首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about potential environmental impact of nanoparticles. Gold nanoparticles can cause unexpected biological responses. Here, Mytilus edulis were exposed (24h) to gold-citrate nanoparticles (GNP), menadione and both compounds simultaneously (GNP/menadione). Protein ubiquitination and carbonylation were determined in gill, mantle and digestive gland, along with traditional oxidative stress biomarkers; catalase activity and neutral red retention time assay (haemolymph). 2DE gels were performed on gill proteins (menadione; GNP/menadione). Our results reveal that GNP may induce oxidative stress.  相似文献   

2.
Studies were performed on the common mussel, M. edulis L., to determine whether copper (Cu) exposure can affect the extent to which digestive cell proteins are oxidised and whether such oxidative damage is mediated by free radicals. Three age groups of mussels were exposed for 6 -days to environmentally realistic concentrations of Cu and then digestive gland homogenates were examined for evidence of protein carbonyl formation. Significant increases in carbonyls relative to untreated control mussels were seen for the youngest (2–4 year-old) and oldest (≥ 10 year-old) mussels only after exposure for 6 days, followed by recovery from exposure for a further 6 days. Untreated mussels also showed an age-related difference in protein oxidation, with a significantly lower concentration in the youngest animals (2–4 year olds). Copper did not affect the levels of modified tryptophan or tyrosine residues or the extent of total lipid peroxidation in digestive gland homogenate. Significant depletion of total vitamin E (a-tocopherol) was seen only in young and medium-aged mussels following exposure for 6 days. The levels of protein carbonyl groups were increased in digestive cell cytosol and lighter lysosomes but not in heavier lysosomes or digestive gland microsomes following 5 days exposure to Cu. Dihydrohodamine-123 was converted to fluorescent rhodamine-123 following sequestration into digestive cell lysosomes. The results suggest a link between the lysosomal sequestration of copper, a concomitant increase in the production of oxyradicals and the potential for intracellular oxidative damage, as well as an increased capacity for oxidative damage in older animals.  相似文献   

3.
在全球变暖的背景下, 海水温度不断升高、海洋暖化逐渐加剧, 高温严重影响着海洋生物的各种生命过程, 但对于海洋双壳贝类如何应对热应激的研究仍然不足。为此, 开展了以18 °C (CT)为对照组在26 °C (ST)和33 °C (HT)下对厚壳贻贝消化腺组织进行了急性热胁迫下的代谢组学分析,以便于研究其代谢反应。采用LC-MS/MS技术, 并结合生物信息分析手段对差异代谢物进行筛选, 并分析确定相关的代谢通路的变化, 共有2 532种代谢物在厚壳贻贝消化腺中被鉴定。KEGG富集分析用于探索差异代谢物的潜在代谢途径, 共有29条代谢通路被显著富集, 与对照组相比, ST组显著富集于牛磺酸和次牛磺酸代谢、神经活性配体-受体相互作用、鞘脂类代谢和视黄醇代谢等代谢通路; HT组显著富集于酪氨酸代谢、亚油酸代谢、丙氨酸新陈代谢、酪氨酸代谢、色氨酸代谢、苯丙氨酸代谢等代谢通路。研究结果显示, 厚壳贻贝消化腺主要通过调节色氨酸代谢、酪氨酸代谢、鞘脂代谢、苯丙氨酸代谢、氧化磷酸化, 脂肪酸、赖氨酸降解等信号通路应对热应激, 从而帮助维持身体内部环境的稳定状态。上述研究为多视角探究厚壳贻贝耐热机制与应对环境中温度变化的适应性进化提供理论基础。  相似文献   

