首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorption by gas and dust in circumstellar Hii regions within primeval galaxies could seriously depress the far-ultraviolet continuum radiation emitted by primeval galaxies. This effect might account for the failure of Partridge (1974) and Davis and Wilkinson (1974) to detect the redshifted radiation from primeval galaxies at optical and near-infrared wavelengths. A primeval galaxy becomes very bright only during the final stages of contraction. Provided that dust can form by the time the primeval galaxy reaches peak luminosity, a significant fraction of the stellar far-ultraviolet radiation is converted into far-infrared. Thus an appropriate spectral region to search for the redshifted integrated background from primeval galaxies lies between 350 , where the 2.7 K microwave background radiation becomes important, and 150 , where other extragalactic discrete sources, such as nearby galactic nuclei, may contribute. The expected IR flux is calculated with Kaufman's (1975) model for the star formation rate in the contracting galaxy. Letz p be the redshift andT g the grain temperature when the primeval galaxy becomes very bright. Unlessz p10 orT g is fairly high, the intensity of the far-infrared radiation from primeval galaxies would be dominated by the high frequency tail of the 2.7 K microwave background. On the other hand, if dust is unimportant, we determine the spectral energy distribution of a primeval galaxy emitted in the range 912 Å to 2050 Å; we find that the luminosities are not very sensitive to the dependence of effective temperatures on metal abundance.  相似文献   

2.
Since supernova remnants (SNRs) are believed to be the primary sources of Galactic cosmic rays (CRs), their distribution in galaxies is an important basis for modelling and understanding the distribution of the CRs and their γ-ray spectrum. We analysed the radial surface density of X-ray and radio selected SNRs in the Large Magellanic Cloud (LMC) and M 33. Both in X-rays and in radio, the surface densities of the SNRs are in excellent agreement in both galaxies, showing an exponential decay in radius. The results were compared to the SNR distribution in the spiral galaxies M 31 and NGC 6946 as well. The radial scale length of the distribution is $\frac{1} {4} $ ? $\frac{1} {3} $ of the radius of the galaxies, fully consistent with values derived for the Milky Way, the LMC, and M 33. Therefore, not only the radio SNRs, but also the X-ray detected SNR sample can be interpreted to be representative for the CR sources within a galaxy.  相似文献   

3.
We analyze the statistical properties of normal galaxies to be detected in the all-sky survey by the eROSITA X-ray telescope of the Spectrum-X-Gamma observatory. With the current configuration and parameters of the eROSITA telescope, the sensitivity of a 4-year-long all-sky survey will be ≈10?14 erg s?1 in the 0.5–2 keV band. This will allow ~(1.5–2) × 104 normal galaxies with approximately the same contribution of star-forming and elliptical galaxies to be detected. All galaxies of the X-ray survey are expected to enter into the existing far-infrared (IRAS) or near-infrared (2MASS) catalogs; the sample of star-forming galaxies will be approximately equivalent in sensitivity to the sample of star-forming galaxies in the IRAS catalog of infrared sources. Thus, a large homogeneous sample of normal galaxies with measured X-ray, near-infrared, and far-infrared fluxes will be formed. About 90% of the galaxies in the survey are located within ~200–400 Mpc. A typical (most probable) galaxy will have a luminosity log L X ~ 40.5–41.0, will be located at a distance of ~70–90 Mpc, and will be either a star-forming galaxy with a star formation rate of ~20M yr?1 whose X-ray emission is produced by ultraluminous X-ray sources (ULXs) or an elliptical galaxy with amass log M * ~ 11.3 emitting through to a hot interstellar gas. The galaxies within 35 Mpc will collectively contain ~102 ULXs with luminosities log L X > 40, ~80% of whichwill be the only luminous source in the galaxy. Thus, although the angular resolution of the eROSITA telescope is too low for the luminosity function of compact sources in galaxies to be studied in detail, the survey data will allow one to investigate its bright end and, possibly, to impose constraints on the maximum luminosity of ULXs.  相似文献   

