首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We model internal shocks as being caused by collisions of shells of plasma with the same energy flux and a non-zero relative velocity. The contact surface, where the interaction between the shells takes place, can break up either into two oppositely moving shocks (in the frame where the contact surface is at rest), or into a reverse shock and a forward rarefaction. We find that for moderately magnetized shocks (magnetization  σ≃ 0.1  ), the dynamic efficiency in a single two-shell interaction can be as large as 40 per cent. Thus, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. If the slower shell propagates with a sufficiently large velocity, the efficiency is only weakly dependent on its Lorentz factor. Consequently, the dynamic efficiency of shell interactions in the magnetized flow of blazars and gamma-ray bursts is effectively the same. These results are quantitatively rather independent on the equation of state of the plasma. The radiative efficiency of the process is expected to be a fraction   f r < 1  of the estimated dynamic one, the exact value of f r depending on the particularities of the emission processes which radiate away the thermal or magnetic energy of the shocked states.  相似文献   

2.
Initially, inhomogeneous plasma jets, ejected by active galactic nuclei and associated with gamma-ray bursts, are thermalized by the formation of internal shocks. Jet subpopulations can hereby collide at Lorentz factors of a few. As the resulting relativistic shock expands into the upstream plasma, a significant fraction of the upstream ions is reflected. These ions, together with downstream ions that leak through the shock, form relativistic beams of ions that outrun the shock. The thermalization of these beams via the two-stream instability is thought to contribute significantly to plasma heating and particle acceleration by the shock. Here, the capability of a two-stream instability to generate relativistic field-aligned and cross-field electron flow, is examined for a magnetized plasma by means of a particle-in-cell (PIC) simulation. The electrons interact with the developing quasi-electrostatic waves and oblique magnetic fields. The simulation results bring forward evidence that such waves, by their non-linear interactions with the plasma, produce a highly relativistic field-aligned electron flow and electron energies, which could contribute to the radio synchrotron emissions from astrophysical jets, to ultrarelativistic leptonic subpopulations propagating with the jet and to the halo particles surrounding the accretion disc of the black hole.  相似文献   

3.
Active galactic nuclei, X-ray binaries, pulsars and gamma-ray bursts are all believed to be powered by compact objects surrounded by relativistic plasma flows driving phenomena such as accretion, winds and jets. These flows are often accurately modelled by the relativistic magnetohydrodynamic (MHD) approximation. Time-dependent numerical MHD simulations have proven to be especially insightful, but one regime that remains difficult to simulate is when the energy scales (kinetic, thermal, magnetic) within the plasma become disparate. We develop a numerical scheme that significantly improves the accuracy and robustness of the solution in this regime. We use a modified form of the weighted essentially non-oscillatory (WENO) method to construct a finite-volume general relativistic hydrodynamics code called wham that converges at fifth order. We avoid (1) field-by-field decomposition by adaptively reducing down to two-point stencils near discontinuities for a more accurate treatment of shocks and (2) excessive reduction to low-order stencils, as in the standard WENO formalism, by maintaining high-order accuracy in smooth monotonic flows. Our scheme performs the proper surface integral of the fluxes, converts cell-averaged conserved quantities to point-conserved quantities before performing the reconstruction step, and correctly averages all source terms. We demonstrate that the scheme is robust in strong shocks, very accurate in smooth flows and maintains accuracy even when the energy scales in the flow are highly disparate.  相似文献   

