首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dialysis procedure was used to assess the distribution coefficients of ∼50 major and trace elements (TEs) between colloidal (1 kDa–0.22 μm) and truly dissolved (<1 kDa) phases in Fe- and organic-rich boreal surface waters. These measurements allowed quantification of both TE partitioning coefficients and the proportion of colloidal forms as a function of solution pH (from 3 to 8). Two groups of elements can be distinguished according to their behaviour during dialysis: (i) elements which are strongly associated with colloids and exhibit significant increases of relative proportion of colloidal forms with pH increase (Al, Ba, Cd, Co, Cr, Cu, Fe, Ga, Hf, Mn, Ni, Pb, rare earth elements (REEs), Sr, Th, U, Y, Zn, Zr and dissolved organic C) and (ii) elements that are weakly associated with colloids and whose distribution coefficients between colloidal and truly dissolved phases are not significantly affected by solution pH (As, B, Ca, Cs, Ge, K, Li, Mg, Mo, Na, Nb, Rb, Sb, Si, Sn, Ti, V). Element speciation was assessed using the Visual MINTEQ computer code with an implemented NICA-Donnan humic ion binding model and database. The model reproduces quantitatively the pH-dependence of colloidal form proportion for alkaline-earth (Ba, Ca, Mg, Sr) and most divalent metals (Co, Cd, Mn, Ni, Pb, Zn) implying that the complexation of these metals with low molecular weight organic matter (<1 kDa fraction) is negligible. In contrast, model prediction of colloidal proportion (fraction of 1 kDa–0.22 μm) of Cu2+ and all trivalent and tetravalent metals is much higher than that measured in the experiment. This difference may be explained by (i) the presence of strong metal-binding organic ligands in the <1 kDa fraction whose stability constants are several orders of magnitude higher than those of colloidal humic and fulvic acids and/or (ii) coprecipitation of TE with Fe(Al) oxy(hydr)oxides in the colloidal fraction, whose dissolution and aggregation controls the pH-dependent pattern of TE partitioning. Quantitative modeling of metal – organic ligand complexation and empirical distribution coefficients corroborate the existence of two colloidal pools, formerly reported in boreal surface waters: “classic” fulvic or humic acids binding divalent transition metals and alkaline-earth elements and large-size organo-ferric colloids transporting insoluble trivalent and tetravalent elements.  相似文献   

2.
We report the results of LA-ICP-MS analyses of rock forming minerals in clinopyroxene-apatite-K feldspar-phlogopite (CAKP) metasomatic xenoliths and primary carbonatite melt inclusions (CMI) hosted in apatite (Ap) and K feldspar (Kfs). The xenoliths are from the Cretaceous lamprophyre dikes of the Transdanubian Central Range, Hungary. The CMI in Ap have phosphorus dolomitic composition as opposed to CMI in Kfs, which display dolomitic alkali-aluminosiliceous character. The melts found in CMI in Ap and in Kfs likely formed by liquid-liquid separation from an originally carbonate- and phosphorous-rich melt. Primitive mantle (PM) normalized trace element distributions of both Ap- and Kfs-hosted CMI (n = 60 and 20, respectively) reveal a strong negative Ti-anomaly, and an extreme enrichment in incompatible elements (U, Th, LILE and LREE) relative to HREE, Sc, V, Ni and Cr. Rarely, apatites contain unique CMI, which show major- and trace-element signature transitional to K feldspar-hosted CMI. This is due to heterogeneous entrapment of an immiscible phosphorous-bearing carbonatite melt and a carbonate-bearing alkali aluminosiliceous melt, which is a further evidence for their co-existence. CMI reveal that U, Th, Pb, Nb, Ta, P, Sr, Y and REE partitioned into the phosphorous-bearing carbonatite melt, whereas Cs, Rb, Na, K, B, Al, Zr and Hf preferred the silicate-bearing liquid.PM normalized REE pattern (high LREE/HREE), elevated Zr and Hf contents and negative Ti anomaly of clinopyroxene (Cpx) indicate that its formation is genetically linked to carbonatite metasomatism attested by CMI. Trace element partitioning between the studied Cpx and CMI is in accordance with experimentally determined trace element distributions between Cpx and carbonatite melt. Cpx, which occur in samples with high modal proportion of apatite represent mantle section, which interacted with a higher amount of “initial” carbonatite melt than Cpx from apatite-poor xenoliths. This is confirmed by higher Cr, Ni, V, Sc, Ti and lower Zr, as well as Hf concentration in Cpx from xenoliths with low modal abundance of Ap. CMI reveal that Ti, V, Ni and Cr were in lower concentration in the “initial” carbonatite melt than in PM. Contrarily, Zr and Hf were more abundant in this melt than in PM. Consequently, a continuously migrating “initial” carbonatite melt, increased Zr and Hf concentration, and decreased Ti, Sc, V, Ni and especially Cr in the clinopyroxenes. Our findings suggest that the studied CAKP rocks were formed by carbonatite melt metasomatism, which occurred in an open system in the upper mantle.  相似文献   