4.
Arecibo timing and single-pulse observations of 17 pulsars   总被引:1,自引:0,他引:1  
We have analysed the soft X-ray emission in a wide area of the Sculptor supercluster by using overlapping ROSAT Position Sensitive Proportional Counter pointings. After subtraction of the point sources, we have found evidence for extended, diffuse soft X-ray emission. We have investigated the nature of such extended emission through the cross-correlation with the density of galaxies as inferred from the Münster Redshift Survey. In particular, we have analysed the correlation as a function of the temperature of the X-ray emitting gas. We have found a significant correlation of the galaxy distribution only with the softest X-ray emission (0.1 – 0.3 keV) and only for gas temperatures   kT < 0.5 keV  . We have excluded the fact that this soft X-ray diffuse emission, and its correlation with the galaxy distribution, is significantly contributed by unresolved active galactic nuclei, groups of galaxies or individual galaxies. The most likely explanation is that the soft, diffuse X-ray emission is tracing warm–hot intergalactic medium, with temperatures below 0.5 keV, associated with the large-scale structures in the Sculptor supercluster.  相似文献   

5.
The mass density of massive black holes observed locally is consistent with the hard X-ray background provided that most of the radiation produced during their growth was absorbed by surrounding gas. A simple model is proposed here for the formation of galaxy bulges and central black holes in which young spheroidal galaxies have a significant distributed component of cold dusty clouds, which accounts for the absorption. The central accreting black hole is assumed to emit both a quasar-like spectrum, which is absorbed by the surrounding gas, and a slow wind. The power in both is less than the Eddington limit for the black hole. The wind, however, exerts the most force on the gas and, as earlier suggested by Silk & Rees, when the black hole reaches a critical mass it is powerful enough to eject the cold gas from the galaxy, so terminating the growth of both black hole and galaxy. In the present model this point occurs when the Thomson depth in the surrounding gas has dropped to about unity and results in the mass of the black hole being proportional to the mass of the spheroid, with the normalization agreeing with that found for local galaxies by Magorrian et al. for reasonable wind parameters. The model predicts a new population of hard X-ray and submm sources at redshifts above 1, which are powered by black holes in their main growth phase.  相似文献   

6.
Algebraic expressions are obtained for the interaction potential energy of a pair of galaxies in which one is disk shaped and the other spherical. The density distribution in the disk galaxy is represented by a polynomial in ascending powers of the distance from the centre of the disk while the density distribution in the spherical galaxy is represented by the superposition of spherical polytropes of integral indices. The basic functions required for obtaining the interaction potential energy of a coplanar disk-sphere pair of galaxies are tabulated. The forces of attraction between a coplanar disk-sphere pair of galaxies are shown graphically for two density models of disk and spherical galaxies. An overlapping coplanar disk-sphere pair of galaxies attract just like two mass-points at a certain separation,r c, of their centres. The force of attraction is less than that of two mass-points having masses equal to the masses of the two galaxies, if the separation of the centres is less thanr c, and greater if the separation is greater thanr c.For a typical coplanar disk-sphere pair of galaxies (the density of the disk is represented by Model II and of the sphere by a polytropic indexn=4) of equal radii, we note the following. At a separation of 0.79R, R being the common radius of the two galaxies, the force of attraction between the pair is the same as if the entire mass of each galaxy is concentrated at its centre. The mass-point model for the two galaxies will overestimate the force of attraction by more than a factor of 10 if the separation is less than 0.36R. For separation greater than the radii of the galaxies the mass-point model will underestimate the force but the departure in this case is less than 33%.  相似文献   

7.
Using high-quality Hα images of five spiral galaxies, we have studied the luminosity and distribution of the emission from diffuse ionized gas (DIG). The estimated DIG luminosities account for 25–60%of the total Hα emission in each galaxy and analysis of the distribution has shown that the DIG is highly correlated geometrically with the most luminous HII regions of the galaxies. The power required to ionize the DIG is very high. The mean ionization rates per unit surface area of a galaxy disc are of the order of 107 cm-2 s-1. Lyman continuum photons (Lyc) from OB asociations are the most probable sources of this ionization. Here we propose a specific model for these sources: we show that the Lyman photon flux that leaks out of the density-bounded HII regions of the galaxies is more than enough to ionize the measured DIG in the five galaxies analysed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We investigate the relative distribution of the gaseous contents of the Universe (as traced by a sample of Lyα absorbers), and the luminous baryonic matter (as traced by a redshift survey of galaxies in the same volume searched for Lyα absorbers), along 16 lines of sight (LOS) between redshifts 0 and 1. Our galaxy redshift survey was made with the multi-object spectrograph on the Canada–France–Hawaii Telescope and, when combined with galaxies from the literature in the same LOS, gives us a galaxy sample of 636 objects. By combining this with an absorption-line sample of 406 absorbing systems drawn from published works, we are able to study the relationship between gas and galaxies over the latter half of the age of the Universe. A correlation between absorbers and galaxies is detected out to separation of 1.5 Mpc. This correlation is weaker than the galaxy–galaxy correlation. There is also some evidence that the absorbing systems seen in C  iv are more closely related to galaxies, although this correlation could be with column density rather than metallicity. The above results are all consistent with the absorbing gas and the galaxies coexisting in dark matter filaments and knots as predicted by current models where the column density of the absorbing gas is correlated with the underlying matter density.  相似文献   