4.
We have applied numerical simulations and modeling to the particle acceleration, magnetic field generation, and emission from relativistic shocks. We investigate the nonlinear stage of theWeibel instability and compare our simulations with the observed gamma-ray burst emission. In collisionless shocks, plasma waves and their associated instabilities (e.g., the Weibel, Buneman and other two-stream instabilities) are responsible for particle (electron, positron, and ion) acceleration and magnetic field generation. 3-D relativistic electromagnetic particle (REMP) simulations with three different electron-positron jet velocity distributions and also with an electron-ion plasma have been performed and show shock processes including spatial and temporal evolution of shocks in unmagnetized ambient plasmas. The growth time and nonlinear saturation levels depend on the initial jet parallel velocity distributions. Simulations show that the Weibel instability created in the collisionless shocks accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The nonlinear fluctuation amplitude of densities, currents, electric, and magnetic fields in the electron-positron shocks are larger for smaller jet Lorentz factor. This comes from the fact that the growth time of the Weibel instability is proportional to the square of the jet Lorentz factor. We have performed simulations with broad Lorentz factor distribution of jet electrons and positrons, which is assumed to be created by photon annihilation. Simulation results with this broad distribution show that the Weibel instability is excited continuously by the wide-range of jet Lorentz factor from lower to higher values. In all simulations the Weibel instability is responsible for generating and amplifying magnetic fields perpendicular to the jet propagation direction, and contributes to the electron’s (positron’s) transverse deflection behind the jet head. This small scale magnetic field structure contributes to the generation of “jitter” radiation from deflected electrons (positrons), which is different from synchrotron radiation in uniform magnetic fields. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks. The detailed studies of shock microscopic process evolution may provide some insights into early and later GRB afterglows.  相似文献   

5.
We investigate, independently of specific emission models, the constraints on the value of the bulk Lorentz factor Γ of a fireball. We assume that the burst emission comes from internal shocks in a region transparent to Thomson scattering, and before deceleration caused by the swept-up external matter is effective. We consider the role of Compton drag in decelerating fast-moving shells before they interact with slower ones, thus limiting the possible differences in the bulk Lorentz factor of shells. Tighter constraints on the possible range of Γ are derived by requiring that the internal shocks transform more than a few per cent of the bulk energy into radiation. Efficient bursts may require a hierarchical scenario, where a shell undergoes multiple interactions with other shells. We conclude that fireballs with average Lorentz factors larger than 1000 are unlikely to give rise to the observed bursts.  相似文献   

6.
GRB 990123 was a long, complex gamma-ray burst accompanied by an extremely bright optical flash. We find different constraints on the bulk Lorentz of this burst to be consistent with the speculation that the optical light is emission from the reverse shock component of the external shock. Motivated by this currently favoured idea, we compute the prompt reverse shock emission to be expected for bursts in which multiwavelength observations allow the physical parameters to be constrained. We find that for reasonable assumptions about the velocity of source expansion, a strong optical flash  mV≈9  was expected from the reverse shocks, which were usually found to be mildly relativistic. The best observational prospects for detecting these prompt flashes are highlighted, along with the possible reasons for the absence of optical prompt detections in ongoing observations.  相似文献   

7.
We investigate the recent proposal made by Rees and Mészáros (1994) that GRBs result from internal shocks in the relativistic wind emerging from two coalesced neutron stars. Using a simple model of that wind, where a large number of layers with different Lorentz factors interact through a series of mildly relativistic shocks we compute the efficiency of the process and the time profile of the resulting burst. We show that a great variety of profiles can be obtained using plausible initial distributions of Lorentz factors in the wind. However, the rather low overall efficiency (< 10%) of the process and limits imposed on the burst duration can be used to put severe constraints on the nature of the energy source.  相似文献   

8.
The huge energies involved in gamma-ray bursts (GRBs) coupled with the short emission time scales unavoidably imply that the emitting source is moving relativistically, with a speed close to that of light. Here we present the REM telescope observations of the early-time near-infrared light curves of the GRB 060418 and GRB 060607A afterglows. The detection of the afterglow peak provides for the first time a direct measurement of the initial Lorentz factor Γ0 of the radiating material. We find that the emitting region was indeed highly relativistic in the first seconds after the explosions, with Γ0∼400. Comparison with the Lorentz factor as determined at later epochs provides direct evidence that the emitting shell is decelerating and confirms that the afterglow emission is powered by the dissipation of bulk kinetic energy. The deceleration radius was inferred to be R dec≈1017 cm. This is much larger than the internal shocks radius (believed to power the prompt emission), thus providing further evidence for a different origin of the prompt and afterglow stages of the GRB. Susanna D. Vergani on behalf of the REM collaboration.  相似文献   

