首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mercury air/surface exchange was measured over litter-covered soils with low Hg concentrations within various types of forests along the eastern seaboard of the USA. The fieldwork was conducted at six forested sites in state parks in South Carolina, North Carolina, New Jersey, Pennsylvania, New York and Maine from mid-May to early June 2005. The study showed that the Hg air/surface exchange was consistently very low and similar (overall daytime mean flux = 0.2 ± 0.9 ng m−2 h−1, n = 310, for all six sites monitored) with the various forest types. These flux values are comparable with those found in a year-long study in Tennessee (yearly daytime mean = 0.4 ± 0.5 ng m−2 h−1), but lower than many previous flux results reported for background soils. The Hg fluxes at all sites oscillated around zero, with many episodes of deposition (negative fluxes) occurring in both daytime and nighttime. While there were particular days showing significant correlations among the Hg air/surface exchange and certain environmental parameters, perhaps because of the low fluxes encountered, few significant correlations were found for any particular day of sampling between the Hg flux and environmental parameters such as solar radiation, soil temperature, air temperature (little variability seen), relative humidity, and ambient air Hg concentrations. Factors driving the Hg exchange as previously found for enriched soils may not hold for these background litter-covered forest soils. The results suggest that spatial variations of the Hg air/surface exchange were small among these different forest types for this particular time of year.  相似文献   

2.
Mercury fluxes from air/surface interfaces in paddy field and dry land   总被引:3,自引:0,他引:3  
In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex® multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 ± 22.8 ng m−2 h−1 in the warm season, 15.5 ± 18.8 ng m−2 h−1 in the cold season for dry land, and 23.8 ± 15.6 ng m−2 h−1 in the warm season, 6.3 ± 11.9 ng m−2 h−1 in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower than that for bare land.  相似文献   

3.
The role of the major biogeochemical processes in Hg cycling at the sediment–water interface was investigated in the Grado Lagoon (Northern Adriatic Sea). This wetland system has been extensively contaminated from the Idrija Hg Mine (Slovenia) through the Isonzo River suspended load carried by tidal fluxes. Three approaches were used to study the sediment–water exchange of total Hg (THg), methylmercury (MeHg), reactive Hg (RHg) and dissolved gaseous Hg (DGHg): (1) estimation of diffusive fluxes from porewater and overlying water concentrations, (2) measurements of benthic fluxes using a deployed light benthic chamber in situ and (3) measurements of benthic fluxes during oxic–anoxic transition with a laboratory incubation experiment. The THg solid phase, ranging between 9.5 and 14.4 μg g−1, showed slight variability with depth and time. Conversely, MeHg contents were highest (up to 21.9 ng g−1) at the surface; they tended to decrease to nearly zero concentration with depth, thus suggesting that MeHg production and accumulation occur predominantly just below the sediment–water interface. Porewater MeHg concentrations (0.9–7.9 ng L−1, 0.15–15% of THg) varied seasonally; higher contents were observed in the warmer period. The MeHg diffusive fluxes (up to 17 ng m−2 day−1) were similar to those in the nearby Gulf of Trieste [Covelli, S., Horvat, M., Faganeli, J., Brambati, A., 1999. Porewater distribution and benthic flux of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuar. Coast. Shelf Sci. 48, 415–428], although the lagoon sediments contained four-fold higher THg concentrations. Conversely, the THg diffusive fluxes in the lagoon (up to 110 ng m−2 day−1) were one- to two-fold higher than those previously estimated for the Gulf of Trieste. The diurnal MeHg benthic fluxes were highest in summer at both sites (41,000 and 33,000 ng m−2 day−1 at the fishfarm and in the open lagoon, respectively), thus indicating the influence of temperature on microbial processes. The diurnal variations of dissolved THg and especially MeHg were positively correlated with O2 and inversely with DIC, suggesting an important influence of benthic photosynthetic activities on lagoon benthic Hg cycling, possibly through the production of organic matter promptly available for methylation. The results from the dark chamber incubated in the laboratory showed that the regeneration of dissolved THg was slightly affected by the oxic–anoxic transition. Conversely, the benthic flux of MeHg was up to 15-fold higher in sediments overlain by O2 depleted waters. In the anoxic phase, the MeHg fluxes proceeded in parallel with Fe fluxes and the methylated form reached approximately 100% of dissolved THg. The MeHg is mostly released into overlying water (mean recycling efficiency of 89%) until the occurrence of sulphide inhibition, due to scavenging of the available Hg substrate for methylation. The results suggest that sediments in the Grado Lagoon, especially during anoxic events, should be considered as a primary source of MeHg for the water column.  相似文献   