9.
We present the results of our stellar photometry and spectroscopy for the new Local Group galaxy VV124 (UGC4879) obtainedwith the 6-m BTAtelescope. The presence of a fewbright supergiants in the galaxy indicates that the current star formation process is weak. The apparent distribution of stars with different ages in VV 124 does not differ from the analogous distributions of stars in irregular galaxies, but the ratio of the numbers of young and old stars indicates that VV 124 belongs to the rare Irr/Sph type of galaxies. The old stars (red giants) form the most extended structure, a thick disk with an exponential decrease in the star number density to the edge. Definitely, the young population unresolvable in images makes a great contribution to the background emission from the central galactic regions. The presence of young stars is also confirmed by the [OIII] emission line visible in the spectra that belongs to extensive diffuse galactic regions. The mean radial velocity of several components (two bright supergiants, the unresolvable stellar population, and the diffuse gas) is υ h = −70 ± 15 km s−1 and the velocity with which VV 124 falls into the Local Group is υ LG = −12 ± 15 km s−1. We confirm the distance to the galaxy (D = 1.1 ± 0.1 Mpc) and the metallicity of red giants ([Fe/H] = −1.37) found by Kopylov et al. (2008). VV 124 is located on the periphery of the Local Group approximately at the same distance from M31 and our Galaxy and is isolated from other galaxies. The galaxy LeoA nearest to it is 0.5 Mpc away.  相似文献   

10.
The problem of the formation and evolution of field massive galaxies is briefly reviewed from an observational perspective. The motivations and the characteristics of the K20 survey are outlined. The redshift distribution of K s<20 galaxies, the evolution of the rest-frame K s-band luminosity function and luminosity density to z∼ 1.5, the nature and the role of the red galaxy population are presented. Such results are compared with the predictions of models of galaxy evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We discuss ROSAT HRI X-ray observations of 33 very nearby galaxies, sensitive to X-ray sources down to a luminosity of approximately 1038 erg s−1. The galaxies are selected from a complete, volume-limited sample of 46 galaxies with     for which we have extensive multiwavelength data. For an almost complete subsample with     (29/31 objects) we have HRI images. Contour maps and source lists are presented within the central region of each galaxy, together with nuclear upper limits where no nuclear source was detected. Nuclear X-ray sources are found to be very common, occurring in ∼35 per cent of the sample. Nuclear X-ray luminosity is statistically connected to host galaxy luminosity – there is not a tight correlation, but the probability of a nuclear source being detected increases strongly with galaxy luminosity, and the distribution of nuclear luminosities seems to show an upper envelope that is roughly proportional to galaxy luminosity. While these sources do seem to be a genuinely nuclear phenomenon rather than nuclear examples of the general X-ray source population, it is far from obvious that they are miniature Seyfert nuclei. The more luminous nuclei are very often spatially extended, and H  ii region nuclei are detected just as often as LINERs. Finally, we also note the presence of fairly common superluminous X-ray sources in the off-nuclear population – out of 29 galaxies we find nine sources with a luminosity greater than 1039 erg s−1. These show no particular preference for more luminous galaxies. One is already known to be a multiple SNR system, but most have no obvious optical counterpart and their nature remains a mystery.  相似文献   

