首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past, there has been little interest in the trace element characteristics of quartz, and in consequence little activity in the trace element characteristics of reference materials with high silicon content. The main purpose of this paper is to contribute to the characterisation of two international certified reference materials, BCS 313/1 from the Bureau of Analysed Samples, (BAS), UK and SRM 1830 from the National Institute of Standards and Technology (NIST), USA. BCS 313/1 was analysed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), solution ICP-MS and instrumental neutron activation analysis (INAA). NIST SRM 1830 was analysed by LA-ICP-MS and INAA. Analytical results are reported for more than forty elements, most of them for the first time. For most elements, the results obtained by the different methods agree within 15 % relative. The recent, heightened interest in quartz and in particular the precise determination of trace0element contents in natural quartz samples requires the use of well characterised reference materials such as BCS 313/1 and SRM 1830, to which this study is designed to contribute.  相似文献   

2.
To understand and/or avoid small-scale chemical heterogeneities within geological materials prepared as normal thin sections, in situ multiple trace element determination coupled with the simultaneous microscopic observation of the sample during analysis is preferable. We have examined fifty trace elements in thin (< 30 μm) layers of the NIST SRM 614 and 616 glass reference materials by LA-ICP-MS using different pit diameters and internal standard elements (Ca and Si). Compositional heterogeneities of Tl, Bi, As and Cd were found in NIST SRM 614 and 616 at the spatial resolution of ca. 10 0 μm. Except for these elements, the RSDs of six determinations for most elements were better than 10% in NIST SRM 614 when ablation diameters were < 50 μm. The measured concentrations for most elements in NIST SRM 614 and 616 agree with previous values in the literature at the 95% confidence level with the exception of W and Bi. New LA-ICP-MS data for K, As and Cd are also reported. The results support the view that the latest LA-ICP-MS is a powerful and flexible analytical technique for the determination of multiple ultra-trace element compositions in geological materials prepared as normal thin sections of the type that has been used for polarising optical microscopic observations since the end of the 19th century.  相似文献   

3.
Microanalytical trace element techniques (such as ion probe or laser ablation ICP-MS) are hampered by a lack of well characterized, homogeneous standards. Two silicate glass reference materials produced by National Institute of Standards and Technology (NIST), NIST SRM 610 and NIST SRM 612, have been shown to be homogeneous and are spiked with up to sixty one trace elements at nominal concentrations of 500 μg g-1 and 50 μg g-1 respectively. These samples (supplied as 3 mm wafers) are equivalent to NIST SRM 611 and NIST SRM 613 respectively (which are supplied as 1 mm wafers) and are becoming more widely used as potential microanalytical reference materials. NIST however, only certifies up to eight elements in these glasses. Here we have compiled concentration data from approximately sixty published works for both glasses, and have produced new analyses from our laboratories. Compilations are presented for the matrix composition of these glasses and for fifty eight trace elements. The trace element data includes all available new and published data, and summaries present the overall average and standard deviation, the range, median, geometric mean and a preferred average (which excludes all data outside ± one standard deviation of the overall average). For the elements which have been certified, there is a good agreement between the compiled averages and the NIST data. This compilation is designed to provide useful new working values for these reference materials.  相似文献   

4.
We present data for the concentrations of eleven rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb, Lu) in eleven international geochemical reference materials obtained by isotope dilution multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We have analysed both rock powders and synthetic silicate glasses, and the latter provide precise data to support the use of these as reference materials for in situ trace element determination techniques. Our data also provide precise measurements of the abundance of mono-isotopic Pr in both glasses and powders, which allows more accurate constraints on the anomalous redox-related behaviour of Ce during geochemical processes. All materials were analysed in replicate providing data that typically reproduce to better than one percent. Sm/Nd ratios in all these materials also reproduce to better than 0.2% and are accurate to < 0.2% and can thus be used as calibrants for Sm-Nd geochronology. Our analyses agree well with existing data on these reference materials. In particular, for NIST SRM 610, USGS BHVO-2, AGV-1 and AGV-2, our measured REE abundances are typically within < 2% (and mostly 1%) of REE concentrations previously determined by isotope dilution analysis and thermal ionisation mass spectrometry, consistent with the higher degree of precision and accuracy obtained from isotope dilution techniques. Close agreement of results between basaltic glass reference materials USGS BHVO-2G and BCR-2G and the BHVO-2 and BCR-2 powders from which they were created suggests that little fractionation, concentration or dilution of REE contents occurred during glass manufacture.  相似文献   

