首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   

2.
Chlorofluorocarbons (CFC-11 and CFC-12) in the intermediate water having between 26.4 and 27.2 were determined at 75 stations in the western North Pacific north of 20°N and west of 175.5°E in 1993. The intermediate water of 26.4–26.6 was almost saturated with respect to the present atmospheric CFC-11 in the zone between 35 and 45°N around the subarctic front. Furthermore, the ratios of CFC-11/CFC-12 of the water were also of those formed after 1975. These suggest that the upper intermediate water (26.4–26.6) was recently formed by cooling and sinking of the surface water not by mixing with old waters. The water below the isopycnal surface of 26.8 contained less CFCs and the area containing higher CFCs around the subarctic front was greatly reduced. However, the CFC age of the lower intermediate water (26.8–27.2) in the zone around the subarctic front was not old, suggesting that the water was formed by diapycnal mixing of the water ventilated with the atmosphere with old waters not containing appreciable CFCs, probably the Pacific Deep Water. The southward spreading rate decreased with depth and it was one sixth of its eastward spreading rate of the North Pacific Intermediate Water (NPIW).  相似文献   

3.
The importance of the North Pacific Intermediate Water as a sink for the anthropogenic carbon dioxide has been examined by mapping chemical and radiochemical properties at two isopycnal surfaces of of 26.6 ad 27.2 obtained in 1970's. Its radiocarbon contents in 1980's were determined for comparison. The isopleths of depth and salinity at the two isopycnal surfaces obviously show that the intermediate layer of the entire mid-latitudes of the North Pacific is occupied by a similar water mass. The distributions of dissolved oxygen contents and Si/N ratios in the intermediate water indicate its source in the northwestern North Pacific and its sink in the eastern Pacific. The 14C values clearly designate the intrusion of the artificial radiocarbon of mostly 1960's origin into the upper intermediate water of the western North Pacific having its maximum in the subarctic zone of 40–45°N and 160–180°E in 1973. The maximum region for tritium is much broader extending to the north. These suggest that the subboreal region is active in the gas exchange and/or the warm water residing for a long time at the surface and flowing into the region across the subarctic front sinks quickly in winter. At the lower isopycnal surface, the increase 14C value for 14±4 years was around 27, which is smaller than that expected from the total carbonate increase, indicating an active isopycnal mixing.  相似文献   

4.
All of the available hydrographic station data (temperature, salinity, dissolved oxygen, phosphate and nitrate) taken in various seasons from 1964 to 1985 are analyzed to show where the upper portion of the Japan Sea Proper Water (UJSPW) is formed and how it circulates. From vertical distributions of water properties, the Japan Sea Proper Water can be divided into an upper portion and a deep water at the 1 (potential density referred to 1000 db) depth of 32.05 kg m–3 surface. The UJSPW in the north of 40°N increases in dissolved oxygen contents and decreases in phosphate contents in winter, while no significant seasonal variation is seen in the south of 40°N. Initial nutrient contents calculated from relationships between AOU and nutrients on isopycnal surfaces show no significant regional difference in the Japan Sea; this suggests that the UJSPW has originated from a single water mass. From depth, dissolved oxygen and phosphate distributions on 1 32.03 kg m–3 surface, core thickness distribution and subsurface phosphate distribution, it is inferred that the UJSPW is formed by the wintertime convection in the region west of 136°E between 40° and 43°N, and advected into the region west of the Yamato Rise along the Continent; finally, it must enter into the Yamato Basin.  相似文献   

5.
A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×103 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.  相似文献   

6.
Values of root mean square slope 0 and its variations -0 are estimated using the brightness field of an image of the surface of the sea near a speck of light. When 0 and -0 are defined it is highly important to take into account direct as well as dissipated solar radiation.The space-time analysis of the structure of the image brightness field is performed. This gives an opportunity to estimate dispersion relationship and the running effect of a brightness contrast packet. Comparison of the parameters obtained with the theoretical dispersion ratio of internal waves (IW) allows one to make a conclusion that IW surface manifestations are recorded in a frame.UDK 551.463.5  相似文献   

