, while the water quality responses were investigated through the event mean value (EMV) of five parameters: turbidity, conductivity, water temperature, dissolved oxygen (DO) and pH. First flush (FF) effects were also noted. Under future climate scenarios, the EMVs of turbidity increased in all storms except for three events of short duration. The EMVs of conductivity were found to decline in small and frequent storms (return period < 5 years); but conductivity EMVs were observed to increase in intensive events (return period ≥ 5 years). In general, an increasing EMV was observed for water temperature, whereas a decreasing trend was found for DO EMV. No clear trend was found in the EMV of pH. In addition, projected future climate scenarios do not produce a stronger FF effect on dissolved solids and suspended solids compared to that produced by the current climate scenario. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This study presents an analysis of the quality of urban runoff from various land uses by remote‐sensing and GIS technology coupled with hydrological and chemical monitoring. The study areas were located in the cities of Herzliya and Ra′anana, in Israel′s coastal plain, where extensive urbanization has occurred over the last 30 years. Land uses in urban basins were analysed; rain and runoff were measured and sampled at measurement stations representing different land uses (residential, industrial, commercial and roads). The aim was to analyse uses by different remote‐sensing and GIS techniques, to evaluate the quality of urban storm water from various land uses and to verify a method for predicting the impact of urban land uses on the quantity and quality of urban storm water. The quality of urban storm water from residential areas was generally very high, and the water is suitable for reuse or direct recharge into the local aquifer. In light of the serious state of the Israeli water sector and the large amounts of unused runoff produced by Israel′s cities, together with the high quality of urban storm water drained from the residential areas, it is important to exploit this water source. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Effective impervious area for runoff in urban watersheds   总被引:2,自引:0,他引:2       下载免费PDF全文
Effective impervious area (EIA), or the portion of total impervious area (TIA) that is hydraulically connected to the storm sewer system, is an important parameter in determining actual urban runoff. EIA has implications in watershed hydrology, water quality, environment, and ecosystem services. The overall goal of this study is to evaluate the application of successive weighted least square (WLS) method to urban catchments with different sizes and various hydrologic conditions to determine EIA fraction. Other objectives are to develop insights on the data selection issues, EIA fraction, EIA/TIA ratio, and runoff source area patterns in urban catchments. The successive WLS method is applied to 50 urban catchments with different sizes from less than 1 ha to more than 2000 ha in Minnesota, Wisconsin, Texas, USA as well as Europe, Canada, and Australia. The average, median, and standard deviation of EIA fractions for the 42 catchments with residential land uses are found to be 0.222, 0.200, and 0.113, respectively. These values for the EIA/TIA ratio in the same 42 catchments are 0.50, 0.48, and 0.21, respectively. While the EIA/TIA results indicate the importance of EIA, 95% prediction interval of the mean EIA/TIA is found to be 0.07 to 0.93, which shows that using an average value for this ratio in each land use to determine EIA from TIA in ungauged urban watersheds can be misleading. The successive WLS method was robust and is recommended for determining EIA in gauged urban catchments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Research on the water quality of urban runoff has so far focussed on the post‐development phase of urban catchments, whereas water quality in developing areas under construction has remained less understood. The construction phase, however, may constitute a considerable source of diffuse pollution in urban areas. This study investigated the mechanisms affecting water quality in residential areas during the construction and post‐construction phases. Water quality (suspended solids, total phosphorus, total nitrogen and chemical oxygen demand) and runoff were monitored over a period of 5 years in three catchments located in the city of Espoo in Southern Finland. The catchments included an urbanizing area under construction and low‐density and high‐density residential areas. The water quality was quantified in terms of event mean concentrations and loads. The key influential variables explaining the water quality in a multiple linear regression analysis included hydrological variables (event volume and intensity), antecedent conditions and a variable describing the ongoing construction projects. Construction activities in the developing catchment had a profound impact on water quality. Inclusion of the variables describing activities, such as earth moving works, paving, house construction and temporary wastewater discharges, was necessary to explain water quality variations in the developing catchment. The importance of antecedent conditions as an explanatory variable depended on the site and the pollutant in question. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The RUNOFF block of EPA's storm water management model (SWMM) was used to simulate the quantity and quality of urban storm water runoff from four relatively small sites (i.e. 5·97–23·56 ha) in South Florida, each with a specific predominant land use (i.e. low density residential, high density residential, highway and commercial). The objectives of the study were to test the applicability of this model in small subtropical urban catchments and provide modellers with a way to select appropriate input parameters to be used in planning studies. A total of 58 storm events, measured by the US Geological Survey (USGS), provided hyetographs, hydrographs and pollutant loadings for biological oxygen demand (BOD5), total suspended solids (TSS), total Kjeldahl nitrogen (TKN) and lead (Pb), and were used for calibration of the model. Several other catchment characteristics, also measured or estimated by USGS, were used in model input preparation. Application of the model was done using the Green–Ampt equation for infiltration loss computation, a pollutant accumulation equation using a power build-up equation dependent on the number of dry days, and a power wash-off equation dependent on the predicted runoff rate. Calibrated quantity input parameters are presented and compared with suggested values in the literature. The impervious depression storage was generally found to be the most sensitive calibration parameter, followed by the Manning's roughness coefficients of conduit and overland flow, the Green–Ampt infiltration parameters and, finally, the pervious depression storage. Calibrated quality input parameters are presented in the form of regression equations, as a function of rainfall depth and the number of antecedent dry days. A total of 16 independent rainfall events were used for verification of the model, which showed a good comparison with observed data for both hydrographs and pollutant loadings. Average model predictions for the four constituent concentrations from the verification runs also showed good agreement with NURP published values in Florida and US sites. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
The effect of changes in rainfall event characteristics on urban stormwater quality, which was described by total suspended solids (TSS), was studied by means of computer simulations conducted with the Storm Water Management Model for a climate change scenario for northern Sweden. The simulation results showed that TSS event loads depended mainly on rainfall depth and intensity, but not on antecedent conditions. Storms with low‐to‐intermediate depths and intensities showed the highest sensitivity to changes in rainfall input, both for percentage and absolute changes in TSS wash‐off loads, which was explained by the contribution of pervious areas and supply limitations. This has significant implications for stormwater management, because those relatively frequent events generally carry a high percentage of the annual pollutant load. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The flood in the Odra river in 1997 has led to considerable additional pollution of the Stettin Lagoon and the Baltic Sea with contaminated suspended solids. For some priority substances, the pollutant entries via suspended solids during the flood period are estimated to be approximately 1/3 of the usual annual load. Among these priority pollutants there are total organic carbon (TOC), nitrogen, and the heavy metals Cu, Pb and Zn. For the concentrations of the priority pollutants in suspended solids accumulation factors from 2 to 4 in the comparison with normal conditions were observed. On the basis of the analysis of sediments sampled after the flood, main sources of the pollutants should be evaluated. As reference area with an industrial background as well as a typical pollutant pattern the region around Glogow/Legnica is proposed.  相似文献   