3.
用X-荧光光谱测定岩石中低量稀土元素的仪器参数和测定条件,文[1]已作过讨论。本文介绍样品分析所采用的基本校正,谱线重叠校正和背景处理方法,并将这些方法应用于其他少量和痕量元素的测定。基体的吸收校正岩石样品中最重的主元素是铁,镧系元素La~Er的La线和Ti,Sc,Cr,Mn,Fe,  相似文献   

4.
The chemical status of ∼40 major and trace elements (TE) and organic carbon (OC) in pristine boreal rivers draining the basaltic plateau of Central Siberia (Putorana) and interstitial solutions of permafrost soils was investigated. Water samples were filtered in the field through progressively decreasing pore size (5 μm → 0.22 μm → 0.025 μm → 10 kDa → 1 kDa) using cascade frontal filtration technique. Most rivers and soil porewaters exhibit 2-5 times higher than the world average concentration of dissolved (i.e., <0.22 μm) iron (0.03-0.4 mg/L), aluminum (0.03-0.4 mg/L), OC (10-20 mg/L) and various trace elements that are usually considered as immobile in weathering processes (Ti, Zr, Ga, Y, REEs). Ultrafiltration revealed strong relationships between concentration of TE and that of colloidal Fe and Al. According to their partition during filtration and association with colloids, two groups of elements can be distinguished: (i) those weakly dependent on ultrafiltration and that are likely to be present as truly dissolved inorganic species (Li, Na, K, Si, Mn, Mo, Rb, Cs, As, Sb) or, partially (20-30%) associated with small size Fe- and Al-colloids (Ca, Mg, Sr, Ba) and to small (<1-10 kDa) organic complexes (Co, Ni, Cu, Zn), and (ii) elements strongly associated with colloidal iron and aluminum in all ultrafiltrates largely present in 1-100 kDa fraction (Ga, Y, REEs, Pb, V, Cr, Ti, Ge, Zr, Th, U). TE concentrations and partition coefficients did not show any detectable variations between different colloidal fractions for soil porewaters, suprapermafrost flow and surface streams. TE concentration measurements in river suspended particles demonstrated significant contribution (i.e., ?30%) of conventionally dissolved (<0.22 μm) forms for usually “immobile” elements such as divalent transition metals, Cd, Pb, V, Sn, Y, REEs, Zr, Hf, Th. The Al-normalized accumulation coefficients of TE in vegetation litter compared to basalts achieve 10-100 for B, Mn, Zn, As, Sr, Sn, Sb, and the larch litter degradation is able to provide the major contribution to the annual dissolved flux of most trace elements. It is hypothesized that the decomposition of plant litter in the topsoil horizon leads to Fe(III)-, Al-organic colloids formation and serves as an important source of elements in downward percolating fluids.  相似文献   