9.
We assume that internal shocks of gamma-ray bursts (GRBs) consist of multiple sub-jets with a collimation half-angle of about several times gamma-1i, where gammai is the Lorentz factor of each sub-jet. If by chance a sub-jet is first emitted off-axis from the line of sight, the observed peak energy can be in the X-ray region. Next, if by chance a subsequent sub-jet is emitted along the line of sight, then the peak energy will be in the gamma-ray region and the gamma ray may arrive after the X-ray precursor from the former sub-jet depending on parameters. This model predicts a new class of GRBs with extremely weak and short gamma-ray emission but X-ray precursors and/or postcursors as well as an afterglow.  相似文献   

10.
We investigate the outflow propagation in the collapsar in the context of gamma-ray bursts (GRBs) with 2D relativistic hydrodynamic simulations. We vary the specific internal energy and bulk Lorentz factor of the injected outflow from non-relativistic regime to relativistic one, fixing the power of the outflow to be 1051erg s−1. We observed the collimated outflow, when the Lorentz factor of the injected outflow is roughly greater than 2. To the contrary, when the velocity of the injected outflow is slower, the expanding outflow is observed. The transition from collimated jet to expanding outflow continuously occurs by decreasing the injected velocity. Different features of the dynamics of the outflows would cause the difference between the GRBs and similar phenomena, such as, X-ray flashes.  相似文献   

11.
We consider the synchrotron emission from relativistic shocks assuming that the radiating electrons cool rapidly (either through synchrotron or any other radiation mechanism). It is shown that the theory of synchrotron emission in the fast cooling regime can account for a wide range of spectral shapes. In particular, the magnetic field, which decays behind the shock front, brings enough flexibility to the theory to explain the majority of gamma-ray burst spectra even in the parameter-free fast cooling regime. Also, we discuss whether location of the peak in observed spectral energy distributions of gamma-ray bursts and active galactic nuclei can be made consistent with predictions of diffusive shock acceleration theory, and find that the answer is negative. This result is a strong indication that a particle injection mechanism, other than the standard shock acceleration, works in relativistic shocks.  相似文献   

12.
13.
Relativistic shocks provide an efficient method for high-energy particle acceleration in many astrophysical sources. Multiple shock systems are even more effective and of importance, for example, in the internal shock model of gamma-ray bursts. We investigate the reacceleration of pre-existing energetic particles at such relativistic internal shocks by the first order Fermi process of pitch angle scattering. We use a well established eigenfunction method to calculate the resulting spectra for infinitely thin shocks. Implications for GRBs and relativistic jets are discussed. Paul Dempsey would like to thank IRCSET for their financial support.  相似文献   

14.
We present results from a numerical study of the runaway instability of thick discs around black holes. This instability is an important issue for most models of cosmic gamma-ray bursts, where the central engine responsible for the initial energy release is such a system consisting of a thick disc surrounding a black hole. We have carried out a comprehensive number of time-dependent simulations aimed at exploring the appearance of the instability. Our study has been performed using a fully relativistic hydrodynamics code. The general relativistic hydrodynamic equations are formulated as a hyperbolic flux-conservative system and solved using a suitable Godunov-type scheme. We build a series of constant angular momentum discs around a Schwarzschild black hole. Furthermore, the self-gravity of the disc is neglected and the evolution of the central black hole is assumed to be that of a sequence of exact Schwarzschild black holes of varying mass. The black hole mass increase is thus determined by the mass accretion rate across the event horizon. In agreement with previous studies based on stationary models, we find that by allowing the mass of the black hole to grow the disc becomes unstable. Our hydrodynamical simulations show that for all disc-to-hole mass ratios considered (between 1 and 0.05), the runaway instability appears very fast on a dynamical time-scale of a few orbital periods, typically a few 10 ms and never exceeding 1 s for our particular choice of the mass of the black hole (2.5 M) and a large range of mass fluxes  ( m 10-3 M s-1)  . The implications of our results in the context of gamma-ray bursts are briefly discussed.  相似文献   

