首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a transversely isotropic medium with vertical axis of symmetry (VTI). Rayleigh wave displacement components in a homogeneous VTI medium contain exp(±krjz), where z is the vertical coordinate, k is the wave number, and j?=?1, 2; rj may be considered as depth-decay factor. In a VTI medium, rj can be a real or imaginary as in an isotropic medium, or it can be a complex depending on the elastic parameters of the VTI medium; if complex, r1 and r2 are complex conjugates. In a homogeneous VTI half space, Rayleigh wave displacement is significantly modified with a phase shift when rj changes from real to complex with variation of VTI parameters; at the transition, the displacement becomes zero when r1?=?r2. In a liquid layer over a VTI half space, Rayleigh waves are dispersive. Here, also Rayleigh wave displacement significantly modified with a phase shift when rj changes from real to complex with a decrease of period. At very low period, phase velocity of Rayleigh waves becomes less than P-wave velocity in the liquid layer giving rise to Scholte waves (interface waves). The amplitudes of Scholte waves with a VTI half space are found to be significantly larger than those with an isotropic half space.  相似文献   

2.
We study the frictional and viscous effects on earthquake nucleation, especially for the nucleation phase, based on a one-degree-of-freedom spring-slider model with friction and viscosity. The frictional and viscous effects are specified by the characteristic displacement, U c, and viscosity coefficient, η, respectively. Simulation results show that friction and viscosity can both lengthen the natural period of the system and viscosity increases the duration time of motion of the slider. Higher viscosity causes a smaller amplitude of lower velocity motion than lower viscosity. A change of either U c (under large η) or η (under large U c) from a large value (U ch for U c and η h for η) to a small one (U cl for U c and η l for η) in two stages during sliding can result in a clear nucleation phase prior to the P-wave. The differences δU c = U ch ? U cl and δη = η h ? η l are two important factors in producing a nucleation phase. The difference between the nucleation phase and the P-wave increases with either δU c or δη. Like seismic observations, the peak amplitude of P-wave, which is associated with the earthquake magnitude, is independent upon the duration time of nucleation phase. A mechanism specified with a change of either η or U c from a larger value to a smaller one due to temporal variations in pore fluid pressure and temperature in the fault zone based on radiation efficiency is proposed to explain the simulation results and observations.  相似文献   

3.
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling twodimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity–stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.  相似文献   

4.
The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh–Taylor magnetic instability at loop footpoints, has been considered. During the τAl/V A ≈ 5?25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh–Taylor instability), a disturbance related to the magnetic field tension B ?(r,t), “escapes” the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz(z ? V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ? 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2I z 3 V A/c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.  相似文献   

5.
During the ruptures of an earthquake,the strain energy.△E,.will be transferred into,at least,three parts,i.e..the seismic radiation energy(E_s),fracture energy(E_g),and frictional energy(E_f),that is,△E = E_s + E_g + E_f.Friction,which is represented by a velocity- and state-dependent friction law by some researchers,controls the three parts.One of the main parameters of the law is the characteristic slip displacement.D_c.It is significant and necessary to evaluate the reliable value of D_c from observed and inverted seismic data.Since D_c controls the radiation efficiency.η_R = E_s/(E_s+ E_g),the value of η_r is a good constraint of estimating D_c.Integrating observed data and inverted results of source parameters from recorded seismograms.the values of E_s and E_g of an earthquake can be measured,thus leading to the value of η_R.The constraint used to estimate the reliable value of D_c will be described in this work.An example of estimates of D_c.based on the observed and inverted values of source parameters of the September 20,1999 M_S 7.6 Chi-Chi(Ji-Ji).Taiwan region,earthquake will be presented.  相似文献   

6.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

7.
The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity (VS). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ VS values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed VS profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent VS information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative VS profiles at the accelerograph station sites. The measured VS profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the VS profile and the observed amplification from vertical array stations is also excellent.  相似文献   