5.
Four overbank profiles from the three terraces of different age were sampled in 10 to 20 cm intervals for the bulk content of major and minor (Ca, Mg, Fe, Ti, Al, Na, K and P) and trace (Mo, Cu, Pb, Zn, Ni, Co, Mn, As, U, Th, Sr, Cd, Sb, V, La, Cr, Ba, W, Zr, Ce, Sn, Y, Nb, Ta, Sc, Li, Rb and Hf) elements in the minus 0.125 mm fraction. Univariate statistics together with analysis of variance discriminated between the lower-lying carbonate (CA) population dominantly composed of carbonates and the overlying silicate (SI) population being dominantly of silicate mineralogy. This stratified pattern resulted from the intensive erosive action of melting glaciers exerted on limestones and dolomites in the alpine region, followed by local inputs mainly of silicate composition. Elements exhibiting the greatest between-population variability are Ca and Mg being enriched in the CA population and Fe, Mn, P, Sr, Al, Na, K, Li, Rb, Y, Zr, Ni, Cr and Ti being enriched in the SI population. Anomalously high Hg, Pb and Ba concentrations (maximum values: 6,500±2,860 ppb, 225±13 ppm and 1,519±91 ppm, respectively) in the lowermost part of the profile S7, which is nearest to the Croatian-Slovenian border, derive from the mineralized Slovenian catchment area. This profile also contains trimodal frequency distributions of Fe, Mn and P whose highest concentrations coincide with increased values of Zn and Cu which are bimodally distributed. Geochemical patterns of majority of elements in all four profiles consistently reflect the average compositions of the upstream drainage basins.  相似文献   

6.
A test comparing concentrations of 57 chemical elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) determined by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 294 samples of the same bottled water (predominantly mineral water) sold in the European Union in glass and PET bottles demonstrates significant (Wilcoxon rank sum test, α = 0.05) differences in median concentrations for Sb, Ce, Pb, Al, Zr, Ti, Th, La, Pr, Fe, Zn, Nd, Sn, Cr, Tb, Er, Gd, Bi, Sm, Y, Lu, Dy, Yb, Tm, Nb and Cu. Antimony has a 21× higher median value in bottled water when sold in PET bottles (0.33 vs. 0.016 μg/L). Glass contaminates the water with Ce (19× higher than in PET bottles), Pb (14×), Al (7×), Zr (7×), Ti, Th (5×), La (5×), Pr, Fe, Zn, Nd, Sn, Cr, Tb (2×), Er, Gd, Bi, Sm, Y, Lu, Yb, Tm, Nb and Cu (1.4×). Testing an additional 136 bottles of the same water sold in green and clear glass bottles demonstrates an important influence of colour, the water sold in green glass shows significantly higher concentrations in Cr (7.3×, 1.0 vs. 0.14 μg/L), Th (1.9×), La, Zr, Nd, Ce (1.6×), Pr, Nb, Ti, Fe (1.3×), Co (1.3×) and Er (1.1×).  相似文献   

7.
山西平朔安太堡露天矿9号煤层中的微量元素   总被引:12,自引:0,他引:12       下载免费PDF全文
庄新国  曾荣树 《地球科学》1998,23(6):583-588
使用ICP-AES方法对安太堡露天矿9号煤层中的微量元素进行了系统测定,检测出53种微量元素,将研究煤样的平均微量元素质量分数与世界范围微量元素平均质量分数相比较,煤样中Li,Ga,Sr,Zr,Nb,Sn和Ta具有较高的富集,而Cr,Co,Ni,Ge,Rb,Y,Cs和Ba具有较低的富集,研究资料表明不同微量元素在垂向剖面上其质量分数具有不同的分布特征。经相关分析表明:(1)与镜质组含量相关的元素有  相似文献   

8.
《Gondwana Research》2001,4(3):509-518
The Proterozoic Bandal mafic rocks, exposed in Kullu-Rampur window, Lesser Himalaya, Himachal Pradesh, indicate two distinct (high-Ti and low-Ti) magma types. The high-Ti basalts are characterised by high-TiO2 (> 2 wt%), Ti/Y, Ti/Zr, TiO2/K2O and low Rb/Sr ratios. They are enriched in high field strength (HFS) elements (Nb, Zr, Ti) relative to low field strength (LFS) incompatible elements (K, Rb). The low-Ti basalts are charactersied by low TiO2 (< 2 wt%), Ti/Y, Ti/Zr and high Rb/Sr and Rb/Ba ratios. Quartz-normative composition, continental tholeiite characteristics with Nb/La less than 1 are some of the common factors of the two groups of the Bandal mafic rocks. The trace element concentrations and their ratios of the two groups of the basalts indicate that they have been derived from the asthenosphere at different depths, low-Ti at shallow and high-Ti at deeper levels. Some of the chemical features like low Mg #, Cr, Ni, high incompatible element concentrations (especially Ba), light rare earth element (LREE) enriched patterns point towards assimilation and fractional crystallisation (AFC) process which may have played a significant role in the generation of these basalts.Furthermore, the Bandal mafic rocks, apart from field settings, are geochemically similar to other Proterozoic mafic bodies like the Rampur volcanics, Mandi-Darla volcanics, Garhwal volcanics and Bhimtal-Bhowlai volcanics of the Lesser Himalaya. This widespread Proterozoic continental tholeiitic magmatism over an area of 170,000 km2 in the Lesser Himalaya provides an evidence of plume activity in the region.  相似文献   

