首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The response of the Earth's global mean vertical atmospheric temperature structure to large increases in the atmospheric CO2 concentration was examined using a 1-D radiative-convective atmospheric model. It was found that the greenhouse warming of the terrestrial surface can be strongly inhibited by the development of a more isothermal, moister and higher troposphere than at present. The saturation of the strong CO2 infrared bands for high CO2 concentrations further inhibits the greenhouse warming to such an extent that a runaway greenhouse fuelled only by a rise in the atmospheric CO2 is not possible. However, a continuously rising solar-constant does eventually lead to a runaway.  相似文献   

2.
The moment of inertia of a giant planet reveals important information about the planet’s internal density structure and this information is not identical to that contained in the gravitational moments. The forthcoming Juno mission to Jupiter might determine Jupiter’s normalized moment of inertia NMoI = C/MR2 by measuring Jupiter’s pole precession and the Lense–Thirring acceleration of the spacecraft (C is the axial moment of inertia, and M and R are Jupiter’s mass and mean radius, respectively). We investigate the possible range of NMoI values for Jupiter based on its measured gravitational field using a simple core/envelope model of the planet assuming that J2 and J4 are perfectly known and are equal to their measured values. The model suggests that for fixed values of J2 and J4 a range of NMoI values between 0.2629 and 0.2645 can be found. The Radau–Darwin relation gives a NMoI value that is larger than the model values by less than 1%. A low NMoI of ∼0.236, inferred from a dynamical model (Ward, W.R., Canup, R.M. [2006]. Astrophys. J. 640, L91–L94) is inconsistent with this range, but the range is model dependent. Although we conclude that the NMoI is tightly constrained by the gravity coefficients, a measurement of Jupiter’s NMoI to a few tenths of percent by Juno could provide an important constraint on Jupiter’s internal structure. We carry out a simplified assessment of the error involved in Juno’s possible determination of Jupiter’s NMoI.  相似文献   

3.
The evolution of the atmosphere of the earth   总被引:1,自引:0,他引:1  
Michael H. Hart 《Icarus》1978,33(1):23-39
Computer simulations of the evolution of the Earth's atmospheric composition and surface temperature have been carried out. The program took into account changes in the solar luminosity, variations in the Earth's albedo, the greenhouse effect, variation in the biomass, and a variety of geochemical processes. Results indicate that prior to two billion years ago the Earth had a partially reduced atmosphere, which included N2, CO2, reduced carbon compounds, some NH3, but no free H2. Surface temperatures were higher than now, due to a large greenhouse effect. When free O2 appeared the temperature fell sharply. Had Earth been only slightly further from the Sun, runaway glaciation would have occured at that time. Simulations also indicate that a runaway greenhouse would have occured early in Earth's history had Earth been only a few percent closer to the Sun. It therefore appears that, taking into account the possibilities of either runaway glaciation or a runaway greenhouse effect, the continously habitable zone about a solar-type star is rather narrow, extending only from roughly 0.95 to 1.01 AU.  相似文献   

4.
We model the internal thermal evolution of planets with Earth-like composition and masses ranging from 0.1 to 10 Earth masses over a period of 10 billion years. We also characterize the internal activity of the planets by the velocity of putative tectonic plates, the rate at which mantle material is processed through melting zones, and the time taken to process one mantle mass. The more massive the planet the larger its processing rate (?), which scales approximately as ?M0.8-1.0. The processing times for all the planets increase with time as they cool and become less active. As would be expected, the surface heat flow scales with planet mass. All planets have similar declines in mantle temperature except for the largest, in which pressure effects cause a larger decline. The larger planets have higher mantle temperatures over all times. The less massive the planet, the larger the decrease in core temperature with time. The core heat flow is also found to decrease more rapidly for smaller planet masses. Finally, rough predictions are made for the time required to generate an atmosphere from estimates of the time to degas water and carbon dioxide in mantle melting zones. The degassing times depend strongly on the initial temperature of the planet, but for the temperatures used in our model all the planets degas within ∼32 Ma after their formation.  相似文献   

