首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquidus phase equilibria have been determined in the system CaAl2Si2O8-NaAlSi3O8-KAlSi3O8-NaAlSiO4-KAlSiO4 (An-Ab-Or-Ne-Ks) at a pressure of water of 5 kb, for low anorthite contents. The main effects of increasing anorthite content on phase relationships in the system Ab-Or-Ne-Ks include the expansion of the plagioclase stability field towards the potassium-rich part of the system, and an accompanying contraction of the alkali feldspar, leucite, nepheline and kalsilite stability fields; and an increase in liquidus temperatures throughout most of the compositional range. Two quaternary invariant points have been identified in the system, one a reaction point between the fields of alkali feldspar, plagioclase, nepheline and kalsilite at approximately An4, and the other probably a quaternary eutectic between the fields of alkali feldspar, plagioclase, leucite and kalsilite at approximately An6. A shallow minimum trough in liquidus temperatures occurs on the two-feldspar surface, and this would be expected to control the paths of liquids cooling under equilibrium conditions. Phase relationships in this quaternary system have been applied to the interpretation of the histories of the potassium-rich rocks of the Roman Volcanic Region, Italy. Differentiation of the phonolitic series in this region may have occurred by two-feldspar fractionation.  相似文献   

2.
Experiments designed to simulate the dissolution of alkali feldspar during magma mixing produced plagioclase mantles that are texturally and compositionally similar to those in some hybrid volcanic rocks. In hydrous dacite melt (69% SiO2) at 0.8 GPa, 850°C, orthoclase (Or93) and sanidine (Or30) partially dissolved and were mantled by sodic plagioclase (An25–30). Although plagioclase nucleated epitaxially as a thin shell on the alkali feldspar surface near the time of initial resorption, plagioclase subsequently grew inward —mostly in the form of parallel blades — toaard the receding dissolution surface. Orthoclase dissolved at a rate approximately proportional to the square root of run duration, indicating diffusional control. Plagioclase grew inward within a static boundary zone of melt that formed between the original crystal-dacite interface and the dissolution surface. During orthoclase dissolution, this boundary zone rapidly and simultancously gained Na (by diffusion from dacite) and lost K (by diffusion into dacite); Ca diffused more slowly into this zone, from which non-feldspar species were mostly excluded. Plagioclase was stable where sufficient Ca had diffused in that the boundary zone melt intersected the plagioclase-saturation liquidus. Plagioclase subsequently grew toward the receding dissolution surface as the Ca compositional gradient (and hence the site of plagioclase saturation) stepped inward. Crystallization of plagioclase in the form of parallel blades allowed continued diffusive exchange of melt components between the dissolution surface and the host melt. Bladed growth also served to maintain (at blade tips) proximity of plagioclase to the dissolution surface, thereby apparently preserving (locally) a thin zone of low-variance melt. In natural systems, mantling of alkali feldspar by plagioclase will occur in a similar manner when (a) P, T, or X are changed to induce alkali feldspar dissolution, (b) sufficient Ca is available in the host melt to drive (by diffusion) boundary zone melt compositions to plagioclase saturation, and (c) temperatures are low enough to stabilize sodic plagioclase and to maintain a coherent boundary zone. These reqjirements are satisfied in volcanic systems when alkali feldspar is juxtaposed during mixing with hybrid melts of dacitic composition. Mantled feldspars in some intrusive systems (i.e., rapakivi granites) may form by a similar dissolution- and diffusion-controlled mechanism. Textural evidence of a similar origin may be obscurred in intrusive rocks, however, by products of late-stage magmatic and subsolidus processes.  相似文献   