4.
The effects of water-borne exposure to benzo[a]pyrene (36 h; celite-bound 0.44 mg L(-1) B[a]P) on cytochrome P450 (CYP) and superoxide dismutases (SODs) were examined in digestive gland of the blood clam, Scapharca inaequivalvis. B[a]P accumulation and elimination were rapid, with maximum whole-body concentrations of 1.78 ng g(-1) wet wt after 12 h of treatment, followed by a progressive decline to 0.89 ng g(-1) at 36 h. The presence of B[a]P resulted in an increase in total CYP of digestive gland microsomes from 54+/-14 to 108+/-21 pmol/mg protein (mean+/-SD; p<0.05, 24 h). Increases were also seen in microsomal CYP1A1/1A2-immunopositive protein (50.5 kDa app. mol. wt; p<0.05), but not CYP2E1-immunopositive protein (49 kDa app. mol. wt.), indicating a specific response of the former isoform. Exposure to B[a]P produced a steady increase in Mn-SOD digestive gland activity (p<0.01; p<0.05) but no significant change in Cu/Zn-SOD activity. The respective proteins, measured by western blotting, were not significant induced after B[a]P exposure. Cu/Zn-SOD and Mn-SOD activities were correlated with total CYP levels (r=0.96 and 0.63, respectively), indicating a role for CYP in reactive oxygen species (ROS) production during exposure. Both 'NADPH-independent' and NADPH-dependent metabolism of B[a]P by digestive gland microsomes was seen, producing mainly 1,6-, 3,6- and 6,12-diones, with some phenols and 7,8-dihydrodiol; putative protein adducts were also formed. Redox cycling of the diones may also have contributed to ROS production, leading to the increased SOD activities.  相似文献   

5.
6.
Nutrient deprivation or dietary restriction (DR) confers protection against ageing and stress in many animals and induced lysosomal autophagy is part of this mechanism. The effects of dietary restriction on the toxicity of copper and the polycyclic aromatic hydrocarbon phenanthrene have been investigated in the common marine mussel Mytilus edulis. The findings show that DR-induced autophagy facilitates the recovery of the digestive gland (i.e., molluscan liver analogue) from cell injury caused by both copper and phenanthrene. It is inferred that DR-induced autophagy and lysosomal proteolysis results in improved cellular "housekeeping" through the more efficient removal of oxidatively and pollutant damaged proteins (e.g., protein carbonyls, protein adducts, etc.) and that this contributes to stress resistance.  相似文献   

7.
海水酸化暴露可对海洋生物产生多层面的影响。本研究以潮间带野生与潮下带养殖长牡蛎(不同生境背景)的不同组织(鳃、外套膜及消化腺)为研究对象,分析在室内调控p CO2模拟海水酸化暴露条件下,其基础代谢活动、能量代谢以及氧化应激相关指标的变化情况。结果显示:海水酸化暴露后,两种长牡蛎(Crassostrea gigas)的基础代谢过程均受到了一定抑制作用且受影响程度差异明显。潮间带野生与潮下带养殖长牡蛎的关键生理过程(能量代谢及氧化应激)对海水酸化暴露存在不同的响应变化,表明两种长牡蛎应对海水酸化的调节机制可能存在差异。依据PLS-DA分析结果显示,在所有生理指标中,对样本的差异贡献较高(VIP值1)的指标为:SDH、AST、ATPase、ATP含量、糖原含量、CAT、GST及SOD,表明海水酸化暴露后,在两种长牡蛎的3种组织中上述指标的响应变化程度更大。综合评价分析多个生理指标的整体变化揭示:在海水酸化暴露条件下,潮间带野生长牡蛎比潮下带养殖长牡蛎对海水酸化的生理响应更为剧烈;相比于鳃及消化腺组织,长牡蛎外套膜组织可能受影响更大。  相似文献   