8.
Analysis of the frequency dependence of the attenuation coefficient leads to significant changes in interpretation of seismic attenuation data. Here, several published surface-wave attenuation studies are revisited from a uniform viewpoint of the temporal attenuation coefficient, denoted by χ. Theoretically, χ( f) is expected to be linear in frequency, with a generally non-zero intercept γ?=?χ(0) related to the variations of geometrical spreading, and slope dχ/df = π/Q e caused by the effective attenuation of the medium. This phenomenological model allows a simple classification of χ( f) dependences as combinations of linear segments within several frequency bands. Such linear patterns are indeed observed for Rayleigh waves at 500–100-s and 100–10-s periods, and also for Lg from ~2 s to ~1.5 Hz. The Lg χ( f) branch overlaps with similar linear branches of body, Pn, and coda waves, which were described earlier and extend to ~100 Hz. For surface waves shorter than ~100 s, γ values recorded in areas of stable and active tectonics are separated by the levels of \(\gamma _{D} \approx 0.2 \times 10^{-3}\) s???1 (for Rayleigh waves) and 8 ×10???3 s???1 (for Lg). The recently recognized discrepancy between the values of Q measured from long-period surface waves and normal-mode oscillations could also be explained by a slight positive bias in the geometrical spreading of surface waves. Similarly to the apparent χ, the corresponding linear variation with frequency is inferred for the intrinsic attenuation coefficient, χ i , which combines the effects of geometrical spreading and dissipation within the medium. Frequency-dependent rheological or scattering Q is not required for explaining any of the attenuation observations considered in this study. The often-interpreted increase of Q with frequency may be apparent and caused by using the Q-based model of attenuation and following preferred Q( f) dependences while ignoring the true χ( f) trends within the individual frequency bands.  相似文献   

9.
The boundary value problems most frequently encountered in studies of elastic wave propagation in stratified media can be formulated in terms of a finite number of linear, first order and ordinary differential equations with variable coefficients. Volterra (1887) has shown that solutions to such a system of equations are conveniently represented by the product integral, or propagator, of the matrix of coefficients. In this paper we summarize some of the better known properties of propagators plus numerica methods for their computation. When the dispersion relation is somem th order minor of the integral matrix it is possible to deal withm th minor propagators so that the dispersion relation is a single element of them th minor integral matrix. In this way one of the major sources of loss of numerical accuracy in computing the dispersion relation is avoided. Propagator equations forSH and forP-SV waves are given for both isotropic and transversely isotropic media. In addition, the second minor propagator equations forP-SV waves are given. Matrix polynomial approximations to the propagators, obtained from the method of mean coefficients by the Cayley-Hamilton theorem and the Lagrange-Sylvester, interpolation formula, are derived.  相似文献   

10.
Results of investigation of the lithosphere in the Kamchatka seismic focal zone from dynamic characteristics of earthquake records obtained at regional stations are presented. It is assumed that the specificity of the source zone can be estimated by the relation Cr = K P ? bK S ? c characterizing relative energies (energy classes, according to [Fedotov, 1972]) of short period transverse and longitudinal waves in the source. Azimuthal, spatial, and temporal variations in Cr and their relation to focal mechanisms are examined. Spatiotemporal variations in this parameter are shown to be caused by the influence of variations in the conditions in the source zone (its substance or process) on the radiation of P and S waves.  相似文献   

11.
Stacking velocity V C2, vertical velocity ratio γ 0, effective velocity ratio γ eff, and anisotropic parameter χ eff are correlated in the PS-converted-wave (PS-wave) anisotropic prestack Kirchhoff time migration (PKTM) velocity model and are thus difficult to independently determine. We extended the simplified two-parameter (stacking velocity V C2 and anisotropic parameter k eff) moveout equation from stacking velocity analysis to PKTM velocity model updating and formed a new four-parameter (stacking velocity V C2, vertical velocity ratio γ 0, effective velocity ratio γ eff, and anisotropic parameter k eff) PS-wave anisotropic PKTM velocity model updating and process flow based on the simplified two-parameter moveout equation. In the proposed method, first, the PS-wave two-parameter stacking velocity is analyzed to obtain the anisotropic PKTM initial velocity and anisotropic parameters; then, the velocity and anisotropic parameters are corrected by analyzing the residual moveout on common imaging point gathers after prestack time migration. The vertical velocity ratio γ 0 of the prestack time migration velocity model is obtained with an appropriate method utilizing the P- and PS-wave stacked sections after level calibration. The initial effective velocity ratio γ eff is calculated using the Thomsen (1999) equation in combination with the P-wave velocity analysis; ultimately, the final velocity model of the effective velocity ratio γ eff is obtained by percentage scanning migration. This method simplifies the PS-wave parameter estimation in high-quality imaging, reduces the uncertainty of multiparameter estimations, and obtains good imaging results in practice.  相似文献   

12.
We analyzed receiver function of teleseismic events recorded at twelve Indonesian-GEOFON (IA-GE) broadband stations using nonlinear Neighbourhood Algorithm (NA) inversion and H-k stacking methods to estimate crustal thickness, V p /V s ratios and S-wave velocity structure along Sunda-Banda arc transition zone. We observed crustal thickness of 34–37 km in Timor Island, which is consistent with the previous works. The thick crust (> 30 km) is also found beneath Sumba and Flores Islands, which might be related to the arc-continent collision causing the thickened crust. In Timor and Sumba Islands, we observed high V p /V s ratio (> 1.84) with low velocity zone that might be associated with the presence of mafic and ultramafic materials and fluid filled fracture zone. The high V p /V s ratio observed at Sumbawa and Flores volcanic Islands might be an indication of partial melt related to the upwelling of hot asthenosphere material through the subducted slab.  相似文献   

13.
In this paper, I introduce a novel approach to modelling the individual random component (also called the intra-event uncertainty) of a ground-motion relation (GMR), as well as a novel approach to estimating the corresponding parameters. In essence, I contend that the individual random component is reproduced adequately by a simple stochastic mechanism of random impulses acting in the horizontal plane, with random directions. The random number of impulses was Poisson distributed. The parameters of the model were estimated according to a proposal by Raschke J Seismol 17(4):1157–1182, (2013a), with the sample of random difference ξ?=?ln(Y 1 )-ln(Y 2 ), in which Y 1 and Y 2 are the horizontal components of local ground-motion intensity. Any GMR element was eliminated by subtraction, except the individual random components. In the estimation procedure, the distribution of difference ξ was approximated by combining a large Monte Carlo simulated sample and Kernel smoothing. The estimated model satisfactorily fitted the difference ξ of the sample of peak ground accelerations, and the variance of the individual random components was considerably smaller than that of conventional GMRs. In addition, the dependence of variance on the epicentre distance was considered; however, a dependence of variance on the magnitude was not detected. Finally, the influence of the novel model and the corresponding approximations on PSHA was researched. The applied approximations of distribution of the individual random component were satisfactory for the researched example of PSHA.  相似文献   

14.
The use of seismic direct hydrocarbon indicators is very common in exploration and reservoir development to minimise exploration risk and to optimise the location of production wells. DHIs can be enhanced using AVO methods to calculate seismic attributes that approximate relative elastic properties. In this study, we analyse the sensitivity to pore fluid changes of a range of elastic properties by combining rock physics studies and statistical techniques and determine which provide the best basis for DHIs. Gassmann fluid substitution is applied to the well log data and various elastic properties are evaluated by measuring the degree of separation that they achieve between gas sands and wet sands. The method has been applied successfully to well log data from proven reservoirs in three different siliciclastic environments of Cambrian, Jurassic, and Cretaceous ages. We have quantified the sensitivity of various elastic properties such as acoustic and extended elastic (EEI) impedances, elastic moduli (K sat and K satμ), lambda–mu–rho method (λρ and μρ), P-to-S-wave velocity ratio (V P/V S), and Poisson’s ratio (σ) at fully gas/water saturation scenarios. The results are strongly dependent on the local geological settings and our modeling demonstrates that for Cambrian and Cretaceous reservoirs, K satμ, EEI, V P/V S, and σ are more sensitive to pore fluids (gas/water). For the Jurassic reservoir, the sensitivity of all elastic and seismic properties to pore fluid reduces due to high overburden pressure and the resultant low porosity. Fluid indicators are evaluated using two metrics: a fluid indicator coefficient based on a Gaussian model and an overlap coefficient which makes no assumptions about a distribution model. This study will provide a potential way to identify gas sand zones in future exploration.  相似文献   

15.
Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to quantify such influences, horizontal shear tests on the interfaces between different cushion materials and concrete raft under monotonic and cyclic loading were carried out. The vertical pressure P_v, material type and cushion thickness h_c were taken as variables. Conclusions include: 1) under monotonic loading, P_v is the most significant factor; the shear resistance P_(hmax) increases as P_v increases, but the normalized factor of resistance μ_n has an opposite tendency; 2) for the materials used in this study, μ_n varies from 0.40 to 0.70, the interface friction angle δ_s varies from 20° to 35°, while u_(max) varies from 3 mm to 15 mm; 3) under cyclic loading, the interface behavior can be abstracted as a "three-segment" back-bone curve, the main parameters include μ_n, the displacement u_1 and stiffness K_1 of the elastic stage, the displacement u_2 and stiffness K_2 of the plastic stage; 4) by observation and statistical analysis, the significance of different factors, together with values of K_1, K_2 and μ_n have been obtained.  相似文献   

16.
Based on the theory of two-phase interacting nanoparticles, the formation of thermoremanent and chemical remanent magnetization in nanosized titanomagnetites is modeled. It is shown that the value of thermoremanent magnetization barely depends on the degree of titanomagnetite exsolution whereas, chemical remanent magnetization which emerges during the exsolution increases up to at most the value of thermoremanent magnetization. The values of the ratio of thermoremanent to ideal magnetization, R t , fall within the limits 0.8 ≤ R t ≤ 1. The analogous ratio of chemical remanent magnetization to the ideal R c are below R t at all stages of the exsolution. Besides, the magnetic interaction between the nanoparticles reduces the values of thermoremanent and chemical magnetization but barely affects the ratio.  相似文献   