3.
Crystal-rich materials (scoriae and lava flows) emitted during the 1985–2000 activity of Stromboli were taken into consideration for systematic study of bulk rock/matrix glass chemistry and in particular for the study of chemical and textural zoning of plagioclase, the most abundant mineral phase. Over the considered time period, bulk rock composition remained fairly constant in both major (SiO2 49.2–50.9 wt% and K2O 1.96–2.18 wt%) and trace elements. The quite constant chemistry of matrix glasses also indicates that the degree of crystallization of magma was maintained at around 50 vol%. Plagioclase ranges in composition between An62 and An88 and is characterized by alternating, <10–100 m thick, bytownitic and labradoritic concentric layers, although the dominant and representative plagioclase of scoriae is An68. The labradoritic layers (An62–70) show small-scale (1–5 µm), oscillatory zoning, are free of inclusions, and appear to record episodes of slow crystal growth in equilibrium with a degassed liquid having the composition of the matrix glass. In contrast the bytownitic layers (An70-An88) are patchy zoned, show sieve structure with abundant micrometric glass inclusions and voids, and are attributed to rapid crystal growth.A key to understanding the origin of bytownitic layers can be retrieved from the texture and composition of the coronas of plagioclase xenocrysts, inherited from crystal-rich magma, in nearly aphyric pumice which are erupted during more energetic events and represent a deep, volatile-rich, HK-basaltic magma. They show a continuum from fine-sieve to evident skeletal texture from the inner to the outer part of the corona associated with normal compositional zoning from An90 to An75. In the light of these observations, we propose that input of H2O-rich melt blobs, and their mixing with the residing magma, causes partial dissolution of the labradoritic layers followed by the growth of bytownitic composition whose sieve texture attests of rapid crystallization occurring under undercooling conditions mainly induced by degassing. As a whole, the zoning of plagioclase in the scoriae records successive and discrete intrusions of volatile-rich magma blobs, its degassing and mixing with the resident degassed magma at shallow level.Editorial responsibility: T.L. GroveAn erratum to this article can be found at  相似文献   

4.
Abstract Microprobe analyses of feldspars in granite mylonites containing flame perthite give compositions that invariably plot as three distinct clusters on a ternary feldspar diagram: orthoclase (Or92–97), albite and oligoclase-andesine. The albite occurs as grains in the matrix, as flame-shaped lamellae in orthoclase, and in patches within plagioclase grains. We present a metamorphic model for albite flame growth in the K-feldspar in these rocks that is related to reactions in plagioclase, rather than alkali feldspar exsolution. Flame growth is attributed to replacement and results from a combination of two retrograde reactions and one exchange reaction under greenschist facies conditions. Reaction 1 is a continuous or discontinuous (across the peristerite solvus) reaction in plagioclase, in which the An component forms epidote or zoisite. Most of the albite component liberated by Reaction 1 stays to form albite in the host plagioclase, but some Na migrates to form the flames within the K-feldspar. Reaction 2 is the exchange of K for Na in K-feldspar. Reaction 3 is the retrograde formation of muscovite (as ‘sericite’) and has all of the chemical components of a hydration reaction of K-feldspar. The Si and Al made available in the plagioclase from Reaction 1 are combined with the K liberated from the K-feldspar, to produce muscovite in Reaction 3. The muscovite forms in the plagioclase, rather than the K-feldspar, as a result of the greater mobility of K relative to Al. The composition of the albite flames is controlled by both the peristerite and the alkali feldspar miscibility gaps and depends on the position of these solvi at the pressure and temperature that existed during the reaction. Using an initial plagioclase composition of An20, the total reaction can be summarized as: 20 oligoclase + 1 K-feldspar + 2 H2O = 2 zoisite + muscovite + 2 quartz + 15 albiteplagioclase+ 1 albiteflame. This model does not require that any additional feldspar framework be accreted at replacement sites: Na and K are the only components that must migrate a significant distance (e.g. from one grain to the next), allowing Al to remain within the altering plagioclase grain. The resulting saussuritization is isovolumetric. The temperature and extent of replacement depends on when, and how much, water infiltrates the rock. The fugacity of the water, and therefore the pressure of the fluid, may have been significantly lower than lithostatic during flame growth.  相似文献   