9.
三种不同类型盆地煤中微量元素对比研究   总被引:11,自引:1,他引:10  
本文选择阜新盆地海洲露天矿,山西大同煤田煤峪口矿和朔县和平朔煤田安太堡露天矿三种不同类型盆地的矿区进行煤中微量元素的对比研究。初步阐述了断陷盆地,陆表海盆地和大型内陆争盆地煤中的微量元素特征,对比了这种不舅地煤中微量元素的差异,并提出了产生这些差异的主要因素是泥炭沼泽形成时的沉积环境背景,泥岩沼泽相及盆地的物源区。  相似文献   

10.
Major, trace element, and Sr isotopic data are reported forvolcanic rocks from the island of Alicudi, Aeolian Arc, SouthernTyrrhenian Sea. The island is constructed of basalt, basalticandesite to high-K andesite lavas, and pyroclastites, whichshow a continuum in the variation of many major and trace elements.Total iron, MgO, CaO, Ni, Co, Sc, and Cr decrease with increasingsilica, whereas incompatible elements Rb, Ba, Th, and LREE displaythe opposite tendency. Very significant positive correlationsare defined by incompatible elements on interelemental variationdiagrams. Sr isotopic ratios vary from 0–70352 to 0–70410.Overall, basalts (0–70352–O-70410) and basalticandesltes (0–70356–0–70409) are enriched in87Sr compared with high-K andesites (O–70352–O–70367),which display the lowest Sr isotopic ratios within the entireAeolian archipelago. Overall negative relationships exist between87Sr/86Sr and several incompatible trace element abundancesand ratios, such as Th, U, LREE, Zr, La/Yb, and Th/Hf. Otherelemental ratios such as La/Rb, Ba/Rb, and Sr/Rb show more complexbehaviour, even though negative correlations with Sr isotopicratios are observed in the basalts. The observed compositional variations are best explained interms of a model in which primitive calc-alkaline magmas evolvedby crystal-liquid fractionation to give a series of variouslydifferentiated liquids, which underwent different degrees ofinteraction with crustal material. The more mafic and hotterbasaltic liquids appear to have assimilated higher amounts ofmetamorphic wall rocks than did the cooler late erupted andesiticmagmas. This process produced significant variations of Sr isotopicratios, Rb, Cs, Rb/Sr ratios, and LILE/Rb ratios in mafic magmas,but had only minor effects on the abundances and ratios of otherincompatible elements such as Th, LREE, La/Yb, and Th/Hf. When compared with mafic rocks from other Aeolian islands, theAlicudi basalts are more primitive geochemically and isotopically.Going eastward, there is a decrease in Ni and Cr abundances,mg-number and Nd isotopic ratios which parallels an increaseof Sr isotopic ratios in basaltic rocks along the arc. Thesecompositional variations are typical of volcanic series whichhave undergone interaction with upper-crustal material, andsuggest that this process may have contributed significantlyto the regional geochemical and isotopic trends observed inthe Aeolian arc.  相似文献   

11.
The Shonkin Sag differentiation sequence displays systematic variations in major and trace elements with evolution. The accumulative more mafic shonkinites are enriched in Co, Ni, Cr; La, Ce, Zr, and Nb are concentrated in the most evolved differentiate, chemically a nepheline syenite. Maximum abundances of K, Rb, Ba, Pb, and Sr occur in the intermediate syenitic differentiates (differentiation index=64.0–68.8). A change in the variation trends for K, Rb, Pb, Sr, Na, Ce, and Zr coincided with a change in the rate of decrease of oxygen fugacity with falling temperature.  相似文献   