17.
In this study, we have modeled the density(ρ) and bulk sound velocity(VΦ) profiles of the bottom lower mantle using the experimental thermal equation of state(EoS) parameters of lower-mantle minerals, including bridgmanite, ferropericlase,CaSiO3-perovskite, and post-perovskite. We re-evaluated the literature pressure-volume-temperature relationships of these minerals using a self-consistent pressure scale in order to avoid the long-standing pressure scale problem and to provide more reliable constraints on the thermal EoS parameters. With the obtained thermal EoS parameters, we have constructed the ρ and VΦ profiles of the bottom lower mantle in different composition, mineralogy, and temperature models. Our modelling results show that the variations of chemistry, mineralogy, and temperature have different seismic signatures from each other. The Fe and Al enrichment at the bottom lower mantle can cause an increase in ρ but greatly lower VΦ. A change in mineralogy needs to be considered with the lateral variation in temperature. The cold slabs will be shown as denser regions compared to the normal mantle because of the combined effect of a lower temperature and the presence of a denser post-perovskite at a shallower depth,whereas the hot regions will have a 1–2% lower ρ than the normal mantle. VΦ of both cold slabs and hot regions will be lower than the normal mantle when bridgmanite is the dominant phase in the normal mantle, yet they will be greater once bridgmanite transforms into post-perovskite in the normal mantle. Our modeling also shows that the presence of a(Fe, Al)-enriched bridgmanite thermal pile above the core-mantle boundary will exhibit a seismic signature of enhanced ρ and VΦ, but a reduced VS,which is consistent with the observed seismic anomalies in the large-low-shear-velocity-provinces(LLSVPs). The existence of such a(Fe, Al)-enriched bridgmanite thermal pile thus can help to understand the origin of the LLSVPs. These results provide new insights for the chemical and structure of the deepest lower mantle.  相似文献   

18.
We made an attempt to assess the shear wave velocity values V S and, to a lesser extent, the V P values from ambient noise recordings in an array configuration. Five array sites were situated in the close proximity to borehole sites. Shear wave velocity profiles were modeled at these five array sites with the aid of two computational techniques, viz. spatial autocorrelation (SPAC) and H/V ellipticity. Out of these five array sites, velocity estimates could be reliably inferred at three locations. The shear wave velocities estimated by these methods are found to be quite consistent with each other. The computed V S values up to 30 m depth are in the range from 275 to 375 m/s in most of the sites, which implies prevalence of a low velocity zone at some pocket areas. The results were corroborated by evidence of site geology as well as geotechnical information.  相似文献   

19.
The Aki-Utsu method of Gutenberg-Richter (G-R) b value estimation is often misapplied so that estimations not using the G-R histogram are often meaningless because they are not based on adequate samples. We propose a method to estimate the likelihood Pr(b?b m , N, M 1, M 2) that an observed b m estimate, based on a sample of N magnitudes within an [M 1????≤?ΔM/2,?M 2?+?ΔM/2) range, where ΔM?=?0.1 is the usual rounding applied to magnitudes, is due to a “true” source b value, b, and use these likelihoods to estimate source b ranges corresponding to various confidence levels. As an example of application of the method, we estimate the b values before and after the occurrence of a 7.4-magnitude earthquake in the Mexican subduction zone, and find a difference of 0.82 between them with 100% confidence that the b values are different.  相似文献   

20.
Earth’s bow shock is the result of interaction between the supersonic solar wind and Earth’s magnetopause. However, data limitations mean the model of the shape and position of the bow shock are based largely on near-Earth satellite data. The model of the bow shock in the distant magnetotail and other factors that affect the bow shock, such as the interplanetary magnetic field (IMF) By, remain unclear. Here, based on the bow shock crossings of ARTEMIS from January 2011 to January 2015, new coefficients of the tail-flaring angle α of the Chao model (one of the most accurate models currently available) were obtained by fitting data from the middle-distance magnetotail (near-lunar orbit, geocentric distance -20RE>X>-50RE). In addition, the effects of the IMF By on the flaring angle α were analyzed. Our results showed that: (1) the new fitting coefficients of the Chao model in the middle-distance magnetotail are more consistent with the observed results; (2) the tail-flaring angle α of the bow shock increases as the absolute value of the IMF By increases. Moreover, positive IMF By has a greater effect than negative IMF By on flaring angle. These results provide a reference for bow shock modeling that includes the IMF By.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号