5.
《International Geology Review》2012,54(13):1522-1558
The Melrose Stock in the Dolly Varden Mountains of east-central Nevada is one of the many Mesozoic intrusion s in the Basin and Range Province. It consists of monzonites, quartz monzonites, granodiorites, and granites sharply intruding Mississippian to Triassic units. Phenocrysts of plagioclase (An38–An24) with oscillatory zoning and albitic rims, hornblende ± diopside, and biotite are common. Coexisting phases include orthoclase, quartz and accessory magnetite, apatite, titanite, ilmenite, and allanite. Mineral compositions suggest that the intrusion was emplaced at ~720 ± 40°C and 1.8–2.3 kbar.

All rocks are metaluminous to slightly peraluminous, defining a calcalkalic trend in which the monzonites and syenites are shoshonitic. Rare earth element patterns indicate that all studied rock types are comagmatic. Harker plots show curvilinear trends with some kinks consistent with fractionation, and mixing/assimilation. Major-element modelling and petrographic evidence suggest three stages of fractionation/mixing: Stage 1 marked by the fractionation of diopside and plagioclase; Stage 2 by fractionation of plagioclase, hornblende ± orthoclase ± biotite, accompanied by mixing through convection; and Stage 3 by fractionation of biotite, hornblende, plagioclase, and orthoclase.

Mineralogic, petrographic, and major- and trace-element data demonstrate that all rocks are I-type granitoids, suggesting a significant mantle contribution. Spider diagrams show troughs for Ti, P, and Nb, indicating magma genesis in a subduction-zone setting. Discrimination diagrams classify all rocks as late orogenic. Magma was therefore generated from mantle metasomatized by subduction, differentiated to a monzonitic magma, and emplaced in the thinned continental crust during a period of extension late in the cycle of Elko orogeny.  相似文献   

6.
The textural relationships and geochemistry of feldspars from least-altered to sericite-hematite altered and mineralised ~ 1.595 Ga Roxby Downs Granite (RDG) at Olympic Dam, South Australia, were examined. The sample suite is representative of RDG both distal (> 5 km) and proximal (< 1 km) to the hydrothermal breccias of the Olympic Dam Breccia Complex (ODBC), which host Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam. Microscopic observations and quantitative analyses indicate that a range of feldspar reactions have taken place within the RDG hosting the Olympic Dam deposit. An early phase of igneous plagioclase (~ An27–34) is recognised, along with a more abundant, less-calcic plagioclase (~ An12–20) both displaying rapakivi and anti-rapakivi textures with alkali feldspar. Alkali feldspars (~ Or55Ab43An2) record post-magmatic evolution from cryptoperthite to patch perthite. Subsequent patch perthite is overprinted by highly porous, near end-member albite and K-feldspar, while plagioclase undergoes replacement by albite + sericite ± Ba-rich K-feldspar. In sericite-hematite altered and mineralised RDG along the margin of the ODBC, sericite replaces all plagioclase, whereas red-stained, Fe-rich K-feldspar persists. Sulphide-uranium-rare earth element mineralisation is observed in association with hydrothermal feldspars, and increases in abundance with proximity to the orebody. Petrographic observations and whole-rock geochemistry illustrate the transformation of plagioclase and alkali feldspar from igneous to hydrothermal processes, and indicate that hydrothermal albite and K-feldspar formed within the RDG without the need for an external source of alkalis. Feldspar geothermometry indicates a minimum crystallisation temperature of 765 °C at 2.2 kbar for alkali feldspar (pressure estimate obtained using plagioclase-amphibole geobarometry) followed by a range of lower temperature transformations. Late-stage magma mixing/contamination is postulated from supportive temperature and pressure estimates along with feldspar and mafic mineral relationships.  相似文献   

7.
The Agacoren Intrusive Suite is exposed as a large intrusive body over ~500 km2 east of Lake Tