首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Major, trace and rare earth elements (REE) concentration of the Eocene limestones, Jaisalmer Basin, Rajasthan, India are analysed to reconstruct the depositional conditions and to identify sources of REEs. Among the major oxides, CaO is the dominant oxide followed by SiO2 in the studied limestones. Trace element Ba dominates over the other trace elements and it shows negative correlation with CaO. The Sr, occurring in small concentration, shows positive correlation with CaO. Other trace elements such as V, Zr, Sc, Y, Rb, Ni, Pb Co, Cu, U occur in small concentrations. The studied limestones show a positive correlation of ΣREE with Fe2O3, Ni, Th, Sc, and Y. These limestones possess sea-water like shale-normalized REE + Y pattern with light REE depletion, slight Gd enrichment, slightly positive La anomaly, positive Y anomaly, positive Eu anomaly, negative Ce anomaly and superchondritic Y/Ho ratio from 23.12 to 28.57. The dominance of CaO and low percentage of MgO suggest that mineral phase is calcite and there is absence of dolomitization. The occurrence of SiO2 and Al2O3 in appreciable percentages may be because of the siliciclastic input during the limestone precipiatetion. The low concentration of Uranium (0.4-3.7) and authigenic Uranium (Average Total U-Th/3 value = 0.74) indicate that the studied limestones were precipitated in oxic condition from seawater. The depletion of LREE suggests that the limestones were precipitated from the seawater. The positive correlation of ΣREE with Al2O3 Fe2O3, Ni, Th, Sc, and Y and negative correlation with CaO suggest an input of siliciclastic sediments from the land during limestone precipitation. The negative Ce anomaly, slightly positive La anomaly, slight Gd enrichment, positive Y anomaly, and positive Eu anomaly also suggest that the limestone was precipitated from the seawater with some siliciclastic input from continent. The low values of the Y/Ho ratio (23.12 to 28.57) in the studied limestones suggest some modification of the seawater by the input of freshwater in a coastal environment. The REEs of the studied limestones are correlable with the shallow sea water REEs with exception of a few elements. We envisage a coastal/shallow marine depositional environment where mixing of the continental material in sea water appears feasible.  相似文献   

2.
Perchlorate and iodide concentrations were determined in brown (Undaria pinnatifida and Laminaria japonica) and red (Porphyra sp.) edible seaweeds, which are commonly consumed by Korean people, with the use of ion chromatography, coupled with a tandem mass spectrometer. Seaweeds (i.e., good sources of iodine) are among the most important plant life in the ocean and commonly consumed as food and nutritional supplement in South Korea. All seaweed samples were purchased from different regions in South Korea. The detected concentrations of perchlorate were as follows: 19.7–620.7 μg kg?1 dry weight (n = 11, mean concentration = 149.2 μg kg?1 dry weight) for L. japonica and 7.3–21.7 μg kg?1 dry weight (mean concentration = 10.6 μg kg?1 dry weight) for U. pinnatifida. Of the 11 samples of Porphyra sp., only 1 sample showed 6.7 μg kg?1 dry weight perchlorate. The concentrations of iodide in all seaweed samples varied from 0.44 to 6,800 mg kg?1 dry weight. L. japonica samples (n = 11) had significantly higher iodide concentrations, with a mean of 5,261 mg kg?1 dry weight. The bioconcentration factor values for perchlorate and iodide in the three different seaweeds varied widely and showed similar variation trends. The trend for perchlorate and iodide was Porphyra sp. < U. pinnatifida < L. japonica. The results have provided growing evidence that perchlorate frequently occurs in food products.  相似文献   

3.
This study reports a robust procedure that permits precise measurement of all fourteen naturally occurring rare earth element (REE) concentrations, present at ng kg?1 to sub ng kg?1 levels, in ~ 100 ml seawater. This procedure is simple and can be routinely applied to measure seawater REEs with relatively high sample throughput. The procedure involves addition of a 142Ce‐145Nd‐171Yb‐enriched spike mixture, iron co‐precipitation, REE purification with chromatographic separation and the use of a magnetic‐sector‐field ICP‐MS (Element 2) coupled with a desolvating sample introduction system (Aridus 1). Critical steps of the procedure, including co‐precipitation pH and matrix removal, have been optimised through a set of experiments described here. The accuracy of the new procedure was assessed against a gravimetric mixture of REEs, and the precision was demonstrated by repeated measurement of two well‐mixed natural seawaters. Repeated analyses of these seawater reference materials (RMs), using ~ 100 ml seawater for each aliquot, indicate precision of 3% (1s) for the REEs. Measured REE concentrations of two uncertified seawater RMs (CASS‐4 and NASS‐5) are consistent with published values, and REE concentrations of the GEOTRACES intercalibration samples show good agreement with those reported by other participant laboratories. REE concentrations for other intercalibration samples (SAFe and Arctic PS70) are also reported.  相似文献   

