首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fish farms represent a growing source of anthropogenic disturbance to benthic communities, and efficient predictors of such impacts are urgently needed. We explored the effects of fish farm benthic organic and nutrient inputs on the population dynamics of a key seagrass species (Posidonia oceanica) in four Mediterranean deep meadows adjacent to sea bream and sea bass farms. We performed two annual plant censuses on permanent plots at increasing distance from farms and measured benthic sedimentation rates around plots. High shoot mortality rates were recorded near the cages, up to 20 times greater than at control sites. Recruitment rates increased in variability but could not compensate mortality, leading to rapid seagrass decline within the first 100 m from cages. Seagrass mortality increased with total sedimentation rates (K=0.55, p<0.0002), and with organic matter (K=0.50, p=0.001), total nitrogen (K=0.46, p=0.002) and total phosphorus (K=0.56, p<3.10(-5)) inputs. P. oceanica decline accelerated above a phosphorus loading threshold of 50mg m(-2)day(-1). Phosphorus benthic sedimentation rate seems a powerful predictor of seagrass mortality from fish farming. Coupling direct measurements of benthic sedimentation rates with dynamics of key benthic species is proposed as an efficient strategy to predict fish farm impacts to benthic communities.  相似文献   

2.
3.
Environmental fate of fish farm wastes (FFW) released from an open-sea-cage farm at Kat O, Hong Kong was examined by measuring carbon and nitrogen stable isotope (SI) ratios in selected benthic organisms collected along a 2000 m transect from the farm. Our results showed that FFW significantly influenced the energy utilization profile of consumers near the fish farm. Although nitrogen enrichment effect on δ15N was anticipated in biota near the farm, the predicted patterns did not consistently occur in all feeding guilds. Two species of suspension-feeders, which relied on naturally δ15N-depleted sources, were δ15N-enriched near the fish farm. In contrast, both species of benthic grazer and deposit-feeder, which relied on naturally δ15N-enriched algal sources, were δ15N-depleted under the influence of FFW. The SI signatures of biota can, therefore, serve as feasible biomarkers for FFW discharges only when the trophic structure of the receiving environment is fully elucidated.  相似文献   

4.
《Marine pollution bulletin》2012,64(5-12):77-85
Environmental fate of fish farm wastes (FFW) released from an open-sea-cage farm at Kat O, Hong Kong was examined by measuring carbon and nitrogen stable isotope (SI) ratios in selected benthic organisms collected along a 2000 m transect from the farm. Our results showed that FFW significantly influenced the energy utilization profile of consumers near the fish farm. Although nitrogen enrichment effect on δ15N was anticipated in biota near the farm, the predicted patterns did not consistently occur in all feeding guilds. Two species of suspension-feeders, which relied on naturally δ15N-depleted sources, were δ15N-enriched near the fish farm. In contrast, both species of benthic grazer and deposit-feeder, which relied on naturally δ15N-enriched algal sources, were δ15N-depleted under the influence of FFW. The SI signatures of biota can, therefore, serve as feasible biomarkers for FFW discharges only when the trophic structure of the receiving environment is fully elucidated.  相似文献   

5.
The environmental impact of marine fish culture: Towards a sustainable future   总被引:42,自引:0,他引:42  
The environmental impact of marine fish-farming depends very much on species, culture method, stocking density, feed type, hydrography of the site and husbandry practices. In general, some 85% of phosphorus, 80–88% of carbon and 52–95% of nitrogen input into a marine fish culture system as feed may be lost into the environment through feed wastage, fish excretion, faeces production and respiration. Cleaning of fouled cages may also add an organic loading to the water, albeit periodically. Problems caused by high organic and nutrient loadings conflict with other uses of the coastal zone. The use of chemicals (therapeutants, vitamins and antifoulants) and the introduction of pathogens and new genetic strains have also raised environmental concerns.