12.
The tidal force effects of a spherical galaxy passing head-on through a disk galaxy have been studied at various regions of the disk galaxy and for various orientations of the disk galaxy with respect to the direction of relative motion of the two galaxies. The density distribution of the disk galaxy is taken to be, (r)=ce–4r/R , where c is the central density andR is the radius of the disk. The density distribution of the spherical galaxy is taken to be that of a oolytrope of indexn=4. It is found that as a result of the collision, through the central parts and the outer parts of the disk galaxy remain intact, the region in between these two regions disrupts. Thus a ring galaxy with a nucleus embedded in the ring-i.e., a ring galaxy of the RN-type, is formed.  相似文献   

13.
From the volume-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we construct three samples with g–r color bins , labeled S1–S3, to investigate how other properties of galaxies depend on environment at fixed color. For each sample, we measure the local three-dimensional galaxy density in a comoving sphere with radius equal to the distance to the 5th nearest galaxy for each galaxy, select about 5% galaxies and construct the two subsamples at both extremes of density. Our study suggests that the environmental dependence of luminosity is mainly due to the environmental dependence of galaxy color and the correlation between color and luminosity. In addition, we preferentially conclude that concentration index and morphologies are not strongly correlated with local density at fixed color, and that galaxy color is a galaxy property very predictive of the local environment. Because SDSS spectroscopy is incomplete for bright galaxies at very low redshifts, we also use a volume-limited Main galaxy sample with a lower redshift limit z = 0.05, which contains 94,954 galaxies at 0.05 < z < 0.089 with −22.40 < Mr < −20.16, and reach the same conclusions.Due to the bimodality of the u–r color distribution, we classify galaxies as ‘red’ and ‘blue’, respectively, and further subdivide the samples into star-forming galaxies and passive ones using Hα equivalent width, W0(Hα). Results show that color and star formation activity of galaxies are galaxy properties very predictive of the local environment.  相似文献   

14.
The radio properties ofUhuru X-ray sources with fairly certain extragalactic identifications are described briefly. Radio to X-ray flux ratios are low for rich clusters of galaxies and high for double radio sources. There is some evidence from the Abell 426 (Perseus) and Abell 1367 clusters that a radio galaxy in a rich cluster may be the centre of extended X-ray emission. Nuclei of galaxies have an enormous range in X-ray luminosity; the known range is from 1030 W for our galaxy to 3×1038 W for 3C 273. Unidentified X-ray sources at high galactic latitudes may include new classes of objects with very low radio to X-ray flux ratios or hard X-ray emission.  相似文献   

15.
A radio survey, using the Very Large Array at 20 and 90 cm λ has been carried out in the direction of 46 distant Abell clusters (0.1 ≲ z ≲ 0.3) dominated by a cD galaxy (clusters classified to be Bautz-Morgan I type). A radio source coincident with the cD galaxy was detected in 16 clusters. We find that the radio luminosity function of the cD galaxies at 20cm λ, and below the luminosityP 1.4ghz ≲ 1024.5 W Hz-1, is similar to that of brightest ellipticals in less clustered environments. Above this luminosity, the cDs seem to have a higher probability of becoming radio sources. The effect of optical brightness on radio emission is shown to be the same for the two classes. No significantly large population of very-steep-spectrum sources with spectral index α >1.2 (flux density ∝ frequency) was found to be associated with cD galaxies. A significant negative correlation is found between the radio luminosity of the cD galaxy and the cooling-time of the intra cluster medium near the galaxy. We also present evidence that the probability of radio emission from first-ranked galaxies is dependent upon their location relative to the geometrical centres of clusters and thus related to the morphological class and the evolutionary state of the clusters. We argue that both these effects are primarily caused by the dynamical evolution of these distant clusters of galaxies.  相似文献   