5.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

6.
Joanna Furno 《Icarus》2007,189(1):246-255
The equilibrium tide-generating forces in the lunar orbital plane of a planet of radius R are calculated for the case of N moons of mass Mi orbiting the planet at instantaneous polar coordinates (Di, αi). For the case of a single moon, there are only two high tides. For the case of two moons, it is found that there can exist a critical lunar orbital distance at which two high tides become unstable with respect to formation of three high tides. Bifurcation diagrams are presented which depict how the angular positions of the high and low tides on the planet vary with the lunar distances and lunar separation angle. Tidal stability diagrams, which illustrate the stability regions for various tidal patterns as a function of lunar distances and lunar separation angle, are presented for various values of D2/D1 and M2/M1. Generally speaking, the aforementioned tidal instability, and hence the propensity for formation of three high tides on a two-moon planet, exists over a significant range of lunar distances and separation angles provided that M2/M13(D2/D1). For the case of N>2 moons, the tidal stability diagram becomes more complex, revealing a diversity of potential tidal patterns.  相似文献   

7.
In 1946, E. Sevin postulated the global vibrations of the Sun with a period P 0 = 1/9 day and a “wavelength” L 0 = c × P 0 = 19.24 AU and predicted the tenth planet at a mean distance of 4.0 × L 0 ≈ 77.0 AU from the Sun (c is the speed of light). The global vibrations of the Sun, precisely with the period of 1/9 day, were actually detected in 1974. Recently, the largest Kuiper Bell object 2003 UB313, or Eris, with an orbital semimajor axis ≈ 3.5 × L 0 ≈ 67.5 AU was discovered. We adduce arguments for the status of Eris as our tenth planet: (i) the object is larger and farther from the Sun than Pluto and (ii) the semimajor axis of Eris agrees well with the sequence of planetary distances that follows from the resonance spectrum of the Solar system dimensions (with the scale L 0 and for all 11 orbits, including those of Pluto, Eris, and the asteroid belt). We point to a mistake of the Prague (2006) IAU Assembly, which excluded Pluto from the family of planets by introducing a new, highly controversial class of objects—“dwarf planets.”  相似文献   

8.
For a satellite to survive in the disk the time scale of satellite migration must be longer than the time scale for gas dissipation. For large satellites (∼1000 km) migration is dominated by the gas tidal torque. We consider the possibility that the redistribution of gas in the disk due to the tidal torque of a satellite with mass larger than the inviscid critical mass causes the satellite to stall and open a gap (W.R. Ward, 1997, Icarus 26, 261-281). We adapt the inviscid critical mass criterion to include gas drag, and m-dependent nonlocal deposition of angular momentum. We find that such a model holds promise of explaining the survival of satellites in the subnebula, the mass versus distance relationship apparent in the saturnian and uranian satellite systems, the concentration of mass in Titan, and the observation that the satellites of Jupiter get rockier closer to the planet whereas those of Saturn become increasingly icy. It is also possible that either weak turbulence (close to the planet) or gap-opening satellite tidal torque removes gas on a similar time scale (104-105 years) as the orbital decay time of midsized (200-700 km) regular satellites forming in the inner disk (inside the centrifugal radius (I. Mosqueira and P.R. Estrada, 2003, Icarus, this issue)). We argue that Saturn’s satellite system bridges the gap between those of Jupiter and Uranus by combining the formation of a Galilean-sized satellite in a gas optically thick subnebula with a strong temperature gradient, and the formation of smaller satellites, closer to the planet, in a disk with gas optical depth ?1, and a weak temperature gradient.Using an optically thick inner disk (given gaseous opacity), and an extended, quiescent, optically thin outer disk, we show that there are regions of the disk of small net tidal torque (even zero) where satellites (Iapetus-sized or larger) may stall far from the planet. For our model these outer regions of small net tidal torque correspond roughly to the locations of Callisto and Iapetus. Though the precise location depends on the (unknown) size of the transition region between the inner and outer disks, the result that Saturn’s is found much farther out (at ∼3rcS, where rcS is Saturn’s centrifugal radius) than Jupiter’s (at ∼ 2rcJ, where rcJ is Jupiter’s centrifugal radius) is mostly due to Saturn’s less massive outer disk and larger Hill radius. However, despite the large separation between Ganymede and Callisto and Titan and Iapetus, the long formation and migration time scales for Callisto and Iapetus (I. Mosqueira and P.R. Estrada, 2003, Icarus, this issue) makes it possible (depending on the details of the damping of acoustic waves) that the tidal torque of Ganymede and Titan clears the gas disk out to their location, thus stranding Callisto and Iapetus far from the planet. Either way, our model provides an explanation for the presence of regular satellites outside the centrifugal radii of Jupiter and Saturn, and the absence of such a satellite for Uranus.  相似文献   