12.
Thermokarst lakes, formed during permafrost thaw in Western Siberia Plain over past tens to hundreds years, cover overall territory close to million km2 and may represent significant source of CO2 and CH4 to the atmosphere. These acidic (3 < pH < 6) and humic [10 < dissolved organic carbon (DOC) < 50 mg/L] lakes are essentially inhabited by heterotrophic bacterioplankton with rare phytoplankton bloom occurring during warm periods. In order to understand possible effects of phytoplankton bloom on thermokarst lake hydrochemistry under climate warming scenario, we cultured pure cyanobacterium (Gloeocapsa sp.) and native cyanobacterial associate separated from the natural lake water. As substrates, sterilized thermokarst lake water and peat leachate from western Siberia were used. In these laboratory microcosm experiments which lasted 10 days, we monitored daily pH, biomass, DOC, and 40 major and trace elements. Despite significant variation of pH (4 to ~10.5) and biomass (a factor of 3–5), very few dissolved elements responded to massive cyanobacterial growth. The DOC varied within a factor of 1.2–1.5, exhibiting slow increase due to exometabolite production in thermokarst lake water and an initial decrease due to photodegradation in peat leachate. Elements appreciably affected by photosynthesis in both lake water and peat leachate substrates were P, Zn, Mn, and, in a lesser degree, Cd, K, Rb, Sr, Ba, Cr, Al, and U. While P, K (Rb), Mn, and Zn removal from solution during cell growth could be linked to biological demand by cyanobacteria, the adsorption of Cd, Sr, Ba, Al, Cr, U on the cell surface in response to the pH rise is most likely. Many other trace elements did not exhibit any significant evolution of the concentration during 10-day experiment either due to their strong complexation with allochthonous organic matter and essentially organic/organo-mineral colloidal status (Fe, Ni, Co, Cu, Pb, REEs, Ti, Zr, Hf, Th) or due to the lack of element interaction with cyanobacterial cells, via both adsorption and intracellular uptake (B, Si, V, Mo, As, Sb, Cs). Therefore, possible intensification of cyanobacterial bloom in thermokarst lakes caused by leaching of thawing peat will likely affect only few macronutrients and micronutrients such as P, K, Mn, and Zn, while the majority of trace elements bound to allochthonous DOC in the form of organic and organo-mineral colloids will not be affected by cyanobacterial biomass production and pH rise due to photosynthesis. Cyanobacterial bloom in organic-rich (20 mg DOC/L) thermokarst lakes exhibited significant potential of carbon sequestration from the atmosphere, which is more than an order of magnitude higher than the CO2 evasion due to heterotrophic plankton respiration of allochthonous DOC.  相似文献   

13.
以新疆库拜煤田塔里奇克组煤层为研究对象,对其煤化学及地球化学特征进行分析。认为研究区煤层属低水分、低灰分、特低硫分、高挥发分的长焰煤-气肥煤;煤中的常量元素Al、Ca、Fe、Mg和K平均含量低于中国煤常量元素的平均含量,并有较大的变化范围,仅Na平均含量高于中国煤的平均含量;煤中的微量元素Cu和Co含量高于中国煤的平均含量,Ni和Zn含量接近中国煤的平均含量.其它微量元素含量均明显低于中国煤的平均含量。阐明了Al、Li、Cr、Ti、Zr、Ga、Nb以及轻稀土元素(La、Ce和Nd)具有较强的亲无机性,在煤中主要以无机态存在;Li、Sc、Ti、V、Cr、Ga、Rb、Zr、Nb及重稀土元素中的La、Ce、Pr、Nd、Sm、Gd元素主要与硅铝酸盐矿物及微量的重矿物组合有较好的亲和性:As、Sr元素主要以碳酸盐矿物的形式存在。  相似文献   

