首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aftershock hazard maps contain the essential information for search and rescue process, and re-occupation after a main-shock. Accordingly, the main purposes of this article are to study the aftershock decay parameters and to estimate the expected high-frequency ground motions (i.e., Peak Ground Acceleration (PGA)) for recent large earthquakes in the Iranian plateau. For this aim, the Ahar-Varzaghan doublet earthquake (August 11, 2012; M N =6.5, M N =6.3), and the Ilam (Murmuri) earthquake (August 18, 2014 ; M N =6.2) have been selected. The earthquake catalogue has been collected based on the Gardner and Knopoff (Bull Seismol Soc Am 64(5), 1363-1367, 1974) temporal and spatial windowing technique. The magnitude of completeness and the seismicity parameters (a,??b) and the modified Omori law parameters (P,??K,??C) have been determined for these two earthquakes in the 14, 30, and 60 days after the mainshocks. Also, the temporal changes of parameters (a,??b,??P,??K,??C) have been studied. The aftershock hazard maps for the probability of exceedance (33%) have been computed in the time periods of 14, 30, and 60 days after the Ahar-Varzaghan and Ilam (Murmuri) earthquakes. For calculating the expected PGA of aftershocks, the regional and global ground motion prediction equations have been utilized. Amplification factor based on the site classes has also been implied in the calculation of PGA. These aftershock hazard maps show an agreement between the PGAs of large aftershocks and the forecasted PGAs. Also, the significant role of b parameter in the Ilam (Murmuri) probabilistic aftershock hazard maps has been investigated.  相似文献   

2.
We analyzed the most relevant seismic sequences that occurred from 1977 to 2007 in the Friuli-Venezia Giulia region (northeastern Italy) and western Slovenia. The eight aftershock sequences were triggered by low- to moderate-magnitude earthquakes with mainshock duration magnitude ranging from 3.7 to 5.6. The b-value of the Gutenberg–Richter law varies from 0.8 to 1.1. The modified Omori’s modeling of the sequences evidences values of the p exponent ranging from 0.8 to 1.0. Using the Reasenberg and Jones (Science 243:1173–1176, 1989; Science 265:1251–1252, 1994) approach, we computed the probabilistic estimate of the aftershock rates and the largest aftershock in given time intervals. The difference in magnitude between the mainshock and the largest aftershock is calculated according to the modified Båth law and using an approach that considers the partitioning of the radiated seismic energy between mainshock and aftershocks. The partitioning of the radiated seismic energy appears to play a significant role in the evolution of the sequences. We define the parameter R ES as the ratio between the radiated seismic energy of the mainshock and the summation of the seismic energy radiated by the aftershocks. The difference in magnitude between the mainshock and the largest aftershock, calculated with the parameter R ES, agrees well with the observed difference. In most sequences, the parameter R ES decreases very quickly until the occurrence of the largest aftershock and then becomes constant. By analyzing the values of R ES during the early hours following the mainshock, we found that the R ES values after 24 h are well related to the final ones, calculated on the whole sequence, and to the differences in magnitude between the mainshock and the largest aftershock.  相似文献   

3.
On the 27 June 2015, at 15:34:03 UTC, a moderate-sized earthquake of M w 5.0 occurred in the Gulf of Aqaba. Using teleseismic P waves, the focal mechanism of the mainshock was investigated by two techniques. The first technique used the polarities of the first P wave onsets, and the second technique was based on the normalized waveform modeling technique. The results showed that the extension stress has a NE orientation with a shallow southward plunge while the compression stress has a NW trend with a nearly shallow westward plunge, obtaining a strike-slip mechanism. This result agrees well with the typical consequence of crustal deformation resulting from the ongoing extensional to shear stress regime in the Gulf of Aqaba (NE-SW extension and NW-SE compression). The grid search method over a range of focal depths indicates an optimum solution at 15 ± 1 km. To identify the causative fault plane, the aftershock hypocenters were relocated using the local waveform data and the double-difference technique. Considering the fault trends, the spatial distribution of relocated aftershocks demarcated a NS-oriented causative fault, in consistence with one of the nodal planes of the focal mechanism solution, emphasizing the dominant stress regime in the region. Following the Brune model, the estimates of source parameters exhibited fault lengths of 0.29 ≤ L ≤ 2.48 km, moment magnitudes of 3.0 ≤ M w ≤ 5.0, and stress drops of 0.14 ≤ Δσ < 1.14 MPa, indicating a source scaling similar to the tectonic earthquakes related to plate boundaries.  相似文献   

