首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global climate change has a wide range of impacts, and this paper presents an investigation on how global warming has changed the relationship between air temperature and latitude & altitude using the meteorological data obtained from 160 stations in China. The investigation indicates that there are very distinct seasonal differences in patterns of temperature variation as a function of latitude and altitude: a very significant latitude effect in winter and a very significant altitude effect in summer. However, with global warming, the latitude effect in winter is weakening and the altitude effect in summer is strengthening. This pattern of change in the relationship between temperature and latitude & altitude is helpful in efforts to reconstruct and explain the past temperature patterns and variations.  相似文献   

2.
The monthly mean suspended sediment concentration in the upper layer of the East China Seas was derived from theretrieval of the monthly binned SeaWiFS Level 3 data during 1998 to 2006.The seasonal variation and spatial distribution of thesuspended sediment concentration in the study area were investigated.It was found that the suspended sediment distribution presentsapparent spatial characteristics and seasonal variations,which are mainly affected by the resuspension and transportation of the sus-pended sediment in the study area.The concentration of suspended sediment is high inshore and low offshore,and river mouths aregenerally high concentration areas.The suspended sediment covers a much wider area in winter than in summer,and for the samesite the concentration is generally higher in winter.In the Yellow and East China Seas the suspended sediment spreads farther to theopen sea in winter than in summer,and May and October are the transitional periods of the extension.Winds,waves,currents,ther-mocline,halocline,pycnocline as well as bottom sediment feature and distribution in the study area are important influencing factorsfor the distribution pattern.If the 10mg L-1 contour line is taken as an indicator,it appears that the transportation of suspended sedi-ment can hardly reach 124°00'E in summer or 126°00'E in winter,which is due to the obstruction of the Taiwan Warm Current andthe Kuroshio Current in the southern Yellow Sea and the East China Sea.  相似文献   

3.
The data of 160 national meteorological observatory (NMO) stations with long-term monthly temperature data for China were analyzed in this study to show the basin-centered summer temperature decrease against global warming in the past half century. The summer and winter isotherm structures of 1950s and 1990s worked out by interpolation show the isotherm structure variations: the isotherm structure generally moves northward in winter, but in summer it is characterized with separate high-temperature and low-temperature centers and the isotherm structure moves inward the centers with global warming, indicating that the temperature in the highland areas increases but that in the lowland areas decreases in the summer of the duration. The possible mechanism of the basin-centered temperature decrease in summer is discussed in this paper.  相似文献   

4.
The data of 160 national meteorological observatory(NMO)stations with long-term monthly temperature data for China were analyzed in this study to show the basin-centered summer temperature decrease against global warming in the past half century. The summer and winter isotherm structures of 1950s and 1990s worked out by interpolation show the isotherm structure variations: the isotherm structure generally moves northward in winter, but in summer it is characterized with separate high-temperature and low-temperature centers and the isotherm structure moves inward the centers with global warming, indicating that the temperature in the highland areas increases but that in the lowland areas decreases in the summer of the duration. The possible mechanism of the basin-centered temperature decrease in summer is discussed in this paper.  相似文献   

5.
A temperature inversion in "Chinese Arctic Research Expedition 1999   总被引:3,自引:1,他引:2  
1 IntroductionTheArcticarea ,asthebackgroundofglobalclimateandenvironment,drawspeo ple’sattentionwithitsimpactonglobalchange (IPCC 1 990 ) .Greatamountofenergyandmassareexchangedbetweentheseaandairwithspecialinterface,air ice seasurface ,inthisarea .Thereforeiti…  相似文献   