9.
Considering the future importance of the search for evidences of primitive life on a distant planet, we have revisited some points of the O2 and O3 detection criteria.The budget of free oxygen and organic carbon on Earth is studied. If one includes the organic carbon in sediments, it confirms that O2 is a very reactive gas whose massive presence in a telluric planet atmosphere implies a continuous production. Its detection would be a strong indication for photosynthetic activity, providing the planet is not in a runaway greenhouse phase.In principle, the direct detection of O2 could be possible in the visible flux of the planet at 760 nm (oxygen A-band) but it would be extremely difficult, considering the much larger flux from the star. The alternative search for the 9.7µm absorption of O3 may be easier as the contrast with the star is improved by 3 orders of magnitude. A simple atmospheric model confirms that the O3 column density is not a linear tracer of the atmospheric O2 content, as was found in the pioneer work by Paetzold (1962). However, the detection of a substantial O3 absorption ( > 30%) would probably indicate, within the validity of this model, an O2 ground pressure larger than 10 mbar. The question is raised of whether this pressure is sufficient to indicate a photosynthetic origin of the oxygen. If the answer was positive, it would be an evenmore sensitive test of photosynthetic activity than the detection of the oxygen A-band. Further studies of these points are clearly needed before determining an observing strategy.  相似文献   

10.
In this paper we present Physical Parameter Eclipse Mapping (PPEM) of UBVRI eclipse light curves of UU Aqr from high to low states. We used a simple, pure hydrogen LTE model to derive the temperature and surface density distribution in the accretion disc. The reconstructed effective temperatures in the disc range between 9000 K and 15000 K in the inner part of the disc and below 7000 K in the outer parts. In the higher states it shows a more or less prominent bright spot with Teff between about 7000 K and 8000 K. The inner part of the disc (R < 0.3R) isL1 optically thick at all times, while the outer parts of the disc up to the disc edge (0.51 ± 0.04RL1 in the high state and 0.40 ± 0.03RL1 in the low state) deviate from a simple black body spectrum indicating that either the outer disc is optically thin or it shows a temperature inversion in the vertical direction. While during high state the disc is variable, it appears rather stable in low state. The variation during high state affects the size of the optically thick part of the disc, the white dwarf or boundary layer temperature and the uneclipsed component (originating in a disc chromosphere and/or cool disc wind), while the actual size of the disc remains constant. The difference between high and low state is expressed as a change in disc size that also affects the size of the optically thick part of the disc and the presence of the bright spot. Using the PPEM method we retrieve a distance for UU Aqr of 207±10 pc, compatible with previous estimates.  相似文献   

11.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   

12.
We describe a new model of the chromosphere based on Lyman-continuum observations by Harvard spectrometers aboard the satellites OSO 4 and OSO 6. The model assumes (a) that a random distribution of optically thick inhomogeneities overlies a plane-parallel homogeneous atmosphere, and (b) that the Lyman continuum in the chromosphere is optically thick and the only significant opacity source between 600 and 912 Å.The temperature, gas pressure, electron pressure, particle densities, and b 1 (the hydrogen ground-state departure coefficient) are calculated as a function of height in the chromosphere.The model reproduces the observed quiet-region intensities in the Lyman continuum. The inhomogeneous structures, which we believe to be spicules, are inferred to be optically thick in the Lyman continuum and to have a source function below that of the mean chromosphere. If they are also optically thick in the free-free (millimeter) continuum and cooler than about 5000K, they could produce the observed limb darkening at 1 and 3 mm. Such low temperatures are at odds with current spicule models, but could exist in the cores of spicules.The Lyman-continuum emission shortward of 750 Å shows an excess emission over that predicted by the above model. This is found to be consistent with the existence of a temperature plateau with T 22000K in the very high chromosphere.  相似文献   