4.
Atmospheric mercury (Hg) is delivered to ecosystems via rain, snow, cloud/fog, and dry deposition. The importance of snow, especially snow that has passed through the forest canopy (throughfall), in delivering Hg to terrestrial ecosystems has received little attention in the literature. The snowpack is a dynamic system that links atmospheric deposition and ecosystem cycling through deposition and emission of deposited Hg. To examine the magnitude of Hg delivery via snowfall, and to illuminate processes affecting Hg flux to catchments during winter (cold season), Hg in snow in no-canopy areas and under forest canopies measured with four collection methods were compared: (1) Hg in wet precipitation as measured by the Mercury Deposition Network (MDN) for the site in Acadia National Park, Maine, USA, (2) event throughfall (collected after snowfall cessation for accumulations of >8 cm), (3) season-long throughfall collected using the same apparatus for event sampling but deployed for the entire cold season, and (4) snowpack sampling. Estimates (mean ± SE) of Hg deposition using these methods during the 91-day cold season in 2004–2005 at conifer sites showed that season-long throughfall Hg flux (1.80 μg/m2) < snowpack Hg (2.38 ± 0.68 μg/m2) < event throughfall flux (5.63 ± 0.38 μg/m2). Mercury deposition at the MDN site (0.91 μg/m2) was similar to that measured at other no-canopy sites in the area using the other methods, but was 3.4 times less than was measured under conifer canopies using the event sampling regime. This indicates that snow accumulated under the forest canopy received Hg from the overstory or exhibited less re-emission of Hg deposited in snow relative to open areas. The soil surface of field-scale plots were sprayed with a natural rain water sample that contained an Hg tracer (202Hg) just prior to the first snowfall to explore whether some snowpack Hg might be explained from soil emissions. The appearance of the 202Hg tracer in the snowpack (0–64% of the total Hg mass in the snowpack) suggests that movement of Hg from the soil into the snowpack is possible. However, as with any tracer study the 202Hg tracer may not precisely represent the reactivity and mobility of natural Hg in soils.  相似文献   

5.
Few data are available on mercury (Hg) dynamics at high-elevation mountain sites. In this project, a whole-watershed approach was used to quantify major fluxes and pools of Hg in Sagehen basin, a closed basin in the Sierra Nevada mountains in California. Over a period spanning 9 months (January-September 2009), we estimated wet deposition inputs to the watershed at 3.8 μg m−2. Dry deposition added additional Hg in the range of 0.30-2.45 μg m−2 during this time period, and was the dominant deposition process during summer time. Seasonal snowpack accounted for only half of the Hg deposited by wet deposition. We suggest that photo-induced reduction of Hg(II) in snow and subsequent volatilization was responsible for this loss. Thus, snowpacks in the Sierra Nevada mountains likely reduce the effective atmospheric mercury flux via wet deposition due to significant emission fluxes prior to snowmelt. As such, wet Hg deposition could be of lesser importance as a Hg source in snow-dominated systems. Finally, stream runoff collected at the outlet of the watershed could account for only 4% of total Hg wet deposition suggesting that a large fraction of mercury deposition was sequestered in the ecosystem, specifically in the soils.  相似文献   