16.
Until recently, few unequivocal detections had been reported of the hot, X-ray emitting gas thought to be associated with the large, coherent structures variously described as supershells or superbubbles in dwarf irregular (dIrr) galaxies. In this contribution we report follow-up XMM-Newton and Chandra observations of our ROSAT detection of X-ray emission associated with the supergiant shell in the nearby dIrr galaxy IC 2574, a member of the M 81 group of galaxies. The spectral properties of the X-ray source suggest that we are dealing with a young (age < 2000 yr) supernova remnant (SNR). This SNR is most likely one of the many supernovae which have exploded in that region and which have created the impressive supergiant HI shell. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Our aim is to explore the relation between gas, atomic and molecular, and dust in spiral galaxies. Gas surface densities are from atomic hydrogen and CO line emission maps. To estimate the dust content, we use the disk opacity as inferred from the number of distant galaxies identified in twelve HST/WFPC2 fields of ten nearby spiral galaxies. The observed number of distant galaxies is calibrated for source confusion and crowding with artificial galaxy counts and here we verify our results with sub‐mm surface brightnesses from archival Herschel ‐SPIRE data. We find that the opacity of the spiral disk does not correlate well with the surface density of atomic (H I) or molecular hydrogen (H2) alone implying that dust is not only associated with the molecular clouds but also the diffuse atomic disk in these galaxies. Our result is a typical dust‐to‐gas ratio of 0.04, with some evidence that this ratio declines with galactocentric radius, consistent with recent Herschel results. We discuss the possible causes of this high dust‐to‐gas ratio; an over‐estimate of the dust surface‐density, an under‐estimate of the molecular hydrogen density from CO maps or a combination of both. We note that while our value of the mean dust‐to‐gas ratio is high, it is consistent with the metallicity at the measured radii if one assumes the Pilyugin & Thuan (2005) calibration of gas metallicity. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We have derived the X-ray luminosities of a sample of galaxies in groups, making careful allowance for contaminating intragroup emission. The L X: L B and L X: L FIR relations of spiral galaxies in groups appear to be indistinguishable from those in other environments, however the elliptical galaxies fall into two distinct classes. The first class is central-dominant group galaxies, which are very X-ray luminous and may be the focus of group cooling flows. All other early-type galaxies in groups belong to the second class, which populates an almost constant band of L X/ L B over the range 9.8< log  L B<11.3 . The X-ray emission from these galaxies can be explained by a superposition of discrete galactic X-ray sources together with a contribution from hot gas lost by stars, which varies a great deal from galaxy to galaxy. In the region where the optical luminosity of the non-central group galaxies overlaps with the dominant galaxies, the dominant galaxies are over an order of magnitude more luminous in X-rays.
We also compared these group galaxies with a sample of isolated early-type galaxies, and used previously published work to derive L X: L B relations as a function of environment. The non-dominant group galaxies have mean L X/ L B ratios very similar to those of isolated galaxies, and we see no significant correlation between L X/ L B and environment. We suggest that previous findings of a steep L X: L B relation for early-type galaxies result largely from the inclusion of group-dominant galaxies in samples.  相似文献   

19.
Detailed three-dimensional numerical simulations of an elliptical galaxy orbiting in a gas-rich cluster of galaxies indicate that gas dynamic stripping is less efficient than the results from previous, simpler calculations by Takeda et al. and Gaetz et al. implied. This result is consistent with X-ray data for cluster elliptical galaxies. Hydrodynamic torques and direct accretion of orbital angular momentum can result in the formation of a cold gaseous disc, even in a non-rotating galaxy. The gas lost by cluster galaxies via the process of gas dynamic stripping tends to produce a colder, chemically enriched cluster gas core. A comparison of the models with the available X-ray data of cluster galaxies shows that the X-ray luminosity distribution of cluster galaxies may reflect hydrodynamic stripping, but also that a purely hydrodynamic treatment is inadequate for the cooler interstellar medium near the centre of the galaxy.  相似文献   

20.
We have used a deep Chandra observation of the central regions of the twin-jet Fanaroff–Riley class I (FRI) radio galaxy 3C 31 to resolve the thermal X-ray emission in the central few kpc of the host galaxy, NGC 383, where the jets are thought to be decelerating rapidly. This allows us to make high-precision measurements of the density, temperature and pressure distributions in this region, and to show that the X-ray emitting gas in the centre of the galaxy has a cooling time of only  5×107 yr  . In a companion paper, these measurements are used to place constraints on models of the jet dynamics.
A previously unknown one-sided X-ray jet in 3C 31, extending up to 8 arcsec from the nucleus, is detected and resolved. Its structure and steep X-ray spectrum are similar to those of X-ray jets known in other FRI sources, and we attribute the radiation to synchrotron emission from a high-energy population of electrons. In situ particle acceleration is required in the region of the jet where bulk deceleration is taking place.
We also present X-ray spectra and luminosities of the galaxies in the Arp 331 chain of which NGC 383 is a member. The spectrum and spatial properties of the nearby bright X-ray source 1E 0104+3153 are used to argue that the soft X-ray emission is mostly due to a foreground group of galaxies rather than to the background broad absorption-line quasar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号