5.
6.
Precise and accurate determination of ferrous iron mass fraction in silicate rocks and geological reference materials is still a significant challenge due to the labile nature of the analyte. Here, we report a modified and improved procedure for the determination of ferrous iron mass fraction, capable of yielding moderately accurate and highly precise results in a relatively shorter time than before. This modified technique requires a more convenient operational procedure than the classical method. A sample digestion apparatus was designed that included a Schlenk line to expel air in order to prevent oxidation. The advantages of this procedure over the classical procedure are shorter process flow, higher efficiency and absence of an additional redox indicator. The composition of the acid matrix used to dissolve the samples as well as the incubation temperature and time was investigated. Comparative data for twenty‐one reference materials are reported, with five of them reported for the first time by the Schlenk line procedure. A series of experiments were carried out to identify and minimise the main source of error. In addition, the possibility of eliminating the reducing substances before digestion, by pretreatment of the sample by cold 10% methanolic bromine, was also studied.  相似文献   

7.
Mass fractions of S, Cu, Se, Mo, Ag, Cd, In, Te, Ba, Sm, W and Tl were determined by isotope dilution sector field ICP‐MS in the same sample aliquot of reference materials using HF‐HNO3 digestion in PFA beakers in pressure bombs and glassy carbon vessels in a high‐pressure asher (HPA‐S) for comparison. Additionally, Bi was determined by internal standardisation relative to Tl. Because isobaric and oxide interferences pose problems for many of these elements, efficient chromatographic separation methods in combination with an Aridus desolvator were employed to minimise interference effects. Repeated digestion and measurement of geological reference materials (BHVO‐1, BHVO‐2, SCo‐1, MAG‐1, MRG‐1 and UB‐N) gave results with < 5% relative intermediate precision (1s) for most elements, except Bi. Replicates of NIST SRM 612 glass digested on a hot plate were analysed by the same methods, and the results agree with reference values mostly within 2% relative deviation. Data for the carbonaceous chondrites Allende, Murchison, Orgueil and Ivuna are also reported. Digestion in a HPA‐S was as efficient as in pressure bombs, but some elements displayed higher blank levels following HPA‐S treatment. Pressure bomb digestion yielded precise data for volatile S, Se and Te, but may result in high blanks for W.  相似文献   

8.
National Institute of Science and Technology (NIST) silicate glass SRM 610 is widely used as a certified reference material for various micro-analytical techniques such as SIMS or laser ablation ICP-MS. SRM 610 has been nominally doped with sixty one trace elements at the 500 μg g−1 level, but certified concentration data exist for only a few of these elements. This study reports concentration data for fifty nine trace elements obtained by ICP-MS, SSMS, LIMS, TIMS, INAA, AAS, and PIXE analyses of two different SRM 610 wafers. Most elements fall within a 10% band around a median value of about 440 μg g−1. The REE concentrations are shown to be constant to 3% (1 σ), thus emphasizing the value of SRM 610 as a reference material for REE analyses.
Comparison of our values with published data suggests that different SRM 610 wafers are, within errors, chemically identical for most elements. Exceptions to this general rule appear to be restricted to elements which were partly lost during the production of the glass, e.g. Ag and Br. On the basis of six independent determinations of Rb concentrations, which are systematically lower by a few percent than the reported NIST value, we argue that the certified Rb concentration may not be representative for all distributed SRM 610 wafers.  相似文献   