6.
The continental shelf benthic iron flux and its isotope composition   总被引:1,自引:0,他引:1  
Benthic iron fluxes from sites along the Oregon-California continental shelf determined using in situ benthic chambers, range from less than 10 μmol m−2 d−1 to values in excess of ∼300 μmol m−2 d−1. These fluxes are generally greater than previously published iron fluxes for continental shelves contiguous with the open ocean (as opposed to marginal seas, bays, or estuaries) with the highest fluxes measured in the regions around the high-sediment discharge Eel River and the Umpqua River. These benthic iron fluxes do not covary with organic carbon oxidation rates in any systematic fashion, but rather seem to respond to variations in bottom water oxygen and benthic oxygen demand. We hypothesize that the highest rates of benthic iron efflux are driven, in part, by the greater availability of reactive iron deposited along these river systems as compared to other more typical continental margin settings. Bioirrigation likely plays an important role in the benthic Fe flux in these systems as well. However, the influence of bottom water oxygen concentrations on the iron flux is significant, and there appears to be a threshold in dissolved oxygen (∼60-80 μM), below which sediment-ocean iron exchange is enhanced. The isotope composition of this shelf-derived benthic iron is enriched in the lighter isotopes, and appears to change by ∼3‰ (δ56Fe) during the course of a benthic chamber experiment with a mean isotope composition of −2.7 ± 1.1‰ (2 SD, n = 9) by the end of the experiment. This average value is slightly heavier than those from two high benthic Fe flux restricted basins from the California Borderland region where δ56Fe is −3.4 ± 0.4‰ (2 SD, n = 3). These light iron isotope compositions support previous ideas, based on sediment porewater analyses, suggesting that sedimentary iron reduction fractionates iron isotopes and produces an isotopically light iron pool that is transferred to the ocean water column. In sum, our data suggest that continental shelves may export a higher efflux of iron than previously hypothesized, with the likelihood that along river-dominated margins, the benthic iron flux could well be orders of magnitude larger than non-river dominated shelves. The close proximity of the continental shelf benthos to the productive surface ocean means that this flux is likely to be essential for maintaining ecosystem micronutrient supply.  相似文献   

7.
Concentrations of atmospheric Hg species, elemental Hg (Hg°), reactive gaseous Hg (RGM), and fine particulate Hg (Hg-PM2.5) were measured at a coastal site near Weeks Bay, Alabama from April to August, 2005 and January to May, 2006. Mean concentrations of the species were 1.6 ± 0.3 ng m−3, 4.0 ± 7.5 pg m−3 and 2.7 ± 3.4 pg m−3, respectively. A strong diel pattern was observed for RGM (midday maximum concentrations were up to 92.7 pg m−3), but not for Hg° or Hg-PM2.5. Elevated RGM concentrations (>25 pg m−3) in April and May of 2005 correlated with elevated average daytime O3 concentrations (>55 ppbv) and high light intensity (>500 W m−2). These conditions generally corresponded with mixed continental-Gulf and exclusively continental air mass trajectories. Generally lower, but still elevated, RGM peaks observed in August, 2005 and January–March, 2006 correlated significantly (p < 0.05) with peaks in SO2 concentration and corresponded to periods of high light intensity and lower average daytime O3 concentrations. During these times air masses were dominated by trajectories that originated over the continent. Elevated RGM concentrations likely resulted from photochemical oxidation of Hg° by atmospheric oxidants. This process may have been enhanced in and by the near-shore environment relative to inland sites. The marine boundary layer itself was not found to be a significant source of RGM.  相似文献   

8.
To understand the geochemical cycle of Hg in hypereutrophic freshwater lake, two sampling campaigns were conducted in Lake Taihu in China during May and September of 2009. The concentrations of unfiltered total Hg (unfTHg) were in the range of 6.8–83 ng L−1 (28 ± 18 ng L−1) in the lake water and total Hg in the sediment was 12–470 ng g−1, both of which are higher than in other background lakes. The concentration of unfTHg in ∼11% of the lake water samples exceeded the second class of the Chinese environmental standards for surface water of 50 ng L−1 (GB 3838-2002), indicating that a high ecological risk is posed by the Hg in Lake Taihu. However, the concentrations of unfiltered total MeHg (unfMeHg) were relatively low in the lake water (0.14 ± 0.05 ng L−1, excluding two samples with 0.81 and 1.0 ng L−1). Lake sediment MeHg varied from 0.2–0.96 ng g−1, with generally low ratios of MeHg/THg of <1%. The low concentrations of TMeHg in the lake water may have resulted from a strong uptake by the high primary productivity and the demethylation of MeHg in oxic conditions. In addition, contrary to the results of previous research conducted in deep-water lakes and reservoirs, the low concentrations of MeHg and low ratio of MeHg/THg in the lake sediment indicates that the net methylation of Hg was not accelerated by the elevated organic matter load created by the eutrophication of Lake Taihu. The results also showed that sediments were a source of THg and MeHg in the water. Higher diffusion fluxes of THg and MeHg may be partly responsible for the higher concentrations of THg in the lake water in May, 2009.  相似文献   