7.
Local balance in the air-sea boundary processes   总被引:2,自引:0,他引:2  
A combination of the three-second power law, presented in part I for wind waves of simple spectrum, and the similarity of the spectral form of wind waves, leads to a new concept on the energy spectrum of wind waves. It is well substantiated by data from a wind-wave tunnel experiment.In the gravity wave range, the gross form of the high frequency side of the spectrum is proportional tog u * –4, whereg represents the acceleration of gravity,u * the friction velocity, the angular frequency, and the factor of proportionality is 2.0×l0–2. The wind waves grow in such a way that the spectrum slides up, keeping its similar form, along the line of the gross form, on the logarithmic diagram of the spectral density,, versus. Also, the terminal value of, at the peak frequency of the fully developed sea, is along a line of the gradient ofg 2 –5.The fine structure of the spectrum from the wind-wave tunnel experiment shows a characteristic form oscillating around the –4-line. The excess of the energy density concentrates around the peak frequency and the second- and the third-order harmonics, and the deficit occurs in the middle of these frequencies. This form of the fine structure is always similar in the gravity wave range, in purely controlled conditions such as in a wind-wave tunnel. Moving averages of these spectra tend very close to the form proportional to –5.As the wave number becomes large, the effect of surface tension is incorporated, and the –4-line in the gravity wave range gradually continues to a –8/3-line in the capillary wave range, in accordance with the wind-wave tunnel data. Likewise, the –5-line gradually continues to a –7/3-line.Also, through a discussion on these results, is suggested the existence of a kind of general similarity in the structure of wind wave field.  相似文献   

8.
The sea-surface bioproductivity changes over the last 25 kyr were inferred from published data on 30 sediment cores from the open Northwest Pacific (NWP), Sea of Okhotsk, Bering Sea and Sea of Japan accounting for the glacioeustatic sea-level changes. A novel method was developed to compare the variations of several independent productivity proxies relative to the present-day values. During the Last Glacial Maximum, the bioproductivity in the Sea of Okhotsk and the western Bering Sea (BS) was lower than at present, whereas the southern and southeastern Bering Sea and the open NWP are characterized by enhanced bioproductivity. During the early deglacial stage, an increase in bioproductivity was estimated only for the southeastern Bering Sea. High and fairly high bioproductivity was estimated for Heinrich 1 in the open NWP, above the Umnak Plateau and on the Shirshov and Bowers Ridges in the Bering Sea. The high productivity in the Bering Sea, Sea of Okhotsk and NWP during the Bølling/Allerød was caused by the global warming and enhanced nutrient supply by meltwater from the continent. During the Early Holocene, high productivity was estimated for almost the entire NWP. The Late Holocene sea-surface bioproductivity was generally lower than that of the Early Holocene. Proposed factors that have controlled the sea-surface bioproductivity during the last 25 kyr include: the location of the sea ice margin, the river runoff, gradual flooding of the Bering Sea and the Sea of Okhotsk shelf areas, the water mass exchange between the marginal seas and the open NWP, the eolian supply and the deep vertical mixing of the water column.  相似文献   

9.
Assessment was made of residual ratio of North Pacific Intermediate Water (NPIW) produced in subpolar region of the North Pacific using chlorofluorocarbons, CFC-11 and CFC-12 (CCl3F and CCl2F2), along 175°E. NPIW on density horizons less than 26.80 remained more than 80% north of 30°N. It was suggested that new NPIW laterally spreads over the northern North Pacific without hardly being diluted by the surroundings. For density horizons greater than 26.80 north of 30°N, NPIW remained less than 60%. The difference in the residual ratio between <26.80 and >26.80 north of 30°N suggests that NPIW is produced on density horizons less than 26.80, which contacts the atmosphere in the subpolar region, and that NPIW is diluted by upwelling deep water on density horizons greater than 26.80 in high latitude of the North Pacific. NPIW on a density horizon of 26.80 remained about 50% south of 30°N. The decrease in the horizontal distribution of the residual ratio of NPIW suggests that half the new NPIW produced in the subpolar region is laterally spread over the North Pacific with the southward movement of NPIW.  相似文献   

10.
A new set of empirical formulas for the production rate and the number concentration of sea-water droplets on the sea surface are proposed, synthesizing past observation data of sea-salt particles in the sea and water droplets in wind-wave tanks. A new levelz c is introduced as the effective wind-sea surface where seawater droplets are produced. The new formulas are expressed in linear functions in logarithmic scales ofu*2/v p , a parameter to describe overall conditions of airsea boundary processes, whereu * is the friction velocity of air,v the kinematic viscosity of air and p the peak angular frequency of wind-wave part of wave spectra. A model of coexistence of spray droplets and suspended particles near the sea surface is proposed. As for the independent parameter, a comparison between the uses ofu*2/v p and ofu * 3 which was the traditional way of parameterization excluding wave measure, shows that the advantage of usingu*2/v p is statistically significant with a confidence limit 89% in F-test.  相似文献   