6.
The seasonal response of surface wind speed to sea surface temperature(SST)change in the Northern Hemisphere was investigated using 10 years(2002-2011)high-resolution satellite observations and reanalysis data.The results showed that correlation between surface wind speed perturbations and SST perturbations exhibits remarkable seasonal variation,with more positive correlation is stronger in the cold seasons than in the warm seasons.This seasonality in a positive correlation between SST and surface wind speed is attributable primarily to seasonal changes of oceanic and atmospheric background conditions in frontal regions.The mean SST gradient and the prevailing surface winds are strong in winter and weak in summer.Additionally,the eddy-induced response of surface wind speed is stronger in winter than in summer,although the locations and numbers of mesoscale eddies do not show obvious seasonal features.The response of surface wind speed is apparently due to stability and mixing within the marine atmospheric boundary layer(MABL),modulated by SST perturbations.In the cold seasons,the stronger positive(negative)SST perturbations are easier to increase(decrease)the MABL height and trigger(suppress)momentum vertical mixing,contributing to the positive correlation between SST and surface wind speed.In comparison,SST perturbations are relatively weak in the warm seasons,resulting in a weak response of surface wind speed to SST changes.This result holds for each individual region with energetic eddy activity in the Northern Hemisphere.  相似文献   

7.
Future temperature distributions of the marginal Chinese seas are studied by dynamic downscaling of global CCSM3 IPCC_AR4 scenario runs.Different forcing fields from 2080-2099 Special Report on Emissions Scenarios(SRES) B1,A1,and A2 to 1980-1999 20C3M are averaged and superimposed on CORE2 and SODA2.2.4 data to force high-resolution regional future simulations using the Regional Ocean Modeling System(ROMS).Volume transport increments in downscaling simulation support the CCSM3 result that with a weakening subtropical gyre circulation,the Kuroshio Current in the East China Sea(ECS) is possibly strengthened under the global warming scheme.This mostly relates to local wind change,whereby the summer monsoon is strengthened and winter monsoon weakened.Future temperature fluxes and their seasonal variations are larger than in the CCSM3 result.Downscaling 100 years’ temperature increments are comparable to the CCSM3,with a minimum in B1 scenario of 1.2-2.0°C and a maximum in A2 scenario of 2.5-4.5°C.More detailed temperature distributions are shown in the downscaling simulation.Larger increments are in the Bohai Sea and middle Yellow Sea,and smaller increments near the southeast coast of China,west coast of Korea,and southern ECS.There is a reduction of advective heat north of Taiwan Island and west of Tsushima in summer,and along the southern part of the Yellow Sea warm current in winter.There is enhancement of advective heat in the northern Yellow Sea in winter,related to the delicate temperature increment distribution.At 50 meter depth,the Yellow Sea cold water mass is destroyed.Our simulations suggest that in the formation season of the cold water mass,regional temperature is higher in the future and the water remains at the bottom until next summer.In summer,the mixed layer is deeper,making it much easier for the strengthened surface heat flux to penetrate to the bottom of this water.  相似文献   

8.
计算内蒙古测震台网2019-12~2020-11山洞观测数据的加速度功率谱密度(PSD)和相应的概率密度函数(PDF),研究相应台站的背景噪声特征。结果表明,高频段背景噪声的昼夜差异显著,疫情防控期间噪声水平明显低于其他时段;次级微震频段背景噪声季节性变化显著,噪声水平冬季强、夏季弱,随着台站离海岸线距离增大,PSD峰值有逐渐减小的趋势;主微震频段背景噪声在10~20 s均有峰值,峰值冬季最强,春、夏、秋季基本没有差异,不同台站同一季节峰值差异小;长周期段噪声水平四季差异不大,春、夏季略高于秋、冬季。  相似文献   

9.
INTRODUCTIONXuetal.(1993)studiedthebasiccharacteristicsofthethermoclineinthecontinentalshelfandinthedeepsearegionoftheSouthChinaSea(SCS)andthedifferencesbetweenthembyanalyzing1907-1990historicaldataontheSCS.Hepointedoutthatthethermoclineinthedeepsearegionexis…  相似文献   