10.
Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small‐scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention‐based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non‐additive effects of individual SCMs; and persistence of urban effects beyond impervious surfaces. In most cases, pollutant load decreases largely result from run‐off reductions rather than lowered solute or particulate concentrations. Understanding interactions between natural and built landscapes, including stormwater management strategies, is critical for successfully managing detrimental impacts of stormwater at the watershed scale.  相似文献   

11.
Agricultural land use is expanding and at an accelerated rate. In Ethiopia, most of this expansion has occurred in highland areas and involve deforestation of natural riparian vegetation. However, the impacts on the water quality of streams are poorly understood, especially with regard to the influence of land use patterns on highland streams. In this study, we investigated the effects of land use modifications on the water quality and riparian condition of highland streams and examined whether the preservation of riparian vegetation would help mitigate the negative impacts of intensive agriculture practices. Our results show significant differences in the water quality of streams with different land use. Several parameters commonly used to indicate water quality, such as the concentrations of orthophosphate, turbidity, and suspended solids were significantly higher in the agricultural streams than in the forest stream. The preservation of riparian vegetation in the surrounding highland streams was associated with overall better riparian condition, floristic quality, and water quality such as lower turbidity, total suspended solids, orthophosphate, and higher dissolved oxygen. We conclude, that increases in vegetation cover improved riparian condition and water quality relative to other non-vegetated areas. Therefore, we strongly recommend the preservation of riparian vegetation in tropical highland streams surrounded by intensive agriculture. More studies on the effects of best management practices in areas dominated by agriculture can greatly improve our capacity to prevent the degradation of water quality in tropical highland streams of Africa.  相似文献   

12.
lPRoBLEMSTATEMENTANDOVERVIEWQualitywateriswithoutdoubtalimitingsubstance,notonlyforhumansbutforalllife.Yet,ashumanpopulation,activity,andpollutioncontinuetoincrease,naturalsourcesofreadilyuseablewateraredecliningatanalarmingfate.Humanscurrentlydiveftorregulatemorethanhalfofgloballyavailablefreshwaterrunofffortheirownpurposes(Posteletal.,l996),includingtheuseoflargedamsordiversionsonriversandthewidespreadcreationofotherartificialcatchments.Additionally,groundwatersourcesarebecomingin…  相似文献   