11.
Radiocarbon and total carbonate data were obtained near the 1973 GEOSECS stations in the North Pacific along 30°N and along 175°E between 1993 and 1994. In these stations, we estimated radiocarbon originating from atomic bomb tests using tritium, trichlorofluoromethane and silicate contents. The average penetration depth of bomb radiocarbon during the two decades has deepened from 900 m to 1300 m. Bomb radiocarbon inventories above the average value for the whole North Pacific were found widely in the western subtropical region around 30°N both in the 1970s and 1990s, and its area in the 1990s was broader than that in the 1970s. In most of the North Pacific, while the bomb radiocarbon has decreased above 25.4, the bomb radiocarbon flux below 25.4 was over 1 × 1012 atom m-2yr-1 in the subtropical region around 30°N. In the tropical area south of 20°N, the bomb radiocarbon inventory below 25.4 increased from zero to over 10 × 1012 atom m-2 during the last three decades. These distributions suggest that the bomb radiocarbon removed from the surface is currently accumulated with bomb 14C flux of over 1 × 1012 atom m-2yr-1 below 25.4 in the subtropical region, mainly by advection from the higher latitude, and that part of the accumulated bomb 14C gradually spread southward with about 30 years.  相似文献   

12.
A coastal ocean -coordinate model of Monterey Bay (MOB) with realistic bottom topography and coastlines is developed using the Princeton Ocean Model (POM) and grid generation technique (GGT) to study the horizontal pressure gradient errors associated with the MOB steep topography. The submarine canyon in MOB features some of the steepest topography encountered anywhere in the world oceans. The MOB grids are designed using the EAGEAL View and GENIE++ grid generation systems. A grid package developed by Ly and Luong (1993) is used in this study to couple grids to the model. The MOB model is tested with both orthogonal and curvilinear nearly-orthogonal (CNO) grids. The CNO grid has horizontal resolution which varies from 300 m to 2 km, while the resolution of the orthogonal grid is uniform with x = 1.25 km and y = 1.38 km. These grids cover a domain of 180 × 160 km with the same number of grid points of 131 × 131. Vertical resolutions of 25, 35 and 45 vertical sigma levels are tested. The error in the MOB are evaluated in terms of mean kinetic energy and velocity against various grids, vertical, horizontal resolution and distributions, and bottom topography smoothing. Simulations with various grids show that GGT can be used as another tool in reducing -coordinate errors in coastal ocean modeling besides increasing resolution and smoothing bottom topography. Topographical smoothing not only reduces topographic slope, but changes realistic topography. A CNO grid with a high grid density packed along steep slopes and Monterey Submarine Canyon reduces the errors by 40% compared to a rectangular grid with the same number of grid points. The CNO grid is more efficient than the rectangular grid, since it has most of its grids over water. The simulations show that the presented MOB -coordinate model can be used with a confidence regarding horizontal pressure gradient error.  相似文献   

13.
East-west vertical sections centered on Kinmei Seamount (35N, 172E) of potential temperature, salinity, and oxygen, based on recent standard hydrographic measurements, and vertical profiles ofin situ temperature and density ( 4) east of the seamount, based on STD data, show contrasting variability in the deep water characteristics east and west of the seamount. These data are consistent with horizontal variations in water mass properties (temperature-salinity and temperature-oxygen curves) east of the seamount between 2,600–3,900 m but not west of the seamount. East of the seamount on surfaces of constant potential temperature (or density) salinity and oxygen are higher at a station 200 km from the seamount than at stations on either side. From these relations and from known deep water properties of the North Pacific, it is suggested that east of the seamount, between 2,600–3,900 m, the observations are consistent with northward flow, which is interpreted to be a western boundary current with an east-west scale of about 300 km.  相似文献   