9.
Extensive compositional heterogeneity is shown to affect at least twenty four of the doped trace elements in the NIST SRM 610-617 glasses.
Compositional profiling and mapping using laser ablation ICP-MS reveals that all NIST SRM 610-617 wafers examined here contain domains that are significantly depleted in Ag, As, Au, B, Bi, Cd, Cr, Cs, Mo, Pb, Re, (Rh), Sb, Se, Te, Tl and W, and antithetically enriched in Cu (and Pt), with large enrichments in Cd, Fe and Mn also being encountered in some cases. These domains are visible in doubly polished wafers by unaided visual inspection and by transmitted light and schlieren microscopy. They occur in close proximity to the wafer perimeters and also as stretched and complexly folded forms within wafer interiors. The chemical and optical properties of these heterogeneous domains are consistent with those of compositional cords, a phenomenon of glass manufacture where glass bulk composition and physical properties are modified by loss of volatile components from the molten glass surface. The NIST SRM 610-617 glasses may be considered reliable reference materials for microanalysis of only between one half and two thirds of the trace elements with which they were doped, including Be, Mg, Sr, Ba, Sc, Y, REE, V, Zr, Hf, Nb, Ta, Th, U, Ga, In, Sn, Co, Ni and Zn. These elements show no evidence of significant heterogeneity, indicating that the original glass constituents and possible residues remaining in the furnace from preceding glass batch fusions were well homogenised during manufacture.  相似文献   

10.
Instrumental neutron activation analysis has been applied to the analysis of recently issued NBS reference materials SRM 1633a Fly Ash and SRM 1632a Bituminous Coal. Only the nuclides with half-lives of less than 48 hours have been used. The results for the determination of 18 elements (Fly Ash) and 19 elements (Coal) are compared with the values given by NBS and with recent results obtained by other investigators.  相似文献   

11.
A simple, rapid and precise method is described for determining trace elements by laser ablation (LA)-ICP-MS analysis in bulk geological materials that have been prepared as lithium borate glasses following standard procedures for XRF analysis. This approach reliably achieves complete sample digestion and provides for complementary XRF and LA-ICP-MS analysis of a full suite of major and trace elements from a single sample preparation. Highly precise analysis is enabled by rastering an ArF excimer laser (λ= 193nm) across fused samples to deliver a constant sample yield to the mass spectrometer without inter-element fractionation effects during each analysis. Capabilities of the method are demonstrated by determination of twenty five trace elements (Sc, Ti, V, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf, Ta, Pb, Th and U) in a diverse range of geological reference materials that includes peridotites, basalts, granites, metamorphic rocks and sediments. More than 90% of determinations are indistinguishable from published reference values at the 95% confidence level. Systematic bias greater than 5% is observed for only a handful of elements (Zr, Nb and U) and may be attributed in part to inaccurate calibration values used for the NIST SRM 612 glass in the case of Zr and Nb. Detection limits for several elements, most notably La, are compromised at ultra-trace levels by impurities in the lithium borate flux but can be corrected for by subtracting appropriate procedural blanks. Reliable Pb analysis has proved problematic due to variable degrees of contamination introduced during sample polishing prior to analysis and from Pt-crucibles previously used to fuse Pb-rich samples. Scope exists for extending the method to include internal standard element/isotope spiking, particularly where integrated XRF analysis is not available to characterise major and trace elements in the fused lithium borate glasses prior to LA-ICP-MS analysis.  相似文献   

12.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

13.
Fifty elements in NIST SRM 614 and 616 glass reference materials were determined by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). The values determined for NIST SRM 614 agreed well with the NIST-certified and information values (mean relative difference ± 3.6%), except for B, Sc and Sb. The values determined for NIST SRM 616 agreed with the NIST-certified and information values within a mean relative difference of ± 1.5%, except for B, Sc and Ga. In addition, at an 80 μm sampling scale, NIST SRM 614 and 616 glass discs were homogeneous for trace elements within the observed precisions of 5 and 15% (mean), respectively. Detection limits were in the range 0.01 - 0.3 μg g−1 for elements of lower mass numbers (amu < 80) and 1 - 10 ng g−1 for heavy elements (amu > 80). Detection at the sub ng g−1 level is possible for most of the heavy elements by using an ablation pit size larger than 10 0 μm.  相似文献   