9.
Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF.190 t yr−1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr−1) and the Schussen (50 t TDBr yr−1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr−1. In comparison, only 40 t TDBr yr−1 was deposited to the lake’s catchment by precipitation, and thus ∼80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (∼12 t yr−1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from the catchment, which is supported by Ti, Zr and Br/Corg data. In the lake bromine was irreversibly lost to the sediments, with best flux estimates based on mass-balance and sediment trap data of +50-90 μg Br m−2 d−1. Overall, it appears that bromine is not simply a cyclic salt in the case of Lake Constance, with a clear geological component and dynamic lacustrine biogeochemistry.  相似文献   

10.
Atmospheric mercury deposition on snow at springtime has been reported in polar regions, potentially posing a threat to coastal and inland ecosystems receiving meltwaters. However, the post-depositional fate of Hg in snow is not well known, and no data are available on Hg partitioning in polar snow. During snowmelt, we conducted a survey of Hg concentrations, partitioning and speciation in surface snow and at depth, over sea ice and over land along a 100 km transect across Cornwallis Island, NU, Canada. Total Hg concentrations [THg] in surface snow were low (less than 20 pmol L−1) and were significantly higher in marine vs. inland environments. Particulate Hg in surface snow represented up to 90% of total Hg over sea ice and up to 59% over land. At depth, [THg] at the snow/sea ice interface (up to 300 pmol L−1) were two orders of magnitude higher than at the snow/lake ice interface (ca. 2.5 pmol L−1). Integrated snow columns, sampled over sea-ice and over land, showed that particulate Hg was mostly bound to particles ranging from 0.45 to 2.7 μm. Moreover, melting snowpacks over sea ice and over lake ice contribute to increase [THg] at the water/ice interfaces. This study indicates that, at the onset of snowmelt, most of the Hg in snow is in particulate form, particularly over sea ice. Low Hg levels in surface snow suggest that Hg deposited through early spring deposition events is partly lost to the atmosphere from the snowpack before snowmelt. The sea ice/snow interface may constitute a site for Hg accumulation, however. Further understanding of the cycling of mercury at the sea ice/snow and sea ice/seawater interfaces is thus warranted to fully understand how mercury enters the arctic food webs.  相似文献   

11.
Methane microseepage is the result of natural gas migration from subsurface hydrocarbon accumulations to the Earth’s surface, and it is quite common in commercial petroleum fields. While the role of microseepage as a pathfinder in petroleum exploration has been known for about 80 a, its significance as an atmospheric CH4 source has only recently been studied, and flux data are currently available only in the USA and Europe. With the aim of increasing the global data-set and better understanding flux magnitudes and variabilities, microseepage is now being extensively studied in China. A static flux chamber method was recently applied to study microseepage emissions into the atmosphere in four different sectors of the Yakela condensed gas field in Tarim Basin, Xinjiang, China, and specifically in: (a) a faulted sector, across the Luntai fault systems; (b) an oil–water interface sector, at the northern margin of the field; (c) an oil–gas interface sector, in the middle of the field; (d) an external area, outside the northern gas field boundaries. The results show that positive CH4 fluxes are pervasive in all sectors and therefore, only part of the CH4 migrating from the deep oil–gas reservoirs is consumed in the soil by methanotrophic oxidation. The intensity of gas seepage seems to be controlled by subsurface geologic settings and lateral variabilities of natural gas pressure in the condensed gas field. The highest CH4 fluxes, up to ∼14 mg m−2 d−1 (mean of 7.55 mg m−2 d−1) with higher spatial variability (standard deviation, σ: 2.58 mg m−2 d−1), occur in the Luntai fault sector. Merhane flux was lower in the oil–water area (mean of 0.53 mg m−2 d−1) and the external area (mean of 1.55 mg m−2 d−1), and at the intermediate level in the gas–oil sector (mean of 2.89 mg m−2 d−1). These values are consistent with microseepage data reported for petroleum basins in the USA and Europe. The build-up of methane concentration in the flux chambers is always coupled with an enrichment of 13C, from δ13C1 of −46‰ to −42.5‰ (VPDB), which demonstrates that seeping methane is thermogenic, as that occurring in the deep Yakela reservoir. Daily variations of microseepage are very low, with minima in the afternoon, corresponding to higher soil temperature (and higher methanotrophic consumption), and maxima in the early morning (when soil temperatures are lowest). A preliminary and rough estimate of the total amount of CH4 exhaled from the Yakela field is in the order of 102 tonnes a−1.  相似文献   