4.
Structures located in seismically active regions may be subjected to mainshock-aftershock (MSAS) sequences. Strong aftershocks significantly affect the hysteretic energy demand of structures. The hysteretic energy, EH,seq, is normalized by mass m and expressed in terms of the equivalent velocity, VD,seq, to quantitatively investigate aftershock effects on the hysteretic energy of structures. The equivalent velocity, VD,seq, is computed by analyzing the response time-history of an inelastic single-degree-of-freedom (SDOF) system with a varying vibration period subjected to 309 MSAS sequences. The present study selected two kinds of MSAS sequences, with one aftershock and two aftershocks, respectively. The aftershocks are scaled to maintain different relative intensities. The variation of the equivalent velocity, VD,seq, is studied for consideration of the ductility values, site conditions, relative intensities, number of aftershocks, hysteretic models, and damping ratios. The MSAS sequence with one aftershock exhibited a 10% to 30% hysteretic energy increase, whereas the MSAS sequence with two aftershocks presented a 20% to 40% hysteretic energy increase. Finally, a hysteretic energy prediction equation is proposed as a function of the vibration period, ductility value, and damping ratio to estimate hysteretic energy for mainshock-aftershock sequences.  相似文献   

5.
An extraordinary earthquake swarm occurred at Rushan on the Jiaodong Peninsula from October 1, 2013, onwards, and more than 12,000 aftershocks had been detected by December 31, 2015. All the activities of the whole swarm were recorded at the nearest station, RSH, which is located about 12 km from the epicenter. We examine the statistical characteristics of the Rushan swarm in this paper using RSH station data to assess the arrival time difference, \(t_{{{\text{S}} \,-\, {\text{P}}}}\), of Pg and Sg phases. A temporary network comprising 18 seismometers was set up on May 6, 2014, within the area of the epicenter; based on the data from this network and use of the double difference method, we determine precise hypocenter locations. As the distribution of relocated sources reveals migration of seismic activity, we applied the mean-shift cluster method to perform clustering analysis on relocated catalogs. The results of this study show that there were at least 16 clusters of seismic activities between May 6, 2014, and June 30, 2014, and that each was characterized by a hypocenter spreading process. We estimated the hydraulic diffusivity, D, of each cluster using envelope curve fitting; the results show that D values range between 1.2 and 3.5 m2/d and that approximate values for clusters on the edge of the source area are lower than those within the central area. We utilize an epidemic-type aftershock sequence (ETAS) model to separate external triggered events from self-excited aftershocks within the Rushan swarm. The estimated parameters for this model suggest that α = 1.156, equivalent to sequences induced by fluid-injection, and that the forcing rate (μ) implies just 0.15 events per day. These estimates indicate that around 3% of the events within the swarm were externally triggered. The fact that variation in μ is synchronous with swarm activity implies that pulses in fluid pressure likely drove this series of earthquakes.  相似文献   

6.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

7.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

8.
An intraplate earthquake doublet, with 11-min delay between the events, devastated the city of Varzeghan in northwestern Iran on August 11, 2012. The first Mw 6.5 strike-slip earthquake, which occurred after more than 200 years of low seismicity, was followed by an Mw 6.4 oblique thrust event at an epicentral separation of about 6 km. While the first event can be associated with a distinct surface rupture, the absence of a surface fault trace and no clear aftershock signature makes it challenging to identify the fault plane of the second event. We use teleseismic body wave inversion to deduce the slip distribution in the first event. Using both P and SH waves stabilize the inversion and we further constrain the result with the surface rupture extent and the aftershock distribution. The obtained slip pattern shows two distinct slip patches with dissimilar slip directions where aftershocks avoid high-slip areas. Using the estimated slip for the first event, we calculate the induced Coulomb stress change on the nodal planes of the second event and find a preference for higher Coulomb stress on the N-S nodal plane. Assuming a simple slip model for the second event, we estimate the combined Coulomb stress changes from the two events on the focal planes of the largest aftershocks. We find that 90% of the aftershocks show increased Coulomb stress on one of their nodal planes when the N-S plane of the second event is assumed to be the correct fault plane.  相似文献   

9.
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum aftershock magnitude of 20 earthquakes with M≥7.5 in Chinese mainland, and then the variation tendency of aftershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum aftershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side of the cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of aftershocks would be high. b) The fault of the M=8.1 Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault, and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. After a comparison analysis, we suggest that the aftershock activity level will not be high in the late period of this earthquake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.  相似文献   

10.
The paper addresses the collection and analysis of new data on aftershocks that occurred within 20 days of the main shock of the December 7, 1988, Spitak earthquake, Mw = 6.8. The data were used to improve the location of aftershock hypocenters and magnitudes. Available data concerning this 20-day period were the least reliable in terms of completeness, representativeness, and the accuracy of hypocenter location and, in particular, estimation of energy classes and magnitudes. New data were retrieved from the records and bulletins of the seismic stations of the regional and global networks. Hypocenter parameters were determined by means of the minimization of wave travel-time residuals and subsequent double-difference hypocenter relocation. Digital records of the Obninsk and Arti seismic stations (Δ = 15°–18°) and five more distant stations (Δ = 34°–53°) were used to more accurately estimate the surface-wave magnitude of the main shock and strongest aftershock. The aftershock catalog of the Spitak earthquake was substantially revised. First, the previous hypocenter locations (Aref’ev et al., 1991) were improved using the double-difference method; second, new data were retrieved from the bulletins of Caucasian seismic stations. The minimum magnitude of completeness (M c = 1.9) of the new catalog for the first 20 days after the main shock (when there were no epicentral observations) is the same as that for the period from December 7, 1988, to December 31, 1989. The new catalog contains information on 2090 aftershocks with magnitude M = 1.9 and more for the period from December 7, 1988, to December 31, 1989. The double-difference method allowed the location of the epicenters of clustered earthquakes to be reliably estimated with a longitude error of no more than 4.6 km, a latitude error of 4 km, and a depth error of 5 km. The new spatial distribution of the aftershock hypocenters is better correlated with the tectonic setting than the old data. The new catalog can be used to assess seismic hazard after strong earthquakes in the region.  相似文献   

11.
The spatial-temporal evolution of seismicity is examined, during the initial impoundment of Pournari reservoir located on Arachthos River (Western Greece), as well as for the next 30 years. The results show that, despite the relatively moderate-to-high seismicity from west to east, there is no remarkable earthquake in the vicinity before the first reservoir impoundment. Immediately after the impoundment (January 1981), and during the first 4 months, a considerable number of low-magnitude seismic events were recorded in the broader area of the dam. Moreover, two independent major events occurred on March 10, 1981 (M L ?=?5.6) and April 10, 1981 (M L ?=?4.7) with focal depths 13 and 10 km, respectively. The detailed analysis of the two corresponding aftershock sequences shows that they present different behaviors (e.g., larger b-value and lower magnitude of the main aftershock) than that of other aftershock sequences in Greece. This seismicity is probably due to triggering, via the water loading mechanism and the undrained response due to a flysch appearance on the reservoir basement. The activation of the thrust fault may be attributed to the bulging of evaporites that characterize the disordered structure of W. Greece, via possible water intake. The detailed processing of the recorded seismicity during the period 1982–2010, in comparison with the variations of Pournari Dam water level, shows an increase of shallow seismicity (h?≤?5 km) in the vicinity of the reservoir up to a 10-km distance—in contrast to the initial period, characterized by a number of deeper events due to the background response change from undrained to drained status.  相似文献   