14.
Data on thirty-four minor and trace elements including all rare earth elements (REE) are reported for two kimberlitic international reference materials (SARM-39, MINTEK, RSA and MY-4, IGEM, Russia) by inductively coupled plasma-mass spectrometry (ICP-MS), some of them for the first time. Four digestion techniques (open acid, closed vessel acid, microwave and lithium metaborate fusion digestion) were used for the decomposition of samples for analysis by ICP-MS. Three other reference materials (USGS BHVO-1, CRPG BR-1 and ANRT UB-N) were analysed simultaneously using the same analytical methodology to assess the precision and accuracy of the determinations. The data obtained in this study compare well with working values wherever such values are available for comparison. Though open acid digestion was found to be very rapid, effective and convenient for the determination of several trace elements in kimberlitic samples, recoveries for heavy rare earth elements (HREE) were lower than the respective recoveries obtained by the other decomposition techniques used. The precision obtained was better than ± 6% RSD in the majority of cases with comparable accuracy. Chondrite-normalised plots of each RM for all the digestion techniques were smooth. The new data reported on the two kimberlitic reference materials make these samples useful for future geochemical studies of kimberlitic rocks.  相似文献   

15.
The calcium isotopic composition of NIST SRM 915b and 1486 provided by the National Institute of Standards and Technology was analysed. The δ44/40Ca values of the two reference materials relative to NIST SRM 915a were: NIST SRM 915b =+0.72 ± 0.04‰ and NIST SRM 1486 =?1.01 ± 0.02‰. NIST SRM 1486 did not require any chemical separation prior to measurement.  相似文献   

16.
We present data on the concentration, the isotope composition and the homogeneity of boron in NIST silicate glass reference materials SRM 610 and SRM 612, and in powders and glasses of geological reference materials JB-2 (basalt) and JR-2 (rhyolite). Our data are intended to serve as references for both microanalytical and wet-chemical techniques. The δ11 B compositions determined by N-TIMS and P-TIMS agree within 0.5% and compare with SIMS data within 2.5%. SIMS profiles demonstrate boron isotope homogeneity to better than δ11 B = 2% for both NIST glasses, however a slight boron depletion was detected towards the outermost 200 μm of the rim of each sample wafer. The boron isotope compositions of SRM 610 and SRM 612 were indistinguishable. Glasses produced in this study by fusing JB-2 and JR-2 powder also showed good boron isotope homogeneity, both within and between different glass fragments. Their major element abundance as well as boron isotope compositions and concentrations were identical to those of the starting composition. Hence, reference materials (glasses) for the in situ measurement of boron isotopes can be produced from already well-studied volcanic samples without significant isotope fractionation. Oxygen isotope ratios, both within and between wafers, of NIST reference glasses SRM 610 and SRM 612 are uniform. In contrast to boron, significant differences in oxygen isotope compositions were found between the two glasses, which may be due to the different amounts of trace element oxides added at ten-fold different concentration levels to the silicate matrix.  相似文献   

17.
The SRM 600 series of glasses, SRM 611 to SRM 619, which nominally contain 500 (SRM 610, 611), 50 (SRM 612, 613), 1 (SRM 614, 615) and 0.02 (SRM 616, 617) μg g−1 of sixty one elements are now being extensively used as microprobe standards. Recent compilations of the trace element concentrations, which include many new multi-element bulk analyses, do not all give the same value within the stated uncertainty; this observation appears to raise questions about the degree of homogeneity on a microscale reported from probe measurements. The ion microprobe cannot give absolute concentrations, but can accurately measure the abundance ratios between glasses of similar major element chemistry. Recent and new probe measurements show that, although the absolute concentrations are significantly lower than the nominal values, the average dilution factors are 12 : 1 : 0.02 : 0.0004 and close to weighed amounts. The consistency between the ratios of random samples of glasses (SRM 610/SRM 612 and SRM 611/SRM 613) strongly supports a high degree of homogeneity on all scales. The measured abundance ratios between two glasses can, therefore, act as a useful check on bulk measurement accuracy. A clear correlation in the SRM 610, 611/SRM 612, 613 ratios measured by ion probe and SRM 612 trace concentrations measured by bulk techniques demonstrates that SRM 610, 611 has a much more uniform trace content than SRM 612, 613.  相似文献   