13.
Glenn S. Orton 《Icarus》1975,26(2):125-141
Temperature profiles for low latitude regions of Jupiter in the 1.0-0.1 bar pressure regime are recovered from Pioneer 10 infrared radiometer data. The temperature near 0.1 bar is 108–117K, depending on the overlying thermal structure assumed. For the South Equatorial Belt, the temperature at 1.0 bar is 170 K, assuming an adiabatic lapse rate in the deep atmosphere. The South Tropical Zone temperature at this level is 155K if pure gaseous absorption is assumed. Alternatively, the temperature is much closer to that in the SEB, assuming the presence of an optically opaque cloud near the 0.6atm (145K) level. Such a cloud presence in the STrZ may be correlated with the visible and 5 micron appearance of the planet and with NH3 saturation just below this position. The molar fraction of H2 most consistent with the data is 0.91 ± 0.08. conditional on the perfect validity of the model and the lack of systematic errors in the data. The effective temperatures of the SEB and STrZ are 127.6 and 124.2K, respectively. These temperature profiles are generally consistent with data at other wavelengths and radiative-equilibrium models, but a discrepancy with the preliminary neutral atmosphere inversion of Pioneer 10 radio occultation data remains unexplained.  相似文献   

14.
L.A. Sromovsky  P.M. Fry 《Icarus》2010,210(1):230-257
The Cassini flyby of Jupiter in 2000 provided spatially resolved spectra of Jupiter’s atmosphere using the Visual and Infrared Mapping Spectrometer (VIMS). A prominent characteristic of these spectra is the presence of a strong absorption at wavelengths from about 2.9 μm to 3.1 μm, previously noticed in a 3-μm spectrum obtained by the Infrared Space Observatory (ISO) in 1996. While Brooke et al. (Brooke, T.Y., Knacke, R.F., Encrenaz, T., Drossart, P., Crisp, D., Feuchtgruber, H. [1998]. Icarus 136, 1-13) were able to fit the ISO spectrum very well using ammonia ice as the sole source of particulate absorption, Sromovsky and Fry (Sromovsky, L.A., Fry, P.M. [2010]. Icarus 210, 211-229), using significantly revised NH3 gas absorption models, showed that ammonium hydrosulfide (NH4SH) provided a better fit to the ISO spectrum than NH3, but that the best fit was obtained when both NH3 and NH4SH were present in the clouds. Although the large FOV of the ISO instrument precluded identification of the spatial distribution of these two components, the VIMS spectra at low and intermediate phase angles show that 3-μm absorption is present in zones and belts, in every region investigated, and both low- and high-opacity samples are best fit with a combination of NH4SH and NH3 particles at all locations. The best fits are obtained with a layer of small ammonia-coated particles (r ∼ 0.3 μm) overlying but often close to an optically thicker but still modest layer of much larger NH4SH particles (r ∼ 10 μm), with a deeper optically thicker layer, which might also be composed of NH4SH. Although these fits put NH3 ice at pressures less than 500 mb, this is not inconsistent with the lack of prominent NH3 features in Jupiter’s longwave spectrum because the reflectivity of the core particles strongly suppresses the NH3 absorption features, at both near-IR and thermal wavelengths. Unlike Jupiter, Saturn lacks the broad 3-μm absorption feature, but does exhibit a small absorption near 2.965 μm, which resembles a similar jovian feature and suggests that both planets contain upper tropospheric clouds of sub-micron particles containing ammonia as a minor fraction.  相似文献   

15.
We model the growth of Jupiter via core nucleated accretion, applying constraints from hydrodynamical processes that result from the disk-planet interaction. We compute the planet's internal structure using a well tested planetary formation code that is based upon a Henyey-type stellar evolution code. The planet's interactions with the protoplanetary disk are calculated using 3-D hydrodynamic simulations. Previous models of Jupiter's growth have taken the radius of the planet to be approximately one Hill sphere radius, RH. However, 3-D hydrodynamic simulations show that only gas within ∼0.25RH remains bound to the planet, with the more distant gas eventually participating in the shear flow of the protoplanetary disk. Therefore in our new simulations, the planet's outer boundary is placed at the location where gas has the thermal energy to reach the portion of the flow not bound to the planet. We find that the smaller radius increases the time required for planetary growth by ∼5%. Thermal pressure limits the rate at which a planet less than a few dozen times as massive as Earth can accumulate gas from the protoplanetary disk, whereas hydrodynamics regulates the growth rate for more massive planets. Within a moderately viscous disk, the accretion rate peaks when the planet's mass is about equal to the mass of Saturn. In a less viscous disk hydrodynamical limits to accretion are smaller, and the accretion rate peaks at lower mass. Observations suggest that the typical lifetime of massive disks around young stellar objects is ∼3 Myr. To account for the dissipation of such disks, we perform some of our simulations of Jupiter's growth within a disk whose surface gas density decreases on this timescale. In all of the cases that we simulate, the planet's effective radiating temperature rises to well above 1000 K soon after hydrodynamic limits begin to control the rate of gas accretion and the planet's distended envelope begins to contract. According to our simulations, proto-Jupiter's distended and thermally-supported envelope was too small to capture the planet's current retinue of irregular satellites as advocated by Pollack et al. [Pollack, J.B., Burns, J.A., Tauber, M.E., 1979. Icarus 37, 587-611].  相似文献   