Despite the high pollution loadings, results from various studies show that some 23% of C, 21% of N and 53% of P of feed input into the culture system is being accumulated in the bottom sediments and the significant impact is normally confined to within 1 km of the farm. The major impact is on the sea bottom, where high sediment oxygen demand, anoxic sediments, production of toxic gases and a decrease in benthic diversity may result. Decreases in dissolved oxygen and increases in nutrient levels in the water are also evident but are normally confined to the vicinity of the farm. Tributyltin (TBT) contamination and the development of antibiotic-resistant bacteria have been reported near fish farms. The stimulating effects of vitamins/fish wastes on growth of red tide species have been demonstrated in a number of laboratory studies. Nevertheless, there is no evidence to support the suggestion that the present use of therapeutants, vitamins and antibiotics and the introduction of pathogens and new genetic strains would pose a significant threat to the environment.

Marine fish culture can be a sustainable development, provided pollution loadings generated by fish farms are kept well below the carrying capacity of the water body. Effects can be significantly reduced by careful site selection, control of stock density, improved feed formulation and integrated culture (with macroalgae, filter-feeders and deposit-feeders). An example of the application of computer modelling in mariculture management is demonstrated. Environmental impact assessment and monitoring should also be carried out to ensure culture activities are environmentally sustainable.  相似文献   


6.
《Marine pollution bulletin》2014,80(1-2):164-174
The influence of tuna penning on soft bottom habitat present in the vicinity of tuna pens and at distances 200 m and 1.5 km away, was assessed by comparing attributes of macroinvertebrate assemblages and sediment quality before (November 2000, March 2001) and after (November 2001, April 2002) initiation of the activity. Results from November 2001 indicated a significant increase in sediment organic carbon and organic nitrogen, and a non-significant increase in the abundance of Capitellidae in the vicinity of the cages. Similar results were obtained 200 m from the cages but not 1.5 km away, where the only change was a significant increase in organic nitrogen in sediment. Results from April 2002 indicated no significant change in sediment organic carbon and organic nitrogen, however, mean sediment grain size decreased significantly in the immediate vicinity of the cages. Changes in attributes of the benthic assemblages and sediment resulted from accumulation of uneaten feed-fish on the seabed.  相似文献   

7.
Rotation of cages within fish farm leases and the subsequent fallowing of areas of seabed is commonly used to allow recovery of infaunal communities following periods of organic enrichment. To investigate the effect of different background environmental conditions on recovery response, two Atlantic salmon (Salmo salar) fish farm sites in southeast Tasmania were sampled over two commercial fallowing cycles. Despite similar stocking levels and feed input there were significant differences in the way in which sediment at each farm responded to the cessation of fish stocking. Sediments at both farms showed some improvement in the community structure over a three month fallow period, but the community structure only recovered to that present before stocking not to that at the reference sites. The similarity of the impact sites to the reference sites increased from ca. 25% to 31% at one site and 11% to 27% at the other after fallowing. Rate and extent of recovery were affected by farm location, initial impact of the sediments, and length of fallow period. Initial recovery was faster at the more sheltered site than at the more exposed site, possibly reflecting differences in environmental resilience with the more sheltered location better able to assimilate organic inputs. Accordingly general fallowing management protocols may need to be adapted to reflect differences between sites. The findings of this study suggest that the recovery response of benthic communities can be predicted once baseline conditions are understood.  相似文献   

8.
Interannual variability (2003-2008) of meiofaunal assemblages were analyzed in sediments beneath fish cages (Impact group) and in areas not affected by aquaculture activities (Control group). Organisms responded with spatial and seasonal variation in meiofauna assemblages, with an abrupt increase of abundances in locations beneath fish cages throughout the study period. This increase was greater during the last sampling year (2008) and mainly due to high abundances of nematodes. Univariate analyses showed differences between control and impacted sites at both sites, however, only significant variations were found in Los Gigantes, which are consistent with seasonal meiofauna variations throughout the study period. These results are partially explained by differences in current velocity between both sampling areas. The Ne/Co index showed the same trend and it seems to be a reliable index in sediment slightly affected by aquaculture wastes. This index is especially recommended in oligotrophic areas (e.g. Canary Islands) where meiofaunal assemblages are poorly represented in terms of abundances.  相似文献   