4.
The sediments recovered during DSDP Leg 92 (Site 598) include a complete 16 m.y. record of hydrothermal sedimentation along the western flank of the East Pacific Rise at 19°S. Fifty samples from this sediment column were analyzed to test the hypothesis that the REE composition of the hydrothermal component is primarily acquired via scavenging from seawater. Site 598 provides an ideal sample suite for this purpose: the sediments are lithologically “simple,” primarily consisting of a mixture of hydrothermal materials and biogenous carbonates; the composition of the hydrothermal component is essentially constant through space and time; and the sediments have undergone minimal diagenetic alteration.The following observations suggest the above-stated hypothesis is true. The Ce anomaly as well as key indices of light and heavy REE behavior all show that the REE pattern of hydrothermal sediments approaches that of seawater with increasing paleodistance from the rise crest. Moreover, shale-normalized REE patterns are similar to that of seawater, varying only in absolute REE content: the REE content increases with distance from the paleo-rise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Based on significant correlative relationships between paleodistance from the rise crest and both the concentration and mass accumulation rates (MARs) of REEs and Fe, we conclude the REEs in the hydrothermal component are derived from the interaction of seawater and Fe in the hydrothermal plume.  相似文献   

5.
《Applied Geochemistry》1998,13(7):861-884
Concentrations of the rare earth elements (REE), Th and U have been determined in thermal waters emerging from a number of locations in and around the Idaho Batholith. Previous investigators have suggested that the source of heat for the geothermal systems studied is the radioactive decay of K, Th and U which are enriched in the rocks through which the fluids flow. Thus, knowledge of the behavior of REE, Th and U in these systems may contribute to a better understanding of the potential consequences of the interaction of hydrothermal fluids with deeply buried nuclear waste. Such studies may also lead to the possible use of REE as an exploration tool for geothermal resources. The thermal waters investigated may be characterized as near-neutral to slightly alkaline, dilute, NaHCO3-dominated waters with relatively low temperatures of last equilibration with their reservoir rocks (<200°C). REE, Th and U concentrations were measured using Fe(OH)3 coprecipitation, followed by ICP-MS, which yielded detection limits of 0.01–0.003 μg/l for each element, depending on the volume of fluid sample taken. The concentrations of REE, Th and U measured (from <0.1 up to a few μg/l) are 3–5 orders of magnitude less than chondritic, in agreement with concentrations of these elements measured in other similar continental geothermal systems. The REE exhibit light REE-enriched patterns when normalized to chondrite, but when normalized to NASC or local granites, they exhibit flat or slightly heavy REE-enriched trends. These findings indicate that the REE are either taken up in proportion to their relative concentrations in the source rocks, or that the heavy REE are preferentially mobilized. Concentrations of REE and Th are often higher in unfiltered, compared to filtered samples, indicating an important contribution of suspended particulates, whereas U is apparently truly dissolved. In some of the hot springs the REE concentrations exhibit marked temporal variations, which are greater than the variations observed in major element concentrations, alkalinity and temperature. There are also variations in the fluid concentrations of REE, Th and U related to general location within the study area which may be reflective of variations in the concentrations of these elements in the reservoir rocks at depth. Thermal waters in the southern and central parts of the field area all contain ∑REE concentrations exceeding 0.1 μg/l (up to as high as 3 μg/l), Th exceeding 0.2 μg/l and U generally <0.4 μg/l. In contrast, thermal waters from the northern area contain lower ∑REE (<0.6 μg/l) and Th (<0.1 μg/l), but higher U (>3.0 μg/l). Using experimentally measured and theoretically estimated thermodynamic data, the distribution of species for La, Ce and Nd have been calculated and also the solubility of pure, endmember (La, Ce, Nd) phosphate phases of the monazite structure in selected hot spring fluids. These calculations indicate that, at the emergence temperatures, CO2−3 and OH complexes of the REE are the predominant species in the thermal waters, whereas at the deep-aquifer temperatures, OH complexes predominate. In these thermal waters, monazite solubility is strongly prograde with respect to temperature, with solubility often decreasing several orders of magnitude upon cooling from the deep-aquifer to the emergence temperature. At the surface temperature, calculated monazite solubilities are, within the uncertainty of the thermodynamic data, comparable to the REE concentrations measured in the filtered samples, whereas at the deep-aquifer temperature, monazite solubilities are generally several orders of magnitude higher than the REE concentrations measured in the filtered or unfiltered samples. Therefore, a tentative model is suggested in which the thermal fluids become saturated with respect to a monazite-like phase (or perhaps an amorphous or hydrated phosphate) upon ascent and cooling, followed by subsequent precipitation of that phase. The temporal variations in REE content can then be explained as a result of sampling variable mixtures of particulate matter and fluid and/or variable degrees of attainment of equilibrium between fluid and solid phosphate.  相似文献   