12.
This study examined the removal of U, Mo, and Re from seawater by sedimentary processes at a shallow-water site with near-saturation bottom water O2 levels (240-380 μmol O2/L), very high organic matter oxidation rates (annually averaged rate is 880 μmol C/cm2/y), and shallow oxygen penetration depths (4 mm or less throughout the year). Under these conditions, U, Mo, and Re were removed rapidly to asymptotic pore water concentrations of 2.2-3.3 nmol/kg (U), 7-13 nmol/kg (Mo), and 11-14 pmol/kg (Re). The depth order in which the three metals were removed, determined by fitting a diffusion-reaction model to measured profiles, was Re < U < Mo. Model fits also suggest that the Mo profiles clearly showed the presence of a near-interface layer in which Mo was added to pore waters by remineralization of a solid phase. The importance of this solid phase source of pore water Mo increased from January to October as the organic matter oxidation rate increased, bottom water O2 decreased, and the O2 penetration depth decreased. Experiments with in situ benthic flux chambers generally showed fluxes of U and Mo into the sediments. However, when the overlying water O2 concentration in the chambers was allowed to drop to very low levels, Mn and Fe were released to the overlying water along with the simultaneous release of Mo and U. These experiments suggest that remineralization of Mn and/or Fe oxides may be a source of Mo and perhaps U to pore waters, and may complicate the accumulation of U and Mo in bioturbated sediments with high organic matter oxidation rates and shallow O2 penetration depths.Benthic chamber experiments including the nonreactive solute tracer, Br, indicated that sediment irrigation was very important to solute exchange at the study site. The enhancement of sediment-seawater exchange due to irrigation was determined for the nonreactive tracer (Br), TCO2, , U and Mo. The comparisons between these solutes showed that reactions within and around the burrows were very important for modulating the Mo flux, but less important for U. The effect of these reactions on Mo exchange was highly variable, enhancing Mo (and, to a lesser extent, U) uptake at times of relatively modest irrigation, but inhibiting exchange when irrigation rates were faster. These results reinforce the observation that Mo can be released to and removed from pore waters via sedimentary reactions.The removal rate of U and Mo from seawater by sedimentary reactions was found to agree with the rate of accumulation of authigenic U and Mo in the solid phase. The fluxes of U and Mo determined by in situ benthic flux chamber measurements were the largest that have been measured to date. These results confirm that removal of redox-sensitive metals from continental margin sediments underlying oxic bottom water is important, and suggest that continental margin sediments play a key role in the marine budgets of these metals.  相似文献   

13.
Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m−3, which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m−3) while the minimum mean concentration was observed in winter (4.0 pg m−3). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 pg m−3 and had a clear seasonal variation: winter (74.1 pg m−3), autumn (22.5 pg m−3), spring (15.3 pg m−3) and summer (10.8 pg m−3), listed in decreasing order. The annual wet deposition was 9.1 μg m−2 and wet deposition in the rainy season (May–October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation.  相似文献   