9.
To study the correlation between nutrient enrichment derived from fish farming activities and changes in macrobenthic assemblages, a one-year field study was conducted in Kau Sai Bay marine fish culture zone of Hong Kong. Bimonthly sediment samples were collected at six stations: two at the fish cages, two near the boundary of the fish culture area, and two reference sites further away from the culture area. Sediment physico-chemical characteristics in terms of silt/clay fraction, moisture content, total organic carbon (TOC), total Kjeldahl nitrogen (TKN) and total phosphorus (TP) were analyzed. The macrobenthos (>0.5 mm) present in the sediment were sorted, identified and enumerated. On average, TOC, TKN and TP levels at the fish cage stations were 82.8%, 128.5% and 1315.7% higher than those at the reference stations, respectively. As a result, the N:P molar ratio was greatly reduced from 8.75 at the reference stations to 1.83 at the fish cage stations. Univariate and multivariate analyses revealed that diversity of macrofauna was significantly reduced and community structure differed at the fish cage stations relative to the reference sites. The intermediary stations near the fish culture area showed a transitional state of disturbance. Faunal diversity was negatively correlated with nutrient level, reflecting the adverse impacts of nutrient enrichment derived from fish farming activities on the benthic assemblages. Whilst in subtropical Asia-Pacific trash fish is the major feed for fish culture resulting in a higher nutrient loading and nutrient ratio accumulated in the sediment beneath the fish rafts, the effects of nutrient enrichment on macrobenthic assemblages are comparable to that in temperate waters owing to relatively high sediment metabolism rate and smaller fish culture scale in Hong Kong.  相似文献   

10.
Cross-taxon responses to elevated nutrients in European streams and lakes   总被引:1,自引:0,他引:1  
Few studies have compared the response of different taxonomic groups to environmental stress across aquatic ecosystems. We regressed assemblage structure of fish, invertebrates, macrophytes, phytoplankton and benthic diatoms to total phosphorus concentration, after removing the effect of ecosystem size (stream order, lake surface area), using data from 66 streams and 45 lakes across Europe. In streams, the structure of benthic diatom assemblages, measured by nonmetric multidimensional scaling, showed the strongest correlation to elevated nutrient concentrations (adj. R2 = 0.495), followed by benthic invertebrates (0.376), fish (0.181) and macrophytes (0.153). For lakes, the patterns were less clear: fish (0.155), macrophytes (0.146) and phytoplankton (0.132). Cross-system comparison showed that stream assemblages were responding more strongly to nutrient concentrations than lake assemblages. Moreover, our results lend some support to the conjecture that response signatures are related to trophic level, with primary producers (benthic diatoms) responding more strongly than consumers (invertebrates, fish). Knowledge of differences in responses among taxonomic groups and between habitats to disturbance can be used to design more cost-effective monitoring programs.  相似文献   

11.
A number of 41 papers dealing with the benthic effects of fish farming were reviewed and the values of the variables studied were extracted to be used in a meta-analysis of effects. The papers used covered a wide range of farmed species, geographic regions, management practices and specific site characteristics (e.g., depth, exposure, and sediment type). Therefore, the total data-set may not be considered as biased towards a particular set of conditions as is often the case with data collected in a single study. More than 120 biological and geochemical variables were monitored, occasionally using different sampling and analytical protocols for the same variables. The rank correlation analysis between all possible pairs of variables in the data set showed a large number of significant positive or negative correlations, reflecting the response of these variables to benthic organic enrichment. The use of stepwise regression showed that most biological and geochemical variables are determined by a combination of distance from the farm with bottom depth and/or latitude. Results of stepwise regression, repeated separately for each type of sediment, showed that although the general pattern was similar among different types of sediments, the coefficients varied considerably indicating changes of the distance affected by settling particulate organic material for different sediment types. The overall conclusion is that the complicated interactions between variables and the lack of data, such as current speed, induce difficulties in setting common or uniform environmental quality standards for benthic effects of fish farming and these should take into account the existing considerable differences between geographic regions, depth zones and sediment types.  相似文献   

12.
Numerous studies have demonstrated the efficacy of bioremediation for enhancing oil removal but the ecological effect on shoreline biota is unclear. Therefore, a field experiment was designed at an intertidal sandflat in SW England to assess the effects of nutrient addition to oiled sediments on meio- and macrofauna for a period of up to 45 weeks. Natural assemblages were exposed to different types of experimental treatments (no oil, oil alone, oil treated with slow-release fertiliser or liquid fertiliser). Bioremediation stimulated the microbial population and increased oil biodegradation. This, however, did not result in faster recolonisation rates of fertilised versus non-fertilised oiled sediments. Mild effects of oil and bioremediation treatments on benthic fauna were observed, including short-term shifts in dominance patterns. Decreased abundance of dominant species in the oiled compared to unoiled sediments resulted in significantly higher evenness of benthic assemblages within the first 11 weeks of the experiment.  相似文献   