12.
Attenuation of P and S waves has been investigated in Alborz and north central part of Iran using the data recorded by two permanent and one temporary networks during October 20, 2009, to December 22, 2010. The dataset consists of 14,000 waveforms from 380 local earthquakes (2 < M L < 5.6). The extended coda normalization method (CNM) was used to estimate quality factor of P (Q P) and S waves (Q S) at seven frequency bands (0.375, 0.75, 1.5, 3, 6, 12, 24 Hz). The Q P and Q S values have been estimated at lapse times from 40 to 100 s. It has been observed that the estimated values of Q P and Q S are time independent; therefore, the mean values of Q P and Q S at different lapse times have been considered. The frequency dependence of quality factor was determined by using a power-law relationship. The frequency-dependent relationship for Q P was estimated in the form of (62 ± 7)f (1.03 ± 0.07) and (48 ± 5)f (0.95 ± 0.07) in Alborz region and North Central Iran, respectively. These relations for Q S for Alborz region and North Central Iran have estimated as (83 ± 8)f (0.99 ± 0.07) and (68 ± 5)f (0.96 ± 0.05), respectively. The observed low Q values could be the results of thermoelastic effects and/or existing fracture. The estimated frequency-dependent relationships are comparable with tectonically active regions.  相似文献   

13.
Analysis of the frequency dependence of the attenuation coefficient leads to significant changes in interpretation of seismic attenuation data. Here, several published surface-wave attenuation studies are revisited from a uniform viewpoint of the temporal attenuation coefficient, denoted by χ. Theoretically, χ( f) is expected to be linear in frequency, with a generally non-zero intercept γ?=?χ(0) related to the variations of geometrical spreading, and slope dχ/df = π/Q e caused by the effective attenuation of the medium. This phenomenological model allows a simple classification of χ( f) dependences as combinations of linear segments within several frequency bands. Such linear patterns are indeed observed for Rayleigh waves at 500–100-s and 100–10-s periods, and also for Lg from ~2 s to ~1.5 Hz. The Lg χ( f) branch overlaps with similar linear branches of body, Pn, and coda waves, which were described earlier and extend to ~100 Hz. For surface waves shorter than ~100 s, γ values recorded in areas of stable and active tectonics are separated by the levels of \(\gamma _{D} \approx 0.2 \times 10^{-3}\) s???1 (for Rayleigh waves) and 8 ×10???3 s???1 (for Lg). The recently recognized discrepancy between the values of Q measured from long-period surface waves and normal-mode oscillations could also be explained by a slight positive bias in the geometrical spreading of surface waves. Similarly to the apparent χ, the corresponding linear variation with frequency is inferred for the intrinsic attenuation coefficient, χ i , which combines the effects of geometrical spreading and dissipation within the medium. Frequency-dependent rheological or scattering Q is not required for explaining any of the attenuation observations considered in this study. The often-interpreted increase of Q with frequency may be apparent and caused by using the Q-based model of attenuation and following preferred Q( f) dependences while ignoring the true χ( f) trends within the individual frequency bands.  相似文献   

14.
In this paper we consider the statistics of the aftershock sequence of the m = 7.65 20 September 1999 Chi–Chi, Taiwan earthquake. We first consider the frequency-magnitude statistics. We find good agreement with Gutenberg–Richter scaling but find that the aftershock level is anomalously high. This level is quantified using the difference in magnitude between the main shock and the largest inferred aftershock $ {{\Updelta}}m^{ *}. $ Typically, $ {{\Updelta}}m^{ *} $ is in the range 0.8–1.5, but for the Chi–Chi earthquake the value is $ {{\Updelta}}m^{ *} $  = 0.03. We suggest that this may be due to an aseismic slow-earthquake component of rupture. We next consider the decay rate of aftershock activity following the earthquake. The rates are well approximated by the modified Omori’s law. We show that the distribution of interoccurrence times between aftershocks follow a nonhomogeneous Poisson process. We introduce the concept of Omori times to study the merging of the aftershock activity with the background seismicity. The Omori time is defined to be the mean interoccurrence time over a fixed number of aftershocks.  相似文献   