10.
A numerical study on seasonal variations of the Taiwan Warm Current   总被引:3,自引:0,他引:3  
Princeton Ocean Model (POM) is employed to investigate the Taiwan Warm Current (TWC) and its seasonal variations. Results show that the TWC exhibits pronounced seasonal variations in its sources, strength and flow patterns. In summer, the TWC flows northeast in straight way and reaches around 32°N; it comes mainly from the Taiwan Strait, while its lower part is from the shelf-intrusion of the Kuroshio subsurface water (KSSW). In winter, coming mainly from the shelf-intrusion of the Kuroshio northeast of Taiwan, the TWC flows northward in a winding way and reaches up around 30°N. The Kuroshio intrusion also has distinct seasonal patterns. The shelf-intrusion of KSSW by upwelling is almost the same in four seasons with a little difference in strength; it is a persistent source of the TWC. However, Kuroshio surface water (KSW) can not intrude onto the shelf in summer, while in winter the intrusion of KSW always occurs. Additional experiments were conducted to examine effects of winds and transport through  相似文献   

11.
过去从局地尺度和微尺度优化规划和建筑设计的角度,城市规划与建筑学科的研究者提出了构建城市区域通风廊道的思想。但对目前的特大城市和城市群而言,无论城市热岛还是污染物输送都可能涉及更大尺度范围的区域影响。结合自然地理资源条件,对城市外围待发展区域的风道识别和规划,可能更具有现实意义。本文基于空气动力学粗糙长度计算通风指数,从动力学角度初步识别出北京不同区域的通风潜力:① 利用数值模拟输出的1月和7月平均水平风场发现,在背景风较强的冬季,水平风速的分布与下垫面的粗糙度保持高度一致,在北京城区东北方向存在一条明显的风道,在通过城区时受城市下垫面的拖曳影响出现显著的风速下降,在城市下风方向风速又有所回升;② 与热力分析对比发现,夏季城市外的低温区域与盛行风向相悖,偏南方向上的补偿空间面积比冬季小且与作用空间的温差也小,流向城市的可利用风资源匮乏;③ 基于近地面温度和粗糙长度加权计算后得到通风指数,冬季为0~0.25,夏季为0~0.60,数值越小通风能力越强,受季节热力差异影响,冬季通风能力显著优于夏季。④ 进一步结合数值模拟的风速分布,将通风评价结果划分为4个等级,从北京市全域尺度分冬、夏两季识别了北京市的潜在风道,冬季贯穿南北的风道全长约200 km,从城市外围引入风资源,可有效提高城市自净能力,而在背景风较弱的夏季,风道贯通性较差,气流疏导能力弱,亟待区域联动优化城市群发展规划。  相似文献   

12.
利用2000-2009年中国气象局(CMA)地表太阳辐射台站资料,对欧洲中期天气预报中心(ECMWF)地表太阳下行短波辐射产品进行多时间尺度的计算与分析,检验ECMWF地表辐射产品对于中国地区太阳辐射特征的表现。本文通过聚类分析将中国地区分为8个区域,考虑到ECMWF大气因素对ECMWF地表辐射的影响和大气因子分布的空间异质性,引入地理探测器对ECMWF再分析辐射产品的时空误差进行定量分析,来判明影响ECMWF辐射精度的主要大气因子。结果表明:总体上看,ECMWF地表太阳辐射要高于地面观测数据,月均偏差为18.28W/m2;ECMWF地表太阳辐射表现出季节性差异,夏秋季节明显好于春冬季节,相对偏差较大的数据集中分布在12、1、2和3月,相对偏差较小的数据集中分布在6、7、8和9月;不同区域在冬季和夏季的主导大气影响因子不同,夏季中国西北(1区)、高原(3区)、西南(4区)和四川盆地(5区)地区主导影响因子都是气溶胶,东南(6区)地区的主导影响因子是地表反照率和气溶胶,中东部地区(7区)的主导影响因子是云覆盖率和气溶胶,但是因子解释较小,分别为0.0228和0.0202,东北地区(8区)4个因子均未通过显著性系数检验,因子对相对偏差的变化影响不显著;冬季中国西北(1区)、高原(3区)、中东(7区)、东北(8区)和四川盆地(5区)地区的主导影响因子都是云覆盖率,西南(5区)和东南(6区)地区的辐射主要受到气溶胶的影响。  相似文献   