6.
ABSTRACT

Three kinds of multicomponent diffusion effects, arising from three distinct physical mechanisms, are evident in stranded diffusion profiles at the rims of partially resorbed garnets from the contact aureole of the Makhavinekh Lake Pluton, northern Labrador. Profiles that display a subtle maximum in Ca concentration are explained by the prevailing ideal mean-field theory of multicomponent diffusion, but models implementing that theory cannot replicate inverted profiles for Li and internal maxima for Nd, Sm, and Eu. The anomalous profiles are quantitatively reproduced, however, by numerical simulations employing a model based on coupled movement of charge-compensating groups during diffusional transport of yttrium and the rare-earth elements (Y+REEs). An alkali-type charge-compensation mechanism for the heterovalent substitution of Y+REEs on dodecahedral sites in garnet produces direct charge coupling between Li+ and (Y+REE)3+ and leads to co-diffusion of Li+-(Y+REE)3+ pairs, with the result that Li profiles closely mimic those for Y+REEs. A menzerite-type charge-compensation mechanism produces indirect charge coupling among all Y+REE components, with the result that the fluxes of low-abundance REEs become partly dependent on the fluxes of Y+REEs present in higher abundance. These findings have implications for the robustness of Li profiles in garnet as monitors of fluid–rock interaction, for geochronology based on the Sm–Nd and Lu–Hf systems, and for future experimental attempts to quantify rates of diffusion in garnet.  相似文献   

7.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl, F, OH, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter.  相似文献   

8.
Porewater (i.e., groundwater) samples were collected from multi-level piezometers across the freshwater-saltwater seepage face within the Indian River Lagoon subterranean estuary along Florida’s (USA) Atlantic coast for analysis of the rare earth elements (REE). Surface water samples for REE analysis were also collected from the water column of the Indian River Lagoon as well as two local rivers (Eau Gallie River, Crane Creek) that flow into the lagoon within the study area. Concentrations of REEs in porewaters from the subterranean estuary are 10-100 times higher than typical seawater values (e.g., Nd ranges from 217 to 2409 pmol kg−1), with submarine groundwater discharge (SGD) at the freshwater-saltwater seepage face exhibiting the highest REE concentrations. The elevated REE concentrations for SGD at the seepage face are too high to be the result of simple, binary mixing between a seawater end-member and local terrestrial SGD. Instead, the high REE concentrations indicate that geochemical reactions occurring within the subterranean estuary contribute substantially to the REE cycle. A simple mass balance model is used to investigate the cycling of REEs in the Indian River Lagoon and its underlying subterranean estuary. Mass balance modeling reveals that the Indian River Lagoon is approximately at steady-state with respect to the REE fluxes into and out of the lagoon. However, the subterranean estuary is not at steady-state with respect to the REE fluxes. Specifically, the model suggests that the SGD Nd flux, for example, exported from the subterranean estuary to the overlying lagoon waters exceeds the combined input to the subterranean estuary from terrestrial SGD and recirculating marine SGD by, on average, ∼100 mmol day−1. The mass balance model also reveals that the subterranean estuary is a net source of light REEs (LREE) and middle REEs (MREE) to the overlying lagoon waters, but acts as a sink for the heavy REEs (HREE). Geochemical modeling and statistical analysis further suggests that this fractionation occurs, in part, due to the coupling between REE cycling and iron redox cycling within the Indian River Lagoon subterranean estuary. The net SGD flux of Nd to the Indian River Lagoon is ∼7-fold larger than the local effective river flux to these coastal waters. This previously unrecognized source of Nd to the coastal ocean could conceivably be important to the global oceanic Nd budget, and help to resolve the oceanic “Nd paradox” by accounting for a substantial fraction of the hypothesized missing Nd flux to the ocean.  相似文献   