8.
The high concentrations of cadmium recorded in the digestive gland of cephalopods from various temperate and subpolar waters suggest that these molluscs have developed efficient cadmium detoxification mechanisms. The subcellular distribution of cadmium in the digestive gland cells was investigated in seven cephalopod species from the Bay of Biscay (France) and the Faroe Islands. In most species, cadmium was mainly found in the cytosolic fraction of the digestive gland cells, reaching up to 86% of the total cadmium for the squid Loligo vulgaris from the Bay of Biscay. But species with the highest total level of cadmium showed a higher percentage of cadmium associated to insoluble compounds. The quantification of metallothioneins (MTs) by the polarographic method was performed in order to evaluate the involvement of these proteins in the detoxification of the high amounts of bioaccumulated cadmium. Metallothionein levels in cephalopods ranged form 742 +/- 270 to 3478 +/- 1572 microg/g wet weight. No relationship could be established between total cadmium, cytosolic cadmium and MT levels suggesting the occurrence of other Cd-binding ligands. Although these proteins have not been characterised, as cadmium in the digestive gland of cephalopods is mainly associated with soluble ligands, a high potential transfer to predators can be predicted.  相似文献   

9.
Nrf2参与水生动物氧化应激调控的研究进展   总被引:1,自引:0,他引:1  
环境变化会诱导机体活性氧(reactive oxygen species, ROS)水平升高,从而产生氧化应激。氧化应激对所有生物的生存、生长、发育和进化都具有深远的影响。核因子E2相关因子2 (nuclear factor erythroid 2 related factor 2, Nrf2)被公认为细胞氧化应激调控的主导者,与伴侣蛋白Kelch样环氧氯丙烷相关蛋白1 (kelch-like ECH-associated protein 1, Keap1)一起控制数百个解毒酶和抗氧化蛋白编码基因的表达。近年来, Nrf2在水生动物中逐渐获得重视,并在一些模式鱼类如斑马鱼、鲤鱼及其他一些鱼类和水生无脊椎动物中得到研究。介绍了Nrf2的结构以及调控机制,回顾了近年来水生动物Nrf2通路参与氧化应激调控所取得的进展。研究表明, Nrf2在水生动物中广泛存在,在非生物(金属、有机污染物、无机盐、药物及微塑料等)、生物(细菌、病毒、有毒藻类)以及生境变化(冰融、盐胁迫)诱导的氧化应激调控中发挥重要作用。Nrf2一经激活入核,在小Maf蛋白的协助下与抗氧化反应元件(antioxidant-responseelement,ARE)结合,启动一系列ARE驱动基因的表达,并和孕烷X受体(pregnane X receptor, Pxr)、丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)以及芳烃受体(arylhydrocarbonreceptor,AhR)等细胞通路协同作用参与一系列生理过程。Nrf2在水生动物响应环境变化过程中发挥重要的细胞保护机制,有望发展成为抗逆育种潜在的基因靶点。  相似文献   

10.
Organisms have evolved a cellular response called stress protein response that increases their tolerance in adverse environmental conditions. Well known stress proteins that bind essential and toxic metals are metallothionein (MT). The scallop Mizuhopecten yessoensis is the most interesting organism because it is able to accumulate toxic cadmium in its digestive gland. However, in the tissue of the digestive gland of Mizuhopecten yessoensis MT (metallothioneins) have not been found. Eastern scallops, Mizuhopecten yessoensis, were collected from two locations ?? one clean and one polluted site. The concentrations of cadmium (Cd), copper (Cu) and zinc (Zn) were measured in the digestive gland. There was a significant increase in Cd concentrations in this studied tissue. We found that in the presence of cadmium Mizuhopecten yessoensis can induce high molecular proteins. The results of experiments have shown that Cd-binding ligands have a number of properties similar to MT: acetone and temperature stability; the ability to bind some metals, including Cd, Cu and Zn. Protein chromatography (FPLC, Superosa 12) from the digestive gland of scallop M. yessoensis has shown that cadmium is associated with high molecular weight Cd-binding proteins (72 kDa and 43 kDa). The major cadmium-binding protein 72 kDa is glycoprotein. In experiments we have demonstrated that Cd-binding proteins can be induced when there is cadmium exposure. The results of this study strongly suggest that the far eastern scallop Mizuhopecten yessoensis has a unique and well-developed system for the detoxification of heavy metals and it allows for biochemical systems to be maintained in a relatively stable manner in the presence of heavy metals.  相似文献   