13.
Stormwater best management practice (BMP) design must incorporate the expected long‐term performance from both a water quantity and water quality perspective to sustainably mitigate hydrologic and water quality impacts of development. Infiltration trench structures are one of many infiltration BMPs that reduce runoff volume and capture pollutants. Research on the longevity of these structures is sparse, leading to concerns about their long‐term value and impeding implementation. In the present study, an infiltration trench was monitored from its inception to determine its hydrologic performance over time and total suspended solids (TSS) capture efficiency. The infiltration trench was intentionally undersized to accelerate longevity‐related processes. The infiltration trench provided a 36% TSS removal rate and displayed a distinct decrease in its ability to infiltrate stormwater runoff over the first three years of operation. Results indicate that infiltration through the bottom of the BMP became negligible, while infiltration through the sides of the BMP remained active over the 3‐year study period. The results lead to recommendations for BMP design. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The influence of land use patterns on water quality in a river system is scale‐dependent. In this study, a four‐order hierarchical arrangement method was used to select water sampling sites and to delineate sub‐basins in the Daliao River Basin, China. The 20 sub‐basins were classified into four spatial scales that represented four different stream orders. Pearson correlation analysis was used to quantify relationships between land use composition and the river's physical‐chemical variables for all samples collected. This analysis showed that the presence of forest cover was associated with higher water quality at the scale of the whole basin. The scale effects of land use patterns on water quality were then examined using stepwise multiple regression analysis that compared different land use types with water quality variables. The results from this analysis showed that urban areas, as opposed to forest areas, became the most significant contributors of water pollutants when scale effects were considered. The influence of urban land cover on water pollution was significantly higher at larger scales. The lack of a significant regression correlation for the forest land use type at smaller scales revealed that forest located upstream of the Daliao River Basin did not provide a buffer for improved water quality. Further analysis showed that this result could be because of disproportionate spatial distributions for forest and urban land use types. The topographic characteristics of sub‐basins, such as average slope (S) and size (A), were determined to be secondary explanatory variables that affected land use impacts on stream water quality. Areas with steep slopes were associated with increased water oxygenation, whereas areas with flatter slopes were associated with higher concentrations of pollutants. These results are significant because they can provide a better understanding of the appropriate spatial scale required for effective river basin management in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The closed-form analytical stormwater quality models are developed for simulating urban catchment pollutant buildup and washoff processes. By integrating the rainfall–runoff transformation with pollutant buildup and washoff functions, stormwater quality measures, such as the cumulative distribution functions (CDFs) of pollutant loads, the expected value of pollutant event mean concentrations (EMCs) and the average annual pollutant load can be derived. This paper presents methodologies and major procedures for the development of urban stormwater quality models based on derived probability distribution theory. In order to investigate the spatial variation in model parameters and its impact on stormwater pollutant buildup and washoff processes as well as pollutant loads to receiving waters, an extended form of the original rainfall–runoff transformation which is based on lumped runoff coefficient approach is proposed to differentiate runoff generation mechanisms between the impervious and pervious areas of the catchment. In addition, as a contrast to the aggregated pollutant buildup models formulated with a single lumped buildup parameter, the disaggregated form of the pollutant buildup model is proposed by introducing a number of physically-based parameters associated with pollutant buildup and washoff processes into the pollutant load models. The results from the case study indicate that analytical urban stormwater management model are capable of providing results in good agreement with the field measurements, and can be employed as alternatives to continuous simulation models in the evaluation of long-term stormwater quality measures.  相似文献   

16.
张志敏  杜景龙  陈德超  张飞 《湖泊科学》2022,34(5):1524-1539
地表水质受区域景观组成及其空间配置的影响较大,了解景观特征与水质之间的关系可以极大地提高潜在污染的可预测性和污染物输出的评估能力. 以典型网状河网区域(江苏省溧阳市)为例,研究了土地利用和景观格局特征对地表季节水质的影响. 本研究基于2017年每单月从12个监测断面收集的21个水质指标,首先分析了多尺度缓冲区(500、1000、1500、2000、2500和3000 m)内土地利用和景观格局特征,然后通过主成分分析选取12个指标作为主要水质因子,采用冗余分析确定景观因子对水质指标的最佳影响尺度,最后采用偏最小二乘回归(PLSR)探究了最佳影响尺度下景观因子对季节水质的影响. 结果表明,2500 m缓冲区是该区域景观因子对水质指标的最佳影响尺度,旱季大多数水质指标PLSR模型的显著性和预测能力比雨季强. 雨季大多数水质指标都受园地、林草地、散布与并列指数(IJI)和香农均匀度指数(SHEI)的重要影响,并且这些景观因子与除pH和溶解氧浓度之外的其他水质指标均呈负相关. 在旱季,溶解氧、石油类、化学需氧量、总氮和总磷浓度受土地利用的影响最大; 另外,IJI是电导率、硫酸盐和亚硝酸盐氮浓度的最重要影响因子,而SHEI对硫化物和总悬浮物浓度的影响最大. 此外,景观指数对雨季水质的影响更大. 本研究结果揭示了网状河网区域土地利用/景观格局与季节性水质的关系,为区域水环境管理和景观格局优化提供了科学依据.  相似文献   