9.
The distribution and content of rare-earth elements (REEs) were determined in two radish species, the cultivated Raphanus sativus and the wild Raphanus raphanistrum, that were grown under laboratory-controlled conditions, in three substrates consisting of illite for one and two smectite substrates for the others, with the two smectite substrates being characterised by different porosities. The plants were split into leaves and stems + roots for analysis. The results indicate that both species take up systematically higher amounts of REEs when grown in the illite substrate, even considering that the smectite equivalent contains about three times more REEs. The REE uptake is also more plant species than mineral composition dependent: R. raphanistrum takes up 3.5–6.7 times more REEs than R. sativus, depending on the substrate, its porosity and the considered plant segments. Increased substrate porosity favours the take up of the REEs, but no specific uptake is observed in leaves relative to that in the combined stems and roots. The transfer of the REEs from minerals to plant organs does not appear to induce systematically identical patterns: (1) in the case of R. sativus, a positive Eu anomaly is visible in all patterns from both segment groups grown in both substrates. When grown in illite, the heavy REEs are also enriched in the stems and roots, which has not been observed in any other organ or in the other substrate and (2) in the case of R. raphanistrum, a very significant positive Gd anomaly, which is not expected to fractionate relative to the other REEs as do Ce and Eu, is observed in all segments of the plants grown in both substrates. A slight negative Ce anomaly is also visible in some of the REE patterns, suggesting some changes in the oxidation–reduction conditions in the substrates near the roots during plant growth. The comparison of the REE patterns from leaves relative to those of the roots + stems shows that those of R. raphanistrum grown in illite provide a spectrum that is very specific with significant deficits in La, Ce, Gd, Tm, Yb and Lu in the leaves. In the other cases, the patterns do not outline significant differences except for R. sativus grown in illite, in which the leaves are enriched in light and medium REEs from La to Gd relative to the stems + roots.  相似文献   

10.
Surface and borehole core samples from the Lac du Bonnet granite, Manitoba, Canada, have been analysed for major element concentrations,Fe3+/Fe (total) ratios, rare earth element (REE) content and actinide isotopic abundances. This work forms part of the geological investigations of the Canadian Nuclear Fuel Waste Management Program, performed by Atomic Energy of Canada Limited (AECL). The study attempts to understand the history of, and processes governing, mobilisation of elements and naturally occurring radionuclides during high- and low-temperature alteration events in fluid-bearing fractures in the granite.One surface sample and two core samples (from ∼ 150 m and 730 m) are each in contact with fractures in the granite and show evidence of alteration events that penetrated the rock matrix over distances of at least 3 cm. Loss of Ca and Na is seen in cores from a depth of ∼ 150 m from the highly altered, hematite-rich rock adjacent to sub-horizontal fracture zones at the Underground Research Laboratory (URL) of AECL, near Lac du Bonnet. In contrast, K, Fe,Fe3+/Fe and U concentrations increase towards the fracture surface due to formation of illite and association of U with hematite and the illite. At the fracture surface, U continues to increase, but Fe and theFe3+/Fe ratio decrease indicating Fe removal by reduction. The REE also show some enrichment in more altered rock at intermediate depths, but the total REE concentration is lower than in the surface and deep core samples. No clear trends are visible for parent and fracture-surface REE in surface and deep core samples, however.Disequilibrium values of234U/238U and 230Th/234U ratios in surface and intermediate depth core samples indicate that U has been mobilised in recent geological time (the last Ma), but Th has remained relatively immobile. High Th/U and230Th/234U ratios in surface samples are indicative of rapid leaching of U but little isotopic fractionation, probably within the last 105 a. Apparently unaltered rock, several centimetres distant from the fracture in surface and intermediate- depth samples, has lost appreciable U, but evidence from U-series disequilibrium studies suggests that this process occurred more than one million years ago, perhaps during deuteric or hydrothermal alteration. Core from a fracture at depth in the granite shows little hematite or clay formation and lacks evidence of REE and recent or ancient actinide mobilisation.The U-series results are correlated with the observed concentrations and isotope activity ratios of U in groundwaters sampled from the same or adjacent fractures. Analyses of samples of highly altered rubble recovered from centre portions of fracture zones at the URL show both excesses and deficiencies of234U and230Th in neighbouring locations, possibly due to the presence of a redox front whose position is controlled by modern groundwater composition.The implications of these results are discussed for the concept of disposal of nuclear fuel waste at depth in plutonic rock on the Canadian Shield.  相似文献   