13.
The present study aimed to establish potential indicators of fish farming pollution in muddy substrate, by means of meiofauna, and to test whether the effect of the fish farm is more important to determine the meiofauna community than the seasonal environmental conditions. Sampling was performed in spring, after several months of light feeding, and in summer, at high food supply. Samples were collected in three directions at various distances from the floating cages. Harpacticoid copepods and kinorhynchs, whose abundance decreased under the cages, were put forward as indicator taxa. However, harpacticoid copepods were sensitive to fish farm only, while kinorhynchs showed responsiveness to fish farm and to seasonal environmental conditions. Total meiofauna density was dependent on season sensu stricto. The nMDS clearly showed a ‘cage community’ and ‘control community’ in both sampling occasions; therefore it is a good tool for impact assessment.  相似文献   

14.
This study examined the impact of fish farming on foraminiferal communities in the Adriatic coastal zone. Samples were taken directly beneath the farm, near the edge of the farm, and at a reference station away from the farm. The foraminiferal community near the farm is characterized by Epistominella exigua, Globocassidulina subglobosa, Haynesina germanica and the genera Elphidium, Bulimina and Brizalina. These foraminiferal species are less abundant seaward. Asterigerinata mamilla, Neoconorbina terquemi and genus Cibicides are almost absent below the cages. Total phosphorus (TP) and total nitrogen (TN) in the sediments decrease with distance from the cages. The abundances of E. exigua, G. subglobosa, H. germanica and the genera Elphidium, Bulimina and Brizalina are correlated with TP and TN, indicating their dependence on nutrient input. The absence of A. mamilla, N. terquemi and the genus Cibicides below the cages is a due to a degraded Posidonia community. According to our study, foraminiferal community composition can be used as indicator of organic enrichment caused by fish farm activities.  相似文献   

15.
16.
17.
The spatial extent and timing of the impact of fish farms on the distribution and performance of a Posidonia oceanica meadow were examined in an embayment of the south-eastern coast of Spain (Hornillo Bay, Murcia). Changes in seagrass distribution were determined using available seagrass mapping (from 1988, i.e., before the onset of aquaculture activities and 1998) and by successive sampling in 1994 and 1998. Environmental variables (light attenuation coefficient, water-column dissolved nutrients and organic content of sediments) together with plant performance (shoot biomass, leaf growth rate, photosynthetic activity, carbohydrate reserves, the number of leaves per shoot, epiphyte loads and herbivore pressure) were measured in plants affected by organic discharges, and were compared with those found in reference healthy plants over an annual growth cycle. Since the onset of fish farm activity, 11.29 ha of P. oceanica meadow has been completely lost and 9.86 ha significantly degraded, thus resulting in a total affected area which accounts for about 53% of the former meadow, or 7-fold the fish farming area. Unequal propagation of seagrass die-off or degradation reflects the relevance of local factors such as depth and hydrodynamism on the true extent of fish farm impact. Water transparency decreases and dissolved nutrient and organic content of sediments increases in the vicinity of cages compared to distant reference stations, thus supporting the notion of environmental gradients caused by the organic release from cages, which spreads outwards. Shoot size, leaf growth rate and the number of leaves per shoot in plants close to the fish farm decreased. Moreover, low leaf growth and low rhizome carbohydrate concentration (always relative to that found in an undisturbed area) indicated carbon budget imbalances. Since light reduction in the affected area was only modest (31% of light reaching the sea surface, while at the same depth this figure was 39% at the reference site), and light availability was well above the minimum requirement estimated for this species, neither this factor nor epiphyte overgrowth (epiphyte load was lower in the affected area) seem to explain such carbon imbalances or the observed meadow regression. Alternatively, the high herbivore pressure found in the affected zone suggests that overgrazing is one of the main causes of decreasing shoot sizes and hence of carbon imbalance, reduced growth and shoot mortality. The impact of fish farms on seagrasses, therefore, seems to be highly variable and depends on complex interactions between a large number of processes.  相似文献   