15.
We present an internal shock model with external characteristics for explaining the complicated light curves of gamma-ray bursts. Shocks produce gamma-rays in the interaction between a precessing beam of relativistic particles and the interstellar medium. Each time the particle beam passes the same line of sight with the observer the interstellar medium is pushed outward. Subsequent interactions between the medium and the beam are delayed by the extra distance to be travelled for the particles before the shock can form. This results in a natural retardation and leads to an intrinsic asymmetry in the light curves produced for gamma-ray bursts. In addition, we account for the cooling of the electron–proton plasma in the shocked region, which gives rise to an exponential decay in the gamma-ray flux. The combination of these effects and the precessing jet of ultrarelativistic particles produces light curves that can be directly compared with observed gamma-ray burst light curves. We illustrate the model by fitting a number of observed gamma-ray bursts that are difficult to explain with only a precessing jet. We develop a genetic algorithm to fit several observed gamma-ray bursts with remarkable accuracy. We find that for different bursts the observed fluence, assuming isotropic emission, easily varies over four orders of magnitude from the energy generated intrinsically.  相似文献   

16.
We investigate a scenario of photon scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the gamma-ray bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a condition that the isotropically equivalent total energy carried by the hot electrons is large, ∼1052–1056 erg. The scattered emission from a faster shell could appear as a late short γ-ray/MeV flash or become part of the prompt emission depending on the delay of the ejection of the shell.  相似文献   

17.
Particle acceleration in relativistic shocks is not a very well understood subject. Owing to that difficulty, radiation spectra from relativistic shocks, such as those in gamma-ray burst (GRB) afterglows, have been often modelled by making assumptions about the underlying electron distribution. One such assumption is a relatively soft distribution of the particle energy, which need not be true always, as is obvious from observations of several GRB afterglows. In this paper, we describe modifications to the afterglow standard model to accommodate energy spectra which are 'hard'. We calculate the overall evolution of the synchrotron and Compton flux arising from such a distribution. We also model two afterglows, GRB010222 and GRB020813, under this assumption and estimate the physical parameters.  相似文献   

18.
The discovery by Swift that a good fraction of gamma-ray bursts (GRBs) have a slowly decaying X-ray afterglow phase led to the suggestion that energy injection into the blast wave takes place several hundred seconds after the burst. This implies that right after the burst the kinetic energy of the blast wave was very low and in turn the efficiency of production of γ-rays during the burst was extremely high, rendering the internal shocks model unlikely. We re-examine the estimates of kinetic energy in GRB afterglows and show that the efficiency of converting the kinetic energy into γ-rays is moderate and does not challenge the standard internal shock model. We also examine several models, including in particular energy injection, suggested to interpret this slow decay phase. We show that with proper parameters, all these models give rise to a slow decline lasting several hours. However, even those models that fit all X-ray observations, and in particular the energy injection model, cannot account self-consistently for both the X-ray and the optical afterglows of well-monitored GRBs such as GRB 050319 and GRB 050401. We speculate about a possible alternative resolution of this puzzle.  相似文献   

19.
The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse widths, however, there is no correlation be- tween the relative spectral lags and the relative pulse widths. We suspect that the correlations between spectral lags and pulse widths might be caused by the Lorentz factor of the GRBs concerned. Our analysis on the relative quantities suggests that the intrinsic spectral lag might reflect other aspect of pulses than the aspect associated with the dynamical time of shocks or that associated with the time delay due to the curvature effect.  相似文献   

20.
It is believed that orphan afterglow searches can help to measure the beaming angle in gamma-ray bursts (GRBs). Great expectations have been put on this method. We point out that the method is in fact not as simple as we originally expected. As a result of the baryon-rich environment that is common to almost all popular progenitor models, there should be many failed gamma-ray bursts, i.e. fireballs with Lorentz factor much less than  100–1000  , but still much larger than unity. In fact, the number of failed gamma-ray bursts may even be much larger than that of successful bursts. Owing to the existence of these failed gamma-ray bursts, there should be many orphan afterglows even if GRBs are due to isotropic fireballs, then the simple discovery of orphan afterglows never means that GRBs are collimated. Unfortunately, to distinguish between a failed-GRB orphan and a jetted but off-axis GRB orphan is not an easy task. The major problem is that the trigger time is unknown. Some possible solutions to the problem are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号