11.
Trace elements and rare earth elements (REEs) of Lias-aged cherts in the Gumushane area were studied in order to understand their origin and depositional environment. Twenty three chert samples from five stratigraphic sections were analysed by inductively coupled plasma-mass spectrometry, X-ray diffraction, and mineralogical investigation. Lias cherts in the study area are microcrystalline, cryptocrystalline quartz, and megaquartz depending on mineralogical content. Trace elements of the cherts were compared with PAAS, Co, Y, and Th had stronger depletions in the five sections, whereas V, Ni, Zr, Nb, and Hf had smaller depletions. The distribution of Zr, Hf, and Ta yields Zr/Hf, Zr/Ta and Hf/Ta ratios (25/645, 37/665, and 0.18/3, respectively) that differ from those of chondrites and average upper continental crust, suggesting that these elements are likely non-detrital but are sourced from seawater. Th/U ratios range from 0.04 to 0.45 and are lower than those of the upper continental crust (average: 3.9). Lias-aged cherts have low total REE abundances and stronger depletions in five sections of the PAAS and chondrite-normalised plots. The cherts are characterised by a positive Eu anomaly (average: 4.9) and LREE-enrichment (LaN/YbN = average: 3.5). In addition, about one-half of the cherts exhibit positive Ce anomaly (range: 0.25–2.58), chondritic Y/Ho values (range: 3.3–60), and low (La/Ce)N values (average: 1.8). REE and trace element abundance in Lias cherts indicate that these elements were likely derived from hydrothermal solutions, terrigenous sources, and seawater. The REE patterns of the cherts show that they were probably deposited close to a continental margin.  相似文献   

12.
The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extraction solutions containing weak (i.e., CH3COO) or strong (i.e., ) ligands. The experimental results indicate that, in the absence of strong REE complexing ligands in solution, the amount of REEs released from the sand is small and the fractionation pattern of the released REEs appears to be controlled by the surface stability constants for REE sorption with Fe(III) oxides/oxyhydroxides. In the presence of strong solution complexing ligands, however, the amount and the fractionation pattern of the released REEs reflect the strength and variation of the stability constants of the dominant aqueous REE species across the REE series. The varying amount of REEs extracted by the different organic matter employed in the experiments indicates that organic matter from different sources has different complexing capacity for REEs. However, the fractionation pattern of REEs extracted by the various organic matter used in our experiments is remarkable consistent, being independent of the source and the concentration of organic matter used, as well as solution pH. Because natural aquifer sand and unpurified organic matter were used in our experiments, our experimental conditions are more broadly similar to natural systems than many previous laboratory experiments of REE-humic complexation that employed purified humic substances. Our results suggest that the REE loading effect on REE-humic complexation is negligible in natural waters as more abundant metal cations (e.g., Fe, Al) out-compete REEs for strong binding sites on organic matter. More specifically, our results indicate that REE complexation with organic matter in natural waters is dominated by REE binding to weak sites on dissolved organic matter, which subsequently leads to a middle REE (MREE: Sm-Ho)-enriched fractionation pattern. The experiments also indicate that carbonate ions may effectively compete with fulvic acid in binding with dissolved REEs, but cannot out compete humic acids for REEs. Therefore, in natural waters where low molecular weight (LMW) dissolved organic carbon (DOC) is the predominant form of DOC (e.g., lower Mississippi River water), REEs occur as “truly” dissolved species by complexing with carbonate ions as well as FA, resulting in heavy REE (HREE: Er-Lu)-enriched shale-normalized fractionation patterns. Whereas, in natural terrestrial waters where REE speciation is dominated by organic complexes with high molecular weight DOC (e.g., “colloidal” HA), only MREE-enriched fractionation patterns will be observed because the more abundant, weak sites preferentially complex MREEs relative to HREEs and light REEs (LREEs: La-Nd).  相似文献   