16.
S. Inaba  G.W. Wetherill 《Icarus》2003,166(1):46-62
We have calculated formation of gas giant planets based on the standard core accretion model including effects of fragmentation and planetary envelope. The accretion process is found to proceed as follows. As a result of runaway growth of planetesimals with initial radii of ∼10 km, planetary embryos with a mass of ∼1027 g (∼ Mars mass) are found to form in ∼105 years at Jupiter's position (5.2 AU), assuming a large enough value of the surface density of solid material (25 g/cm2) in the accretion disk at that distance. Strong gravitational perturbations between the runaway planetary embryos and the remaining planetesimals cause the random velocities of the planetesimals to become large enough for collisions between small planetesimals to lead to their catastrophic disruption. This produces a large number of fragments. At the same time, the planetary embryos have envelopes, that reduce energies of fragments by gas drag and capture them. The large radius of the envelope increases the collision rate between them, resulting in rapid growth of the planetary embryos. By the combined effects of fragmentation and planetary envelope, the largest planetary embryo with 21M forms at 5.2 AU in 3.8×106 years. The planetary embryo is massive enough to start a rapid gas accretion and forms a gas giant planet.  相似文献   

17.
C. Sotin  O. Grasset  A. Mocquet 《Icarus》2007,191(1):337-351
By comparison with the Earth-like planets and the large icy satellites of the Solar System, one can model the internal structure of extrasolar planets. The input parameters are the composition of the star (Fe/Si and Mg/Si), the Mg content of the mantle (Mg# = Mg/[Mg + Fe]), the amount of H2O and the total mass of the planet. Equation of State (EoS) of the different materials that are likely to be present within such planets have been obtained thanks to recent progress in high-pressure experiments. They are used to compute the planetary radius as a function of the total mass. Based on accretion models and data on planetary differentiation, the internal structure is likely to consist of an iron-rich core, a silicate mantle and an outer silicate crust resulting from magma formation in the mantle. The amount of H2O and the surface temperature control the possibility for these planets to harbor an ocean. In preparation to the interpretation of the forthcoming data from the CNES led CoRoT (Convection Rotation and Transit) mission and from ground-based observations, this paper investigates the relationship between radius and mass. If H2O is not an important component (less than 0.1%) of the total mass of the planet, then a relation (R/REarth)=ab(M/MEarth) is calculated with (a,b)=(1,0.306) and (a,b)=(1,0.274) for 10−2MEarth<M<MEarth and MEarth<M<10MEarth, respectively. Calculations for a planet that contains 50% H2O suggest that the radius would be more than 25% larger than that based on the Earth-like model, with (a,b)=(1.258,0.302) for 10−2MEarth<M<MEarth and (a,b)=(1.262,0.275) for MEarth<M<10MEarth, respectively. For a surface temperature of 300 K, the thickness of the ocean varies from 150 to 50 km for planets 1 to 10 times the Earth's mass, respectively. Application of this algorithm to bodies of the Solar System provides not only a good fit to most terrestrial planets and large icy satellites, but also insights for discussing future observations of exoplanets.  相似文献   

18.
E.W. Thommes  M.J. Duncan 《Icarus》2003,161(2):431-455
Runaway growth ends when the largest protoplanets dominate the dynamics of the planetesimal disk; the subsequent self-limiting accretion mode is referred to as “oligarchic growth.” Here, we begin by expanding on the existing analytic model of the oligarchic growth regime. From this, we derive global estimates of the planet formation rate throughout a protoplanetary disk. We find that a relatively high-mass protoplanetary disk (∼10 × minimum-mass) is required to produce giant planet core-sized bodies (∼10 M) within the lifetime of the nebular gas (?10 million years). However, an implausibly massive disk is needed to produce even an Earth mass at the orbit of Uranus by 10 Myrs. Subsequent accretion without the dissipational effect of gas is even slower and less efficient. In the limit of noninteracting planetesimals, a reasonable-mass disk is unable to produce bodies the size of the Solar System’s two outer giant planets at their current locations on any timescale; if collisional damping of planetesimal random velocities is sufficiently effective, though, it may be possible for a Uranus/Neptune to form in situ in less than the age of the Solar System. We perform numerical simulations of oligarchic growth with gas and find that protoplanet growth rates agree reasonably well with the analytic model as long as protoplanet masses are well below their estimated final masses. However, accretion stalls earlier than predicted, so that the largest final protoplanet masses are smaller than those given by the model. Thus the oligarchic growth model, in the form developed here, appears to provide an upper limit for the efficiency of giant planet formation.  相似文献   