17.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
冉蛟  肖克彦  向蓉  郑丙辉 《湖泊科学》2023,35(6):1960-1969
邛海是云贵高原水域面积>25 km2的11个天然湖泊之一。基于邛海入湖河流与湖区水质监测数据,揭示入湖河流水质特征,并探究其湖区响应。结果表明:2021年,邛海入湖河流水质空间异质性显著,且分为自然型、农业型和城镇型3种类型河流。官坝河等3条自然型河流水质优良,而高仓河等8条城镇型和农业型河流(R4~R11)水质较差,污染物浓度超标严重。2011—2021年,邛海主要入湖河流(官坝河、鹅掌河、小青河)的营养盐浓度呈下降或先增加后下降趋势,水质逐渐改善。流域土地利用变化是导致邛海入湖河流水质空间异质性的主要因素,同时也是河流水质在2011—2021年改善的原因之一。受湖泊水文环境与入湖河流污染类型影响,2017—2021年邛海湖区水环境及其与河流水质响应关系差异性明显:高枧湾水域(L5)水深浅、水环境容量小,主要受纳城镇污水,因而湖区营养盐与叶绿素a浓度高,在2021年达富营养状态;官坝河、鹅掌河与小青河入湖影响区(L1~L3)与小渔村(L4)水域湖水深、水环境容量大,污染物浓度与营养状态指数低,但因汇入的河流污染类型不同,湖区营养水平与河流水质响应存在季节性...  相似文献   

19.
Expansion of impervious surface cover results in “flashy” hydrologic response, elevated flood risk, and degraded water quality in urban watersheds. Stormwater management ponds (SWMPs) are often engineered into stream networks to mitigate these issues. A clearer understanding of how water is stored and released from SWMPs and SWMP-treated catchments is required to better represent these engineered systems in hydrological and water quality models of urban and urbanizing watersheds. Stable water isotopes were used to compare water age in SWMPs and SWMP-treated catchments in an urbanizing watershed. We sampled water biweekly from two SWMPs and five stream sites with varying land cover and stormwater control in their catchments. Two inverse transit time proxies (damping ratio and young water fraction) were computed along with the mean transit time (MTT) by sine–wave fitting for each SWMP and stream site using the δ18O and δ2H data. Water entering the SWMPs was consistently older (224 and 177 days) than water in or exiting the ponds (ranging from 46 to 91 days and 39 to 67 days, respectively). This finding is likely due to a combination of groundwater infiltration into broken sewer pipes that transport water into the ponds and a bias toward baseflow sampling. At the catchment scale, detention provided by SWMPs was not found to be more significant than the interactive effects of impervious cover, surficial geology, land use proportions, and catchment size in determining MTT. Overall, surficial geology explained the most variation in MTT among the seven sites. This study illustrates the potential for isotope-based approaches of water age to provide information on individual SWMP functioning and the influence of SWMPs on catchment-scale water movement.  相似文献   

20.
研究城市径流水质变化及初期冲刷效应对控制与治理城市径流污染具有重要指导意义.对塘西河上游6次降雨径流水质水量进行监测分析,计算次降雨径流平均浓度(EMC)和单位面积次降雨径流污染负荷(EPL),作M(V)曲线图研究初期冲刷现象.结果表明:降雨径流中悬浮物(SS)、化学需氧量(CODCr)和总磷(TP)的EMC值相对较大;SS的EMC值波动最为显著;总氮(TN)、TP、COD_(Cr)、SS间的EMC值均呈正相关;TN的EMC值与降雨量呈负相关性.各污染物EPL值与各降雨特征间均呈正相关性,经估算2015年研究区在6-8月共有10.38 tTN、2.29 tTP、1022.43 t SS、161.70 t CODCr和5.18 t NH_3-N随降雨径流排入巢湖;降雨量和雨前干期是城市径流污染的主要影响因素;以FF5050为初期冲刷效应判别依据,5种污染物均有初期冲刷效应出现,冲刷程度表现为SSCODCrTPTNNH_3-N;各水质指标的初期冲刷强度与降雨特征之间无相关性;雨型对初期冲刷现象影响较大;当降雨强度达1.36 mm/h即有径流汇集流出时开始截流,截流时间取440 min,截取的最大径流量取224319.14 m~3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号