13.
The short residence times of Th and Pa in seawater make them very responsive to changes in the ocean environment. We use a new multi-ion-counting technique to make Th and Pa isotope measurements in seawaters from a near-shore environment in which oceanic chemical tracers are not overwhelmed by terrestrial inputs (the Bahamas). An unusual feature of the Bahamas setting is the shallow depth of water residing on the bank tops. These waters have significantly lower 232Th/230Th (∼10,000) than those immediately adjacent to the banks (24,000-31,000) and a (231Pa/230Th) near the production ratio (∼0.1). The change in 232Th/230Th and (231Pa/230Th) on the bank tops is explained by almost quantitative removal of Th and Pa by scavenging, and their replacement with a mixture of 230Th and 231Pa alpha-recoiled from the underlying carbonates, together with Th from dust dissolution. Analysis of a water profile in the Tongue of the Ocean, which separates the Great and Little Bahama Banks, allows us to trace the movement of bank-top water to depth. A distinct minimum in both 232Th/230Th (∼13,000) and (231Pa/230Th) (∼0.5) is observed at ∼430 m and is interpreted to reflect density cascading of bank-top water with entrained carbonate sediment. These results suggest that Th and Pa can be used as water-mass tracers in near-shore environments. Uranium concentration measurements on the same waters demonstrate that U is conservative across a range in salinity of 2 psu, with a concentration of 3.33 ppb (at a salinity of 35).The incorporation of U and Th isotopes into marine carbonates has also been assessed by analyzing carbonate samples from the same location as these Bahamas waters. Such incorporation is critical for U-Th geochronology. U isotope analyses demonstrate that seawater δ234U averages 146.6 and does not vary by more than 2.5%o, and that carbonates capture this value. Additional high precision measurements (≈±1%o) on modern carbonates confirm that all oceans have identical δ234U. Modern marine carbonates are shown to have 232Th/230Th ratios that reflect the local seawater in which they formed.  相似文献   

14.
Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back-arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite-normalized (REEN) distribution patterns (LaN/SmN ∼ 0.6-11; LaN/YbN ∼ 0.6 - 71; ). REEN distribution patterns in different vent fluids range from light-REE enriched, to mid- and heavy-REE enriched, to flat, and have a range of positive Eu-anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid-ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near-seafloor mixing between high-temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.  相似文献   

15.
Rare earth element (REE) concentrations in alkaline lakes, circumneutral pH groundwaters, and an acidic freshwater lake were determined along with the free carbonate, free phosphate, and free sulfate ion concentrations. These parameters were used to evaluate the saturation state of these waters with respect to REE phosphate and carbonate precipitates. Our activity product estimates indicate that the alkaline lake waters and groundwaters are approximately saturated with respect to the REE phosphate precipitates but are significantly undersaturated with respect to REE carbonate and sulfate precipitates. On the other hand, the acidic lake waters are undersaturated with respect to REE sulfate, carbonate, and phosphate precipitates. Although carbonate complexes tend to dominate the speciation of the REEs in neutral and alkaline waters, our results indicate that REE phosphate precipitates are also important in controlling REE behavior. More specifically, elevated carbonate ion concentrations in neutral to alkaline natural waters tend to enhance dissolved REE concentrations through the formation of stable REE-carbonate complexes whereas phosphate ions tend to lead to the removal of the REEs from solution in these waters by the formation of REE-phosphate salts. Removal of REEs by precipitation as phosphate phases in the acid lake (pH=3.6) is inconsequential, however, due to extremely low [PO 4 3– ] F concentrations (i.e., 10–23 mol/kg).  相似文献   