11.
It has been shown that the rate of protein synthesis is significantly decreased in various tissues of mussels gathered from a coastal area, characterised by a high level of pollution, when compared with animals collected in the reference unpolluted area. Such a decrease may represent a general stress index. Additional biological parameters, such as amino acid uptake and RNA synthesis, are similarly decreased in the mussels collected from the polluted area.Moreover, it has been demonstrated that in the digestive gland of the animals sampled from the heavy metal polluted area the level of low molecular weight thionein-like Cu-binding proteins is three times higher than in the digestive gland of the control mussels. The increase in the level of metallothionein-like proteins in the digestive gland of the mussels appears to represent a specific stress index directly related to the presence in the sea water of high concentrations of heavy metals.  相似文献   

12.
The use of fish in environmental monitoring has become increasingly important in recent years as anthropogenic substances, many of which function as prooxidants, are accumulating in aquatic environments. We have measured a battery of antioxidant defenses as a measure of oxidative status, as well as protein carbonylation as a measure of oxidative damage, in corkwing wrasse (Symphodus melops) captured near a disused copper mine, where water and sediment are contaminated with heavy metals, and an aluminum smelter, a site contaminated with PAHs. Results were compared to two different reference sites. Fish at the heavy metal site had lower glucose-6-phosphate dehydrogenase activity and elevated protein carbonyls (1.8 times) compared to fish from the reference site. At the PAH site, EROD was increased 2-fold, while total glutathione and methemoglobin reductase concentration, were decreased. No differences were seen in protein carbonyl levels at the PAH site. Measures of both antioxidant defenses and oxidative damage should be used when assessing effects of xenobiotics on oxidative stress in fish species.  相似文献   

13.
Investigations on seasonal variation in oxidative stress biomarkers were carried out on the natural population of green-lipped mussel Perna viridis collected from Bambolim beach area of Goa. Oxidative stress indices such as lipid peroxidation (LPX), hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione transferase (GST), glutathione reductase (GR), reduced glutathione (GSH) and ascorbic acid (ASA) were measured in gills and digestive gland of P. viridis during February, May, August and November. The present study reveals two important aspects regarding the antioxidant defence status of tissues of P. viridis. Firstly, antioxidant capacity of tissues of P. viridis exhibits seasonal variation. Secondly, various components of antioxidant capacity such as oxidative stress markers, levels of antioxidant enzymes and small antioxidant molecules vary differently in tissues with respect to different seasons. Although the oxidative stress status of gills and digestive gland of P. viridis expressed in terms of LPX and H2O2 was the lowest in February, its level was maximal in gills and digestive gland during May and November, respectively. While activities of SOD and GPX of tissues of P. viridis were found to be low in August, activities of CAT and GR were recorded to be low in February. GST activity in gills although remained high in February, in digestive gland elevated values were recorded in August and November. A seasonal variation in the levels of small antioxidant molecules was also noticed. Among non enzymatic antioxidants ASA content of tissues was maximal in May and August in comparison to February and November, but GSH remained high in November. It therefore appears that environmental factors may play a crucial role in regulating the oxidative stress capacity of tissues of P. viridis.  相似文献   

14.
In this study we have investigated protein changes in plasma of juvenile Atlantic cod (Gadus morhua) induced by crude North Sea oil and North Sea oil spiked with alkyl phenols and polycyclic aromatic hydrocarbons, a surrogate produced water composition. Using a proteomic approach, we identified 137 differentially expressed proteins at different levels of crude oil exposure. Many of the induced protein changes occurred at low levels of exposure. The results obtained with protein expression profiles after exposure to oil and surrogate produced water indicate effects on fibrinolysis and the complement cascade, the immune system, fertility-linked proteins, bone resorption, fatty acid metabolism as well as increased oxidative stress, impaired cell mobility and increased levels of proteins associated with apoptosis. Although the number of individuals and samples in this study is limited within each treatment group, the protein changes observed in this study represent a first screening for potential biomarker candidates in cod plasma reflecting potential effects of crude oil and produced water exposure on fish.  相似文献   