15.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

16.
In this study, continuous wavelet transform is applied to estimate the frequency-dependent quality factor of shear waves, Q S , in northwestern Iran. The dataset used in this study includes velocigrams of more than 50 events with magnitudes between 4.0 and 6.5, which have occurred in the study area. The CWT-based method shows a high-resolution technique for the estimation of S-wave frequency-dependent attenuation. The quality factor values are determined in the form of a power law as Q S (f)?=?(147?±?16)f 0.71?±?0.02 and (126?±?12)f 0.73?±?0.02 for vertical and horizontal components, respectively, where f is between 0.9 and 12 Hz. Furthermore, in order to verify the reliability of the suggested Q S estimator method, an additional test is performed by using accelerograms of Ahar-Varzaghan dual earthquakes on August 11, 2012, of moment magnitudes 6.4 and 6.3 and their aftershocks. Results indicate that the estimated Q S values from CWT-based method are not very sensitive to the numbers and types of waveforms used (velocity or acceleration).  相似文献   

17.
The Gumbel’s third asymptotic distribution (GIII) of the extreme value method is employed to evaluate the earthquake hazard parameters in the Iranian Plateau. This research quantifies spatial mapping of earthquake hazard parameters like annual and 100-year mode beside their 90 % probability of not being exceeded (NBE) in the Iranian Plateau. Therefore, we used a homogeneous and complete earthquake catalogue during the period 1900–2013 with magnitude M w ? ?4.0, and the Iranian Plateau is separated into equal area mesh of 1° late?×?1° long. The estimated result of annual mode with 90 % probability of NBE is expected to exceed the values of M w 6.0 in the Eastern part of Makran, most parts of Central and East Iran, Kopeh Dagh, Alborz, Azerbaijan, and SE Zagros. The 100-year mode with 90 % probability of NBE is expected to overpass the value of M w 7.0 in the Eastern part of Makran, Central and East Iran, Alborz, Kopeh Dagh, and Azerbaijan. The spatial distribution of 100-year mode with 90 % probability of NBE uncovers the high values of earthquake hazard parameters which are frequently connected with the main tectonic regimes of the studied area. It appears that there is a close communication among the seismicity and the tectonics of the region.  相似文献   

18.
We study the frictional and viscous effects on earthquake nucleation, especially for the nucleation phase, based on a one-degree-of-freedom spring-slider model with friction and viscosity. The frictional and viscous effects are specified by the characteristic displacement, U c, and viscosity coefficient, η, respectively. Simulation results show that friction and viscosity can both lengthen the natural period of the system and viscosity increases the duration time of motion of the slider. Higher viscosity causes a smaller amplitude of lower velocity motion than lower viscosity. A change of either U c (under large η) or η (under large U c) from a large value (U ch for U c and η h for η) to a small one (U cl for U c and η l for η) in two stages during sliding can result in a clear nucleation phase prior to the P-wave. The differences δU c = U ch ? U cl and δη = η h ? η l are two important factors in producing a nucleation phase. The difference between the nucleation phase and the P-wave increases with either δU c or δη. Like seismic observations, the peak amplitude of P-wave, which is associated with the earthquake magnitude, is independent upon the duration time of nucleation phase. A mechanism specified with a change of either η or U c from a larger value to a smaller one due to temporal variations in pore fluid pressure and temperature in the fault zone based on radiation efficiency is proposed to explain the simulation results and observations.  相似文献   

19.
Variations of Earth’s oblateness (J 2) reflect a large scale mass redistribution within the Earth system. The climate effect causing J 2 interannual variations is still not clear, though previous studies indicated it may be related to EI Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). However, we have a new discovery of the significant Antarctic oscillation (AAO) signals in J 2 interannual variations, especially on 4–6 year scales based on cross wavelet and wavelet coherence analysis with 95% confidence test during 1979–2012. The results additionally indicate that the close phase relationship between J 2 and AAO (AAO leading J 2 variations by 3 ± 2 months in phase) is far superior to that between J 2 and ENSO/PDO on 4–6 year scales. In this work, we discuss, for the first time, a possible geophysical mechanism of AAO effecting J 2 variations. The investigations are based on the definition of AAO and its spatial–temporal behavior influencing the large-scale mass movement. Finally, an approximate quantitative estimate of the AAO imprint on J 2 with an emphasis on the atmospheric contribution is made.  相似文献   

20.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号