14.
Mercury (Hg) concentrations in air, effluent water, landfill gas, leachate, groundwater, and soil at a hazardous solid waste landfill site in Korea were measured along with air–soil surface Hg exchange fluxes at the site. The concentrations and fluxes were considerably higher than have been found elsewhere in Korea. Gaseous Hg concentrations in the air peaked during the day, coinciding with Hg being released from the landfill surface. This suggests that air–soil exchange increased the Hg concentrations in the atmosphere. The air–soil exchange flux increased abruptly when solar radiation reached the soil surface. The Hg flux peaked about 3 h before the solar radiation peaked, possibly because reducible Hg was abundant at the soil surface. The Hg emission flux activation energy (E a) was low, indicating that the Hg species present and Hg–soil binding were probably not as important (because of the high Hg content of the soil) as in previous studies. The methylmercury to total Hg ratios in the discharged effluent, groundwater, and leachate was clearly higher than typically found in coastal water and freshwater, suggesting bacteria caused active methylation to occur under the reducing conditions in the anaerobic landfill. The results suggested that considerable amounts of Hg are probably transported from the landfill to nearby environmental media and that this will continue if waste with a high Hg content continues to be added to the landfill without being pretreated.  相似文献   

15.
The Xunyang Hg mine (XMM) situated in Shaanxi Province is an active Hg mine in China. Gaseous elemental Hg (GEM) concentrations in ambient air were determined to evaluate its distribution pattern as a consequence of the active mining and retorting in the region. Total Hg (HgT) and methylmercury (MeHg) concentrations in riparian soil, sediment and rice grain samples (polished) as well as Hg speciation in surface water samples were measured to show local dispersion of Hg contamination. As expected, elevated concentrations of GEM were found, ranging from 7.4 to 410 ng m−3. High concentrations of HgT and MeHg were also obtained in riparian soils, ranged from 5.4 to 120 mg kg−1 and 1.2 to 11 μg kg−1, respectively. Concentrations of HgT and MeHg in sediment samples varied widely from 0.048 to 1600 mg kg−1 and 1.0 to 39 μg kg−1, respectively. Surface water samples showed elevated HgT concentrations, ranging from 6.2 to 23,500 ng L−1, but low MeHg concentrations, ranging from 0.022 to 3.7 ng L−1. Rice samples exhibited high concentrations of 50–200 μg kg−1 in HgT and of 8.2–80 μg kg−1 in MeHg. The spatial distribution patterns of Hg speciation in the local environmental compartments suggest that the XMM is the source of Hg contaminations in the study area.  相似文献   

16.
《Applied Geochemistry》2006,21(11):1913-1923
Mercury is emitted to the air from Hg-enriched and low Hg-containing (natural background) substrates. Emitted Hg can be geogenic, or can be derived from the re-emission of Hg that was previously deposited to the soil from the atmosphere. Atmospheric Hg can be derived from natural and/or anthropogenic sources and can be deposited by wet or dry processes. It is important to understand the relative magnitude of emission, deposition, and re-emission of Hg associated with terrestrial ecosystems with natural background soil Hg concentrations because these landscapes cover large terrestrial surface areas. This information is also important for developing biogeochemical mass balances, assessing the impacts of atmospheric Hg sources, and predicting the effectiveness of regulatory controls at local, regional, and global scales.The major focus of this paper is to discuss air–substrate Hg exchange for low Hg-containing soils (<0.1 μg Hg g−1) from two areas in Nevada and one in Oklahoma, USA. Data collected with field and laboratory gas exchange systems are presented. Results indicate that in order to adequately characterize substrate–air Hg exchange, diel and seasonal data must be collected under a variety of environmental conditions. Field and laboratory data showed that dry deposition of gaseous Hg to substrates with low Hg concentrations is an important process. Environmental parameters important in influencing emissions include soil water content, incident light, temperature, atmospheric oxidants, and air Hg concentrations. There are synergistic and antagonistic effects between these parameters complicating prediction of flux.  相似文献   