15.
Dissolved proteins in seawater samples collected from a coastal area of Tokyo Bay, Sagami Bay and a location off the Kuroshio Current were investigated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and high resolution two-dimensional electrophoresis (2-DE). Four to nine protein bands were detected in SDS-PAGE in the apparent molecular weight (MW) range from 12 kilo Dalton (kDa) to 49 kDa. The 2-DE technique distinguished 10 to 46 protein spots exhibiting isoelectric point (pI)/MW ranging 4.3–9.2/12–63 kDa. The elecrophoretic patterns were similar between the coastal and pelagic samples, as well as previously reported patterns from various pelagic areas. The close similarity of electrophoretic mobility on both SDS-PAGE and 2-DE gels indicates the compositional homogeneity of dissolved proteins in seawater throughout a broad range of marine environments. Proteinaceous dissolved organic matter (DOM) that was unresolved and smeared staining characteristics on both SDS-PAGE and 2-DE gels was first observed in Tokyo Bay waters in the present study and its possible sources are discussed. Although the two protein species, 48 kDa and 39 kDa proteins, have been identified as homologues of Porin P and low molecular weight-alkaline phosphatase of Pseudomonas aeruginosa PAO1, respectively, four strains of P. aeruginosa and two species of Pseudomonas spp. have been newly identified as the source organisms of these proteins using the N-terminal amino acid sequence data determined in previous studies.  相似文献   

16.
Due to the continuous development and production of manufactured nanomaterials or nanoparticles (NPs), their uptake and effects in the aquatic biota represent a major concern. Estuarine and coastal environments are expected to represent the ultimate sink for NPs, where their chemical behavior (aggregation/agglomeration) and consequent fate may be critical in determining the biological impact.Bivalve mollusks are abundant from freshwater to marine ecosystems, where they are widely utilized in biomonitoring of environmental perturbations. As suspension-feeders, they have highly developed processes for cellular internalization of nano- and micro-scale particles (endo- and phagocytosis), integral to key physiological functions such as intra-cellular digestion and cellular immunity.Here we will summarise available information on the effects of different types of NPs in different bivalve species, in particular Mytilus spp. Data on the effects and modes of action of different NPs on mussel hemocytes in vitro demonstrate that cell-mediated immunity represents a significant target for NPs. Moreover, in vivo exposure to NPs indicates that, due to the physiological mechanisms involved in the feeding process, NP agglomerates/aggregates taken up by the gills are directed to the digestive gland, where intra-cellular uptake of nanosized materials induces lysosomal perturbations and oxidative stress. Overall, bivalves represent a particularly suitable model for investigating the effects and mechanisms of action underlying the potential toxicity of NPs in marine invertebrates.  相似文献   

17.
CYP1A-immunopositive protein can be elevated in response to planar PAHs and PCBs in Mytilus sp. digestive gland whilst CYP3A-immunopositive protein has been associated with testosterone 6beta-hydroxylation in fish. Levels of CYP1A- and CYP3A-immunopositive protein were determined in Mytilus galloprovincialis digestive gland microsomes collected from 12 sites in the Mediterranean Sea during May and September 2001. CYP1A-immunopositive protein was significantly highest at contaminated sites whilst CYP3A-immunopositive protein was significantly lowest. A weak negative correlation (r2 = 0.21) was seen between CYP1A- and CYP3A-immunopositive protein. Little evidence of differences at the different sampling times was observed. These results confirm previous work indicating elevation of CYP1A-immunopositive protein in Mytilus sp. digestive gland at contaminated sites. Further study is required to characterise CYP3A-like expression in Mytilus and to elucidate the consequences of possible CYP3A-like down-regulation at contaminated sites.  相似文献   