14.
Chlorophylla concentrations (Chla) of size-fractionated phytoplankton samples were measured in the western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska during the summer of 1986. Among samples collected in the upper 100 m (total of 210 samples), 207 samples were dominated by micro- (>10 m) or picoplankton (<2 m) and only three samples were represented by nanoplankton (2–10 m). These 207 samples were classified based on the total Chla content into three types: Type H (>1.0 g l–1), Type M (0.5–1.0 g l–1), and Type L (<0.5 g l–1). These types further divided into two subtypes (-p and-m), depending upon dominancy of pico (-p) and microplankton (-m). The phytoplankton community was represented by Type L-p in the Gulf of Alaska, where 80% of the samples fell into this type. It was represented by Type M-p in the western North Pacific and the Oceanic Domain in the Bering Sea, where 53 and 41% of samples were identified as this type, respectively. In the Middle Domain of the Bering Sea, 68% of samples collected below the nitracline was Type H-m, which indicates blooms of microplanton. This type was also observed in the neritic waters near the Aleutian Islands. These types described above are consistent with a general trend that an increase in phytoplankton abundance is attributed to the growth of microplankton. An unusual type occurred above the nitracline of the Middle Domain, where microplankton prevailed, although the total Chla was less (Type L-m). This type represents a feature of late phase of an ice edge bloom. Another unusual type was found mainly in the Outer Domain of the Bering Sea, where the total Chla was high and picoplankton prevailed (Type H-p). The predominance of picoplankton seems to result from the heavy grazing intensity of large calanoid copepods upon microplankton but not upon picoplankton  相似文献   

15.
The vertical distribution of density, salinity, temperature, dissolved oxygen, apparent oxygen utilization, nutrients, preformed phosphate, pH, alkalinity, alkalinity: chlorinity ratio, in situ partial pressure of carbon dioxide, and percent saturation of calcite and aragonite, for the Southeastern Bering Sea, is studied and explained in terms of biological and physical processes. Some hydrological interactions between the Bering Sea and the North Pacific Ocean are explained. The horizontal distribution of dissolved oxygen at 2000 and 2500 m depths, throughout the Bering Sea, indicates that deep water is flowing from the Pacific, through the Kamchatka Strait, and then northward and eastward in the Bering Sea. Based on the dissolved oxygen distribution we estimate roughly that it takes 20 years for the deep waters to move from the Kamchatka Strait to the Southeastern part of the eastern basin. The surface concentration of nutrients is higher in the Bering Sea than in the North Pacific Ocean, probably because of upwelling and intense vertical mixing in the Bering Sea. A multivariable regression analysis of dissolved oxygen as a function of phosphate concentration and potential temperature was applied for the region where the potential temperature-salinity diagram is straight, and the confidence interval of the PO4 coefficient, at the 95% probability level, was found consistent with theRedfield biochemical oxidation model. The calcium carbonate saturation calculations show that the Bering Sea is supersaturated with aragonite in the upper 100 m, and with calcite in the upper 200 m. Below these depths seawater is undersaturated with respect to these two minerals.  相似文献   

16.
The temperature minimum layer, called “dichothermal water”, is a characteristic feature of the North Pacific subarctic gyre. In particular, dichothermal water having a density of approximately 26.6 sigma-theta (σθ), which corresponds to the densest water outcropping in winter in the North Pacific, is seen in the Bering Sea. In order to clarify the water properties, and the area in which and the process by which the dichothermal water is formed, a new seasonal mean gridded climatological dataset with a fine resolution for the Bering Sea and adjacent seas has been prepared using historically accumulated hydrographic data. Although the waters of the Alaskan Stream have temperature minimum layers, their temperature inversions are very weak in climatologies and the core densities of the temperature minimum layers are much lighter than 26.6σθ. On the other hand, in the Bering Sea one can see the robust structure of temperature minimum layers, the core density of the dichothermal water being around 26.6σθ. In addition, it has been found that the properties of the dichothermal water observed in the warming season are almost the same as those in the winter mixed layer. That is, the dichothermal waters are formed in the winter mixed layer in the Bering Sea. Since these waters are found in the Kamchatka Strait, i.e., the main exit of the Bering Sea waters, it can be supposed that the dichothermal waters are exported from the Bering Sea to the Pacific Ocean by the Kamchatka Current. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Vertical distribution of anthropogenic carbon content of the water (exDIC) in the Oyashio area just outside of the Kuroshio/Oyashio Interfrontal Zone (K/O Zone) was estimated by the simple 1-D advection-diffusion model calibrated by the distribution of chlorofluorocarbons (CFCs). The average concentration of exDIC for = 26.60–27.00 is multiplied by the volume transport of Oyashio water into the North Pacific Intermediate Water (NPIW) to estimate the annual transport of exDIC into NPIW through K/O Zone. The estimated transport of exDIC was 0.018–0.020 GtC/y, which corresponds to 15% of the whole total exDIC accumulation in the temperate North Pacific. A simple assessment using the NPIW 1-box model indicates that the current study explains at least 70% of the total annual transport of exDIC into NPIW, and that small exDIC sources for NPIW still exists in addition to K/O Zone.  相似文献   