19.
T.A. Heppenheimer 《Icarus》1978,34(2):441-443
We consider a class of planets which have experienced early, nearly complete differentiation and outgassing, whose mantles are fully convective, and whose crusts are isostatically compensated. The evolutionary model of Hargraves [Science193, 363 (1976)] suggests that in the absence of a runaway greenhouse, such planets may usually possess continent/ocean topographies similar to that of Earth. But if the planet is significantly larger than Earth, and its star of spectral type earlier than G, it may ordinarily be completely water-covered.  相似文献   

20.
We present observations and theoretical calculations to derive the vertical structure of and secondary circulation in jovian vortices, a necessary piece of information to ultimately explain the red color in the annular ring inside Jupiter’s Oval BA. The observations were taken with the near-infrared detector NIRC2 coupled to the adaptive optics system on the 10-m W.M. Keck telescope (UT 21 July 2006; UT 11 May 2008) and with the Hubble Space Telescope at visible wavelengths (UT 24 and 25 April 2006 using ACS; UT 9 and 10 May 2008 using WFPC2). The spatial resolution in the near-IR (∼0.1–0.15″ at 1–5 μm) is comparable to that obtained at UV–visible wavelengths (∼0.05–0.1″ at 250–890 nm). At 5 μm we are sensitive to Jupiter’s thermal emission, whereas at shorter wavelengths we view the planet in reflected sunlight. These datasets are complementary, as images at 0.25–1.8 μm provide information on the clouds/hazes in the troposphere–stratosphere, while the 5-μm emission maps yield information on deeper layers in the atmosphere, in regions without clouds. At the latter wavelength numerous tiny ovals can be discerned at latitudes between ∼45°S and 60°S, which show up as rings with diameters ?1000 km surrounding small ovals visible in HST data. Several white ovals at 41°S, as well as a new red oval that was discovered to the west of the GRS, also reveal 5-μm bright rings around their peripheries, which coincide with dark/blue rings at visible wavelengths. Typical brightness temperatures in these 5-μm bright rings are 225–250 K, indicative of regions that are cloud-free down to at least the ∼4 bar level, and perhaps down to 5–7 bar, i.e., well within the water cloud.Radiative transfer modeling of the 1–2 μm observations indicates that all ovals, i.e., including the Great Red Spot (GRS), Red Oval BA, and the white ovals at 41°S, are overall very similar in vertical structure. The main distinction between the ovals is caused by variations in the particle densities in the tropospheric–stratospheric hazes (2–650 mbar). These are 5–8 times higher above the red ovals than above the white ones at 41°S. The combination of the 5-μm rings and the vertical structure derived from near-IR data suggests anticyclones to extend vertically from (at least) the water cloud (∼5 bar) up to the tropopause (∼100–200 mbar), and in some cases into the stratosphere.Based upon our observations, we propose that air is rising along the center of a vortex, and descending around the outer periphery, producing the 5-μm bright rings. Observationally, we constrain the maximum radius of these rings to be less than twice the local Rossby deformation radius, LR. If the radius of the visible oval (i.e., the clouds that make the oval visible) is >3000 km, our observations suggest that the descending part of the secondary circulation must be within these ovals. For the Red Oval BA, we postulate that the return flow is at the location of its red annulus, which has a radius of ∼3000 km.We develop a theory for the secondary circulation, where air is (baroclinically) rising along the center of a vortex in a subadiabatic atmosphere, and descending at a distance not exceeding ∼2× the local Rossby deformation radius. Using this model, we find a timescale for mixing throughout the vortex of order several months, which suggests that the chromophores that are responsible for the red color of Oval BA’s red annulus must be produced locally, at the location of the annulus. This production most likely results from the adiabatic heating in the descending part of the secondary circulation. Such higher-than-ambient temperature causes NH3–ice to sublime, which will expose the condensation nuclei, such as the red chromophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号