18.
Crustacea experience periods of starvation during moulting or when limited food availability occurs. The effects of starvation on Crustacea physiological responses have been demonstrated, whereas the effects of starvation on Crustacea immune parameters remain to be more fully studied. In the present study the effects of starvation on immune parameters and antioxidant enzyme activities of the crab Carcinus aestuarii were evaluated for the first time. Treated crabs were starved for 7 days, whereas control crabs were fed daily with mussels. Total haemocyte count (THC), haemocyte diameter and volume, haemocyte proliferation, cell-free haemolymph (CFH) glucose and total protein levels, and phenoloxidase (PO) activity in both haemocyte lysate (HL) and CFH were measured in crabs. In addition, superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in both gills and digestive gland from crabs, in order to evaluate whether starvation induced oxidative stress in C. aestuarii. THC increased significantly in starved crabs, with respect to controls, whereas no significant variations were observed in haemocyte diameter, volume and proliferation. In CFH of starved animals glucose concentration significantly increased, whereas total protein concentration significantly reduced. A significantly higher PO activity was recorded in HL from starved crabs, than in control crabs. Conversely, PO activity did not vary significantly in CFH. Starvation did not cause significant alterations in antioxidant enzyme activities in both gills and digestive gland. Results obtained demonstrated that starvation influenced crab immune parameters, but did not induce oxidative stress. Results also indicated that C. aestuarii can modulate its cellular and biochemical parameters in order to cope with starvation.  相似文献   

19.
本实验以新月菱形藻为受试生物,研究了低浓度不同粒径TiO2颗粒(21nm、60nm和400nm)对海洋微藻生长、抗氧化酶活性(超氧化物歧化酶SOD、过氧化氢酶CAT和过氧化物酶POD)、脂质过氧化产物(MDA)含量的影响,并测定了相应的活性氧自由基(ROS)的含量,初步探讨了TiO2颗粒对海洋微藻的作用机制。结果表明,1mg/L TiO2颗粒对新月菱形藻生长的抑制作用随着粒径的减小而逐渐增强,第48h、72h、96h呈现出显著的纳米效应。TiO2颗粒可以诱导藻细胞内ROS的含量增加,对藻细胞产生氧化胁迫,新月菱形藻的抗氧化酶活性发生应激响应,以清除过量的ROS,但剩余的ROS对藻细胞产生氧化损伤,导致MDA含量升高,并且纳米级TiO2颗粒对新月菱形藻的氧化损伤大于微米级颗粒。在不同粒径TiO2颗粒的胁迫下,藻细胞SOD和CAT活性的响应也存在差异。本研究将为开展人工纳米材料对海洋生态系统影响的潜在风险评估提供科学依据。  相似文献   

20.
The present study aimed to obtain additional data on the effect of long-term depuration on the levels of oxidative stress biomarkers, and to clarify the role of mullets for monitoring pollution in River Douro estuary. Mullets chronically exposed to a mixture of contaminants in Douro estuary were captured in Spring of 2001, 2002 and 2003. The activities of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX); and oxidative damages in lipids (lipid peroxidation) and in proteins (protein carbonyl content) were assessed at capture day and after transfer to unpolluted seawater for 1, 4 and 8 months. An overall decrease in the activities of the antioxidant enzymes was detected, except for the GPX after 4 months depuration. CAT activity exhibited the more significant decrease at the end of the long-term depuration. The decrease in SOD activity after 1 month of depuration was then maintained during the remaining depuration period. Regarding oxidative damages, a decrease in lipid peroxidation as well as the content of oxidised proteins was observed during depuration. Indeed, at capture the activities of antioxidant defences were higher as a result of the formation of reactive oxygen species (ROS) from the metabolism of pollutants. The oxidative damaged molecules were repaired or degraded during the depuration period, supporting the use of such damages as indicators of exposure to pro-oxidant pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号