18.
The wind speeds and significant wave heights observed by the TOPEX altimeter during the first 30 repeat cycles (for about 10 months) are validated by comparing with the data obtained at Japanese Ocean Data Buoy stations. The values of Kuband 0 observed by the altimeter show good agreement with those estimated from the buoy wind speed using the modified Chelton-Wentz algorithm. The wind speeds derived from the Ku-band 0 using the algorithm agree well with the buoy data with an rms difference of 1.99 ms–1. The significant wave heights observed by the altimeter have a systematic bias of 0.3 m.  相似文献   

19.
Observational data on air-sea boundary processes at the Shirahama Oceanographic Tower Station, Kyoto University, obtained in November, 1969, was analyzed and presented as an example representing the structure of growing wind-wave field. The condition was an ideal onshore wind, and the data contained continuous records of the wind speed at four heights, the wind direction, the air and water temperatures, the tides, and the growing wind waves, for more than six hours. The main results are as follows. Firstly, in both of the wind speed and the sea surface wind stress, rather conspicuous variations of about six-minute period were appreciable. Secondly, the three-seconds power law and its lemma expressed byH *=BT *3/2 and=2BT *–1/2, respectively, are very well supported by the data, whereH *(gH/u * 2) andT *(gT/u *) are the dimensionless significant wave height and period, respectively, the wave steepness,u * the friction velocity of air,g the acceleration of gravity, andB=0.062 is a universal constant. Thirdly, the spectral form for the high-frequency side of the spectral maximum is well expressed by the form of()= sgu*–4, where is the angular frequency and() the spectral density. The value of s is determined as 0.062±0.010 from the observational data. There is a conspicuous discrepancy between the spectral shape of wind waves obtained in wind-wave tunnels and those in the sea, the former containing well-defined higher harmonics of the spectral peak, and consequently there is an apparent difference in the values of s also. However, it is shown that the discrepancy of s may be eliminated by evaluating properly the energy level of the spectral form containing higher harmonics.  相似文献   

20.
The vertical transport of PCBs and chlorinated hydrocarbon pesticides such as DDT compounds and HCH (BHC) isomers in the deep sea are discussed on basis of their vertical profiles and the proportion of their adsorbed and dissolved fractions in surface water surveyed in the Western Pacific, Eastern Indian and Antarctic Oceans.All chlorinated hydrocarbons determined were detected with measurable concentrations throughout the water column, even at depths of several thousand meters. The vertical distributions of PCBs and DDT compounds were found to show small variations in concentration throughout the water column, whereas HCH isomer concentrations decreased systematically with depth. A large portion of DDT compounds in surface water was adsorbed on suspended solids, while most of the HCH isomers were present in the filtered water. The proportion of PCBs adsorbed on suspended solids was smaller than the proportion of DDT compounds, but was much greater than that of HCH isomers. These observations suggest that HCH isomers have been slowly scavenged from the surface to the deeper layers in the water column, while PCBs and DDT compounds have been rapidly and abundantly transported downward by sinking particles.The percentages of chlorinated hydrocarbons adsorbed on suspended solids in surface water increased towards the high latitude locations, and the percentage seemed to be proportional to the concentration of suspended solids in the surface water. This implies that the residence time of chlorinated hydrocarbons in the water column will differ significantly among oceans that differ in primary productivity. According to our estimation based on the data presented in this study, the residence time ofHCH in the euphotic zone, the top 100 m of the water column, is more than 2 years, whereas those of PCBs andDDT are less than 1 year. The longest residence time, of from 5 to 10 years, was obtained forHCH in oligotrophic water of the western North Pacific. The shortest value, only 11 to 19 days, was estimated forDDT in the Antarctic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号