13.
In this paper, we use the conductivity-temperature-depth (CTD) observation data and a three-dimensional ocean model in a seasonally-varying forcing field to study the barrier layer (BL) in the PN section in the East China Sea (ECS). The BL can be found along the PN section with obviously seasonal variability. In winter, spring and autumn, the BL occurs around the slope where the cold shelf water meets with the warm Kuroshio water. In summer, the BL can also be found in the shelf area near salinity front of the Changjiang (Yangtze) River Dilution Water (YRDW). Seasonal variations of BL in the PN section are caused by local hydrological characteristics and seasonal variations of atmospheric forcing. Strong vertical convection caused by sea surface cooling thickens the BL in winter and spring in the slope area. Due to the large discharge of Changjiang River in summer, the BL occurs extensively in the shelf region where the fresh YRDW and the salty bottom water meet and form a strong halocline above the seasonal thermocline. The formation mechanism of BL in the PN section can be explained by the vertical shear of different water masses, which is called the advection mechanism. The interannual variation of BL in summer is greatly affected by the YRDW. In the larger YRDW year (such as 1998), a shallow but much thicker BL existed on the shelf area. Supported by National Basic Research Program of China (973 Program, No. 2005CB422303 and 2007CB411804), the Key Project of the International Science and Technology Cooperation Program of China (No. 2006DFB21250), the “111 Project” of the Ministry of Education (No. B07036), the Program for New Century Excellent Talents in University, China (No. NECT-07-0781)  相似文献   

14.
利用中国大陆构造环境监测网络的GPS观测资料,结合ERA-Interim模型气压和温度,解算2016年新疆地区GPS测站的大气可降水量,分析该地区大气可降水量的空间分布和季节性变化。结果表明:1)GPS和探空观测获取的大气可降水量具有较好的一致性,均方根误差约为2.7mm;2)新疆地区全年平均大气可降水量在7.0~13.0mm之间,且海拔每升高1km,其含量减少约1.4mm,当测站海拔相近时,大气可降水量随纬度的升高而减少;3)大气可降水量季节性变化明显,夏季为12.0~23.2mm,冬季为1.4~5.5mm,春、秋季大气可降水量差异不大且变化范围介于夏、冬季之间。  相似文献   

15.
近50年中国地表净辐射的时空变化特征分析   总被引:1,自引:0,他引:1  
基于GIS空间分析技术与Mann-Kendall趋势分析方法,对中国陆地区域699个气象站点1961-2010年逐年、季平均地表净辐射进行时空变化特征分析,结果表明:(1)参数拟合后的FAO Penman修正式对模拟站点逐日地表净辐射的总体精度较高,均方根误差为27.9W.m-2,相关系数为0.85,平均相对误差为0.13;(2)全国近50年站点平均地表净辐射在年、季均呈现出较明显的下降过程,年均降幅为0.74W.m-2.10a-1,不同季节的下降幅度存在差异,夏季降幅最大;(3)逐站点分析显示全国大部分站点(59.8%)年均地表净辐射呈显著下降趋势(0.05),东部趋势变化比西部明显,夏季在地表净辐射年际变化中的贡献最大,华北、华中、华南地区的站点在春夏秋季均呈显著下降趋势。  相似文献   

16.
本文对近30 a以来中国上空臭氧总量的时空动态变化特征进行遥感监测与分析。结果表明,中国上空的臭氧总量在持续下降,下降速度低于全球臭氧总量下降速度,而与北半球下降速度基本一致,略低于北半球下降速度。中国臭氧总量每年平均减少0.11%,大约下降0.36 DU,但2000年后中国臭氧总量下降的速度有所减缓,尤其是2005年以来,中国臭氧总量呈上升趋势,这与全球的臭氧总量变化趋势相同。中国臭氧总量的季节变化呈正弦曲线变化,最大和最小值分别出现在3月和10月,平均值大约分别为333.36 DU和284.54 DU。中国臭氧总量季节变化在纬度方向上不明显,而在经度方向上变化较大,同纬度地区臭氧总量,东部地区的大于西部地区的,南北方地区臭氧总量季节变化几乎呈相反的趋势。  相似文献   