18.
An in situ monitoring of the sediment characteristics and macrobenthic communities was undertaken at a marine fish culture site in subtropical waters of Hong Kong before and after the deployment of biofilters which were made of cement concrete artificial reef (AR) structures. According to the distance to the boundary of the fish cages, 6 points were selected as sampling stations: 2 at the fish cages, 2 near the boundary of the fish culture area, and 2 reference sites further away from the culture area. Bimonthly sediment samples were collected for analysis of silt-clay fraction (SCF), moisture content (MC), total organic carbon (TOC), total Kjeldahl nitrogen (TKN) and total phosphorus (TP). The macrobenthos (>0.5mm) present in the sediment were sorted, identified and enumerated. TOC, TKN and TP levels at the fish cage stations were consistently higher than those at the reference stations over the 1-year pre-AR and 2-year post-AR deployment monitoring period. The diversity of macrofauna was significantly reduced at the fish cage stations relative to the reference sites. The intermediary stations near the fish culture area showed a transitional state of disturbance. Over the 2-year post-AR deployment period, TOC, TKN and TP showed a decreasing trend at the fish cage and intermediary stations. More diverse macrofaunal communities were recorded at the fish cage stations, with species diversity H'increasing from 0-1 at the beginning of the AR deployment to H'>2 at the end of the study. The present results demonstrated that artificial reefs can improve the benthic abiotic environment and biotic conditions beneath fish rafts which are deteriorated due to farming activities.  相似文献   

19.
Discharges of tritium (3H) into the Severn estuary/Bristol Channel (UK) arise from the authorized release of wastes from nuclear power plants at Hinkley Point and Berkley/Oldbury and from the Nycomed-Amersham radiochemical plant, via the sewer system, at Cardiff. The wastes from the nuclear power plants probably consist almost entirely of 3H2O, whereas those from the radiochemical plant also include uncharacterized 3H labelled organic compounds. The total 3H concentrations in demersal fish and other benthic organisms in the vicinity of the Cardiff Eastern sewer outfall are significantly elevated compared to those observed around other UK nuclear establishments. Concentrations in filtered seawater were approximately 10 Bq kg(-1) whilst levels in surface sediment, seaweed (Fucus vesiculosis) and mussels (Mytilus edulis)/flounder (Platichthys flesus) were in the order of 6 x 10(2), 2 x 10(3), and 10(5) Bq kg(-1) (dry weight), respectively. Almost all the 3H found in sediment and biota were organically bound tritium (OBT). The high concentration in these materials, relative to that in seawater, is due to the presence of bioavailable organic 3H labelled compounds in the radiochemical waste. It is suggested that bioaccumulation of 3H by benthic organisms and demersal fish occurs primarily via a pathway of physico-chemical sorption/bacterial transformation of dissolved 3H labelled organic compounds into particulate organic matter, and subsequent transfer up a web of sediment dwelling microbes and meiofauna. Variations in 3H accumulation between individual organisms have been interpreted in terms of their different feeding behaviour. Relatively low concentrations were observed in the herbivorous winkle (Littorina littorea) and the pelagic Sprat (Spratus spratus) compared with other benthic organisms and demersal fish. The elevated 3H concentrations in seafood, due to bioaccumulation of OBT, have low radiological significance even for the local critical group of seafood consumers.  相似文献   

20.
This paper provides a synthesis of the EU project MedVeg addressing the fate of nutrients released from fish farming in the Mediterranean with particular focus on the endemic seagrass Posidonia oceanica habitat. The objectives were to identify the main drivers of seagrass decline linked to fish farming and to provide sensitive indicators of environmental change, which can be used for monitoring purposes. The sedimentation of waste particles in the farm vicinities emerges as the main driver of benthic deterioration, such as accumulation of organic matter, sediment anoxia as well as seagrass decline. The effects of fish farming on P. oceanica meadows are diverse and complex and detected through various metrics and indicators. A safety distance of 400 m is suggested for management of P. oceanica near fish farms followed by establishment of permanent seagrass plots revisited annually for monitoring the health of the meadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号