17.
Chloroform is a common groundwater pollutant but also a natural compound in forest ecosystems. Leaching of natural chloroform from forest soil to groundwater was followed by regular analysis of soil air and groundwater from multilevel wells at four different sites in Denmark for a period of up to 4 a. Significant seasonal variation in chloroform was observed in soil air 0.5 m below surface ranging at one site from 120 ppb by volume in summer to 20 ppb during winter. With depth, the seasonal variation diminished gradually, ranging from 30 ppb in summer to 20 ppb during winter, near the groundwater table. Chloroform in the shallowest groundwater ranged from 0.5–1.5 μg L−1 at one site to 2–5 μg L−1 at another site showing no clear correlation with season. Comparing changes in chloroform in soil air versus depth with on-site recorded meteorological data indicated that a clear relationship appears between rain events and leaching of chloroform. Chloroform in top soil air co-varied with CO2 given a delay of 3–4 weeks providing evidence for its biological origin. This was confirmed during laboratory incubation experiments which further located the fermentation layer as the most chloroform producing soil horizon. Sorption of chloroform to soils, examined using 14C–CHCl3, correlated with organic matter content, being high in the upper organic rich soils and low in the deeper more minerogenic soils. The marked decrease in chloroform in soil with depth may in part be due to microbial degradation which was shown to occur at all depths by laboratory tests using 14C–CHCl3.  相似文献   

18.
Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over 2-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran Hg analyzers. GEM, RGM, and particulate Hg (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize Hg air concentrations in the southern Idaho area for the first time, estimate Hg dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m−3) and RGM (8.1 ± 5.6 pg m−3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m−3, 3.2 ± 2.9 pg m−3 for GEM, RGM, respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m−3). Seasonally averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s−1 for GEM (spring, summer, fall and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s−1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 μg m−2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2–12 ng m−3) and RGM (50–150 pg m−3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicate predominant source directions to the SE (western Utah, northeastern Nevada) and SW (north-central Nevada) with fewer inputs from the NW (southeastern Oregon and southwestern Idaho).  相似文献   

19.
E. N. Kairu 《GeoJournal》1993,29(4):351-358
This paper discusses the results of an experiment whereby all the major radiation and energy fluxes were measured/estimated for a mature tea canopy at Kericho, Kenya. The fluxes include incoming short-wave radiation, terrestrial radiation, latent heat flux and the sensible heat fluxes between the canopy and the air and that into and out of the soil. The pertinent data were simultaneously collected by use of 21X microloggers. Global radiation varied from 40 Wm–2 to 1160 Wm–2 depending on sky conditions. High values were observed early in the morning and late in the afternoon. Net radiation varied between — 100 Wm–2 at night and 600 Wm–2during the daytime. The largest proportion of net radiation was consumed by the latent heat flux. Advection was found to be minimal.  相似文献   

20.
The Dvurechenskii mud volcano (DMV) is located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea). The DMV was studied during the RV Meteor expedition M72/2 as an example of an active mud volcano system, to investigate the significance of submarine mud volcanism for the methane and sulfide budget of the anoxic Black Sea hydrosphere. Our studies included benthic fluxes of methane and sulfide, as well as the factors controlling transport, consumption and production of both compounds within the sediment. The pie-shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at its summit north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was repressed in this zone due to the upward flow of sulfate-depleted fluids through recently deposited subsurface muds, apparently limiting microbial methanotrophic activity. Consequently, the emission of dissolved methane into the water column was high, with an estimated rate of 0.46 mol m−2 d−1. On the wide plateau and edge of the mud volcano surrounding the summit, fluid flow and total methane flux were lower, allowing higher SR and AOM rates correlated with an increase in sulfate penetration into the sediment. Here, between 50% and 70% of the methane flux (0.07-0.1 mol m−2 d−1) was consumed within the upper 10 cm of the sediment. The overall amount of dissolved methane released from the entire mud volcano structure into the water column was significant with a discharge of 1.3 × 107 mol yr−1. The DMV maintains also high areal rates of methane-fueled sulfide production and emission of on average 0.05 mol m−2 d−1. This is a difference to mud volcanoes in oxic waters, which emit similar amounts of methane, but not sulfide. However, based on a comparison of this and other mud volcanoes of the Black Sea, we conclude that sulfide and methane emission into the hydrosphere from deep-water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号