16.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

17.
Acid mine drainage is a major source of water pollution in the Sarcheshmeh porphyry copper mine area. The concentrations of heavy metals and rare earth elements (REEs) in the host rocks, natural waters and acid mine drainage (AMD) associated with mining and tailing impoundments are determined. Contrary to the solid samples, AMDs and impacted stream waters are enriched in middle rare earth elements (MREEs) and heavy rare earth elements (HREEs) relative to light rare earth elements (LREEs). This behavior suggests that REE probably fractionate during sulfide oxidation and acid generation and subsequent transport, so that MREE and HREE are preferentially enriched. Speciation modeling predict that the dominant dissolved REE inorganic species are Ln3+, Ln(SO4)2, LnSO4+, LnHCO32+, Ln(CO3)2 and LnCO3+. Compared to natural waters, Sarcheshmeh AMD is enriched in REEs and SO42−. High concentrations of SO42− lead to the formation of stable LnSO4+, thereby resulting in higher concentrations of REEs in AMD samples. The model indicates that LnSO4+ is the dissolved form of REE in acid waters, while carbonate and dicarbonate complexes are the most abundant dissolved REE species in alkaline waters. The speciation calculations indicate that other factors besides complexation of the REE's, such as release of MREE from dissolution and/or desorption processes in soluble salts and poorly crystalline iron oxyhydroxy sulfates as well as dissolution of host rock MREE-bearing minerals control the dissolved REE concentrations and, hence, the MREE-enriched patterns of acid mine waters.  相似文献   

18.
On the basis of internal structures, laser ablation U–Pb ages and trace element compositions, the origin of zircon in jadeitite in the Nishisonogi metamorphic rocks was examined. The zircon comprises euhedral zoned cores overgrown by euhedral rims. The cores contain inclusions of muscovite, quartz, albite and possibly K‐feldspar, yield 238U–206Pb ages of 126 ± 6 Ma (±2 SD, n = 45, MSWD = 1.0), and have Th/U ratios of 0.48–1.64. The rims contain inclusions of jadeite, yield 238U–206Pb ages of 84 ± 6 Ma (±2 SD, n = 14, MSWD = 1.1), and have Th/U ratios of <0.06. The cores are richer in Y, Th, Ti and rare earth elements (REEs), but the rims are richer in Hf and U. Chondrite‐normalized REE patterns of the cores indicate higher SmN/LaN ratios, lower YbN/GdN ratios and larger positive Ce anomalies compared with those of the rims. Thus, the cores and rims have different 238U–206Pb ages and trace element compositions, suggesting two stages of zircon growth. Although the 238U–206Pb ages of the rims are consistent with the reported 40Ar/39Ar spot‐fusion ages of matrix muscovite in the jadeitite, the 238U–206Pb ages of the cores are older. The mineral inclusions and high Th/U ratios in the cores are best explained by crystallization from felsic magma. Therefore, the cores are considered relicts from igneous precursor rocks. The rims surrounding the inherited cores possibly precipitated from aqueous fluids during jadeitite formation. The elevated U concentrations in the rims suggest that infiltration of external fluids was responsible for the precipitation. This study provides an example of jadeitite formation by metasomatic replacement of a protolith.  相似文献   

19.
Olivine offers huge, largely untapped, potential for improving our understanding of magmatic and metasomatic processes. In particular, a wealth of information is contained in rare earth element (REE) mass fractions, which are well studied in other minerals. However, REE data for olivine are scarce, reflecting the difficulty associated with determining mass fractions in the low ng g?1 range and with controlling the effects of LREE contamination. We report an analytical procedure for measuring REEs in olivine using laser ablation quadrupole‐ICP‐MS that achieved limits of determination (LOD) at sub‐ng g?1 levels and biases of ~ 5–10%. Empirical partition coefficients (D values) calculated using the new olivine compositions agree with experimental values, indicating that the measured REEs are structurally bound in the olivine crystal lattice, rather than residing in micro‐inclusions. We conducted an initial survey of REE contents of olivine from mantle, metamorphic, magmatic and meteorite samples. REE mass fractions vary from 0.1 to double‐digit ng g?1 levels. Heavy REEs vary from low mass fractions in meteoritic samples, through variably enriched peridotitic olivine to high mass fractions in magmatic olivines, with fayalitic olivines showing the highest levels. The variable enrichment in HREEs demonstrates that olivine REE patterns have petrological utility.  相似文献   

20.
Chromium-doped titanite and malayaite samples, which were synthesised to evaluate their performance as ceramic pigments, show remarkable photoluminescence behaviour. Emissions of centres related to traces of trivalent rare-earth elements (REE) are observed exclusively from chromium-free samples. Their Cr-doped analogues (containing the same REEs on the same concentration levels), in contrast, only show broad-band Cr3+ emission whereas all REE emissions are suppressed. This behaviour is assigned to quenching of REE emissions by chromium centres (i.e., REE3+  Cr3+ energy transfer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号