18.
Forty two major (Na, Mg, Ti and Mn) and trace elements covering the mass range from Li to U in three USGS basalt glass reference materials BCR‐2G, BHVO‐2G and BIR‐1G were determined using laser ablation‐inductively coupled plasma‐mass spectrometry. Calibration was performed using NIST SRM 610 in conjunction with internal standardisation using Ca. Determinations were also made on NIST SRM 612 and 614 as well as NIST SRM 610 as unknown samples, and included forty five major (Al and Na) and trace elements. Relative standard deviation (RSD) of determinations was below 10% for most elements in all the glasses under investigation. Consistent exceptions were Sn and Sb in BCR‐2G, BHVO‐2G and BIR‐1G. For BCR‐2G, BHVO‐2G and BIR‐1G, clear negative correlations on a logarithmic scale exist between RSD and concentration for elements lower than 1500 μg g‐1 with logarithmic correlation coefficients between ‐0.75 and ‐0.86. There is also a clear trend of increasing RSD with decreasing concentration from NIST SRM 610 through SRM 612 to SRM 614. These suggest that the difference in the scatter of apparent element concentrations is not due to chemical heterogeneity but reflects analytical uncertainty. It is concluded that all these glasses are, overall, homogeneous on a scale of 60 μm. Our first results on BHVO‐2G and BIR‐1G showed that they generally agreed with BHVO‐2/BHVO‐1 and BIR‐1 within 10% relative. Exceptions were Nb, Ta and Pb in BHVO‐2G, which were 14‐45% lower than reference values for BHVO‐2 and BHVO‐1. Be, Ni, Zn, Y, Zr, Nb, Sn, Sb, Gd, Tb, Er, Pb and U in BIR‐1G were also exceptions. However, of these elements, Be, Nb, Sn, Sb, Gd, Tb, Pb and U gave results that were consistent within an uncertainty of 2s between our data and BIR‐1 reference values. Results on NIST SRM 612 agreed well with published data, except for Mg and Sn. This was also true for elements with m/z 85 (Rb) in the case of NIST SRM 614. The good agreement between measured and reference values for Na and Mg in BCR‐2G, BHVO‐2G and BIR‐1G, and for Al and Na in NIST SRM 610, 612 and 614 up to concentrations of at least several weight percent (which were possible to analyse due to the dynamic range of 108) indicates the suitability of this technique for major, minor and trace element determinations.  相似文献   

19.
The microanalytical capability of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to determine ultra trace elemental concentrations has been demonstrated by the analysis of two low concentration glass standard reference materials, NIST SRM 614 and 616. Results for fifty two elements at concentrations in the low ng g-1 range are compared with those determined using secondary ion mass spectrometry (SIMS). Both techniques provide results at these concentrations that generally agree within 95% confidence limits, demonstrating the accuracy for ultra-trace level of in situ determinations by the two techniques. At concentrations of less than 20 ng g-1 in NIST SRM 616, an accuracy and precision of better than 10% has been obtained for most mono-isotopic rare earth elements, when a spot size of 50 μm is used. Limits of detection for selected elements were as low as 0.5 ng g-1.  相似文献   

20.
Standard reference material of fluorite FM, consisting chiefly of fluorite, quartz and baryte, was prepared by the Institute of Mineral Raw Materials in Kutná Hora (Czechoslovakia). The homogeneity of the pulverised SRM was checked by X-ray fluorescence spectrometry from counts corresponding to the amounts of iron, copper, barium, strontium and titanium. The SRM was considered homogeneous if the "between bottles" variance was not significantly greater than the "within bottles" variance and further, if the error caused by heterogeneity of the SRM was less than one third of the error of an analytical determination carried out in a routine manner. Analytical results from 26 laboratories were processed following the recommended procedure of CMEA-countries which includes: Testing the normality of results, eliminating out-lying results and computing the arithmetic means, estimates of standard deviations and the confidence intervals of the means. Attested values for 17 components and non-attested values for 30 components and/or elements are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号