14.
This study evaluates Greek peat and coal samples for applications in the agricultural/horticultural sector and assesses the suitability of a certain peat/coal either as soil conditioner or as raw material for manufacturing organic fertilizers.Twenty-six samples of different rank ranging from peat to subbituminous coal obtained from several Greek peat/coal deposits, were studied. The laboratory tests included: a) pH and electrical conductivity (EC) determinations, as well as proximate, ultimate and maceral analyses, in order to characterize the samples, b) major and trace element analyses of both the total and the easily exchangeable fractions (EEF), in order to assess the phytotoxicity effect, c) cation exchange capacity (CEC) determination in mixtures of the samples (5 wt.%) with a certain soil (95 wt.%), in order to evaluate the peat/coal impact, and d) the determination of the contents of humic substances (HS), as well as of carboxylic and phenolic groups.The majority of the samples reveal moderate to high ash yields (16–80 wt.%), a slightly acidic to neutral character and electrical conductivity ranging from 100–2500 μS/cm. Concerning the environmental impact of the sensitive trace elements, which might be leached, As, Mn, Ni and Sr show relatively strong mobilization in some samples, although severe impacts are not expected. The soil's CEC is generally improved, although it remains at moderate levels. The most interesting aspect is the humic acids content, which ranges between 9.6 and 52.2 wt.% on a dry basis, exceeding 25 wt.% for most of the samples. The obtained results enable an initial correlation among the different parameters and a rating of the samples according to their suitability for soil-amelioration agents.  相似文献   

15.
文章对内蒙古西伯地区蛇绿混杂岩带岩石学、岩石地球化学、微量元素、稀土元素、U-Pb同位素年龄测定的综合研究表明:1该混杂岩体以变质橄榄岩、橄榄辉长岩、细粒辉长岩为主;2变质橄榄岩具有低铬、钛、贫钙和高镁的特点,辉长岩类具有富铝、钛含量中等的特点;3微量元素富、稀土元素含相容元素Cr、Ni、Co,而贫大离子亲石元素LILE(不相容元素)K、Rb、Sr、Ba、Zr、Y、P、Ti等;4本区超基性岩的形成时代大约在早泥盆世早期。  相似文献   

16.
The concentration profiles of the trace elements, S, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, and Y have been determined across a metasomatic vein in peridotite. The introduced elements Ti, V, Sr, and Y show specific enrichment in particular silicate phases in accordance with the availability of suitable lattice sites. In contrast, the other introduced trace elements (Cu and S) behave more like the redistributed elements, Cr, Ni, Mn, and Co which do not show concentration ‘fronts’ that can be simply related to the silicate minerals. Concentration of pentlandite, chalcopyrite, and Cr-magnetite near the boundary between the enstatite and anthophyllite zones gives rise to maxima in the Ni, Cu, S, and Cr distributions, while in the chlorite zone significant concentrations of Cr and Ni occur in the chlorite itself. Control of the distribution of Ni, Cu, and Cr is ascribed to the oxidation/reduction reactions involved in the formation of pentlandite, chalcopyrite and Cr-magnetite, together with the critical role of Al in limiting chlorite formation during metasomatism.  相似文献   

17.
新疆霍什布拉克铅锌矿床地质、地球化学特征研究   总被引:6,自引:3,他引:3  
新疆霍什布拉克铅锌矿床的矿体和含矿地层的产状一致,主矿体的矿石具有条带状、纹层状构造,矿石中大量发育霉球状、管状和环带状生物结构,显示出层控、热水沉积成因的特点。含矿地层和矿石样品的主量元素PER图解显示含矿碳酸盐岩以含石膏的灰岩为主,围岩的白云岩化微弱,矿化与硅化关系密切。矿石、含矿碳酸盐岩和页岩、粉砂质灰岩和泥质粉砂岩等碎屑岩具有各自鲜明的微量元素分布特征,上层矿体矿石中较强的富集过渡族元素Ti、V、Cr、Mn、Co、Ni、非活动性元素Zr、Hf及大离子亲石元素Sr和Pb,亏损活动性元素Na、K、Rb、Ba和非活动性元素Nb、Th。其围岩重结晶泥晶灰岩富集Ti、Mn、Ni、Sr和Pb,亏损Na、K、V、Fe、Rb、Ba、Zr、Hf、Nb和Th。下层矿体的围岩页岩和泥质、粉砂质灰岩样品的微量元素分布在平均上地壳线附近,部分样品较明显的富集Ti、V、Cr、Mn、Co、Ni、Rb、Y、Zr和Hf,亏损Na、Fe、Sr、Nb。上层矿体矿石和下层矿体围岩中的部分碎屑岩富集强亲岩浆元素Cr、Co、Ni,且上层矿体矿石的稀土元素分布模式具有强的正Eu异常,部分下层矿体围岩具有较明显的正Eu异常。地质和地球化学特征显示该矿床属于热水沉积矿床中的SEDEX型矿床。  相似文献   

18.
The Blue Gem coal bed (Middle Pennsylvanian Westphalian B, Breathitt Formation), has low-ash (with some sample sites having less than 1% ash) and low-sulfur contents through parts of Knox County, Kentucky. Most collection sites exhibit similar vertical elemental trends in ash geochemistry. The relatively high-ash (>1% ash) lower part of the bed displays enrichment in TiO2, Zr, Cr, V and Ni; Co, Zn, Rb and Mn show enrichment at some sites. A low-ash (<1% ash) middle part of the bed displays enrichment in Sr, Ba and CaO; Fe2O3 is enriched in samples with carbonate minerals. The upper part of the bed contains >1% ash and a relative enrichment in SiO2, K2O and Rb and a relative decrease in Cu, Ni, Co, Ba and Mn when compared to the middle part of the bed. Principal components analysis indicates that the samples with an ash content 0.63–1.0% show associations for Ni, Cu, Cr and Co. Samples with between 1.01–2.0% ash display strong element associations that suggest increased clastic sediment contributions (TiO2, Zr, K2O, Rb, SiO2). The low-ash content and the upwards decrease in trace concentrations both suggest that the Blue Gem peat swamp was ombrotrophic through at least a part of its geologic history.  相似文献   

19.
对松多榴辉岩中单矿物进行的LA-ICP-MS原位微区微量元素分析研究结果表明,石榴石主要富集中、重稀土元素和Y,同时具有高丰度的Sc、V、Cr和Co等元素;绿辉石中的微量元素以中稀土元素、Sr、Sc、V、Cr、Co、Ni和Ti为主,含有一定量的Zr、Hf等。石榴石、绿辉石、角闪石和绿帘石中均显示轻稀土元素亏损的特点,表明在退变质过程中没有发生明显的富轻稀土元素的外来流体交代作用,因而其微量元素矿物地球化学的某些特点不同于苏鲁地区的榴辉岩。石榴石变斑晶中某些元素(如Ti、Zr)的分带性暗示了榴辉岩在紧随峰期变质之后的折返过程中发生了降压增温过程。榴辉岩主要变质矿物中微量元素的分配显然受到矿物主量元素的分配所控制,如MgO在石榴石和绿辉石之间的分配对Ni、Co、Ti分配的控制以及CaO的分配对Sr、Y、REE分配的控制等。退变质过程中矿物的形成或分解以及物理化学条件的改变都可以引起矿物间微量元素的重新分配。由绿辉石退变质而形成的角闪石,较之原先的绿辉石,其微量元素配分曲线总体特征会发生变化,但元素总体丰度相近,某些元素特点相似,又反映了绿辉石和角闪石之间的成生联系。金红石是Ti、Nb、Ta、Zr、Hf的主要赋存矿物,而与之共生的绿帘石所表现出来的高场强元素的亏损特征表明了金红石的存在所带来的影响。  相似文献   

20.
近 2 ka来东海内陆架泥质沉积物地球化学特征   总被引:4,自引:0,他引:4  
对位于东海内陆架闽浙沿岸泥质区北部的 DD2孔进行了粒度分析、 AMS 14C年龄测试和主元素、微量元素分析,讨论了各元素含量与粒度间的关系,采用 R型因子分析探讨了它们间的组合关系.研究表明,近 2 ka来 DD2孔绝大多数主元素和微量元素含量稳定;随粒径变细大部分元素的含量呈现增加的趋势,而 Sr和 SiO2的含量则呈现减少的趋势;CaO、 Na2O、 Hf、 Zr和 Ti等的含量与粒径相关性很差.因子分析的结果表明, DD2孔泥的化学组成可划分为 4种组合类型:分别反映沉积物中元素分布的主要特点,样品未经洗盐前处理引起主元素和微量元素组合的变化, Zr、 Hf和 Nb元素富集于特定粒度组分 (粉砂 ),及钙质生物组分的加入和早期成岩过程中元素的再分配性质等.初步分析表明, Rb、 Cu、 Ni、 V、 P、 Sc、 Fe2O3、 Cr、 K2O、 Nb、 Co、 Th、 Ti和 Al2O3为 DD2孔中相对不活动的元素,可以将它们与现代长江、黄河沉积物作对比,进行物源分析. Ti/Zr和 Cr/Th比值指示该孔沉积物主要来自于花岗质物源区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号