17.
Analysis on long-term change of sea surface temperature in the China Seas   总被引:4,自引:0,他引:4  
Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadISST1 and HadSST3). Similar to the Atlantic, SST in the China Seas has been well observed dur-ing the past 107 years. A comparison between the reconstructed (HadISST1) and un-interpolated (HadSST3) datasets shows that the SST warming trends from both datasets are consistent with each other in most of the China Seas. The warming trends are stronger in winter than in summer, with a maximum rate of SST increase exceeding 2.7℃ (100 year)-1 in the East China Sea and the Taiwan Strait during winter based on HadISST1. However, the SST from both datasets experienced a sudden decrease after 1999 in the China Seas. The estimated trend from HadISST1 is stronger than that from HadSST3 in the East China Sea and the east of Taiwan Island, where the difference in the linear SST warming trends are as large as about 1℃ (100 year)-1 when using respectively HadISST1 and HadSST3 datasets. When compared to the linear winter warming trend of the land surface air temperature (1.6℃ (100 year)-1), HadSST3 shows a more reasonable trend of less than 2.1℃ (100 year)-1 than HadISST1’s trend of larger than 2.7℃ (100 year)-1 at the mouth of the Yangtze River. The results also indicate large uncertainties in the estimate of SST warming patterns.  相似文献   

18.
Studies on climate change typically consider temperature and precipitation over extended periods but less so the wind.We used the Cross-Calibrated Multi-Platform(CCMP)24-year wind field data set to investigate the trends of wind energy over the South China Sea during 1988-2011.The results reveal a clear trend of increase in wind power density for each of three base statistics(i.e.,mean,90 th percentile and 99 th percentile)in all seasons and for annual means.The trends of wind power density showed obvious temporal and spatial variations.The magnitude of the trends was greatest in winter,intermediate in spring,and smallest in summer and autumn.A greater trend of increase was found in the northern areas of the South China Sea than in southern parts.The magnitude of the annual and seasonal trends over the South China Sea was larger in extreme high events(i.e.,90~(th) and 99~(th) percentiles)compared to the mean conditions.Sea surface temperature showed a negative correlation with the variability of wind power density over the majority of the South China Sea in all seasons and annual means,except for winter(41.7%).  相似文献   

19.
Antarctic sea-ice oscillation index with a seesaw pattern is defined using NCEP/NCAR reanalysis girds data of monthly Antarctica sea-ice concentration from 1979 to 2002. The relationships between the index of winter and the summer precipitations in China as well as the onset date of the summer East Asia monsoon are presented. The study result shows that the grids of correlation coefficients passed 5% confidence level between Antarctic sea-ice oscillation index and Antarctic sea-ice concentration are more than 1/3 of all grids of Antarctica sea-ice, that means the index can represent 1/3 sea-ice area. The winter index has a significant correlation with abnormal summer (June-August) precipitation in China. The area of positive correlation lies in the Yangtze River basin and its south, and that of negative correlation lies mainly in the north of Yangtze River basin. While the winter index is positive (negative), the onset date of South China Sea monsoon is earlier (later), with a probability of 79% (80%). Consequently, a conceptual model is given in term of discussing the possible process between the winter Antarctic sea ice and the monsoon precipitation in China.  相似文献   

20.
The spatial-temporal characteristics of the barotropic tides and internal tides(ITs) northeast of Taiwan Island are examined, based on a 1-year mooring current observations from May 23, 2017 to May 19, 2018. The results of harmonic tidal analysis show that the barotropic tides are dominated by semidiurnal tides, which is mainly controlled by M_2 tidal components. Moreover, the vertical structures of diurnal and semidiurnal ITs show that the semidiurnal IT shows notable seasonal variation, whereas seasonal variations of the diurnal IT energy is not significant. The semidiurnal IT energy in winter half year is twice that in summer half year. The seasonal variation of semidiurnal IT is mainly modulated by the direction change of the current rather than by the topographic features and stratification. In summer(winter) half year cyclonic(anti-cyclonic) eddies meanly control at this point, so the flow direction is mainly in the southwest(northeast) direction, causing the background flow to flow along(perpendicular to) the isobath. When crossing the isobath, the ITs are generated by the interaction of the barotropic tide and the topography, resulting in the increase of the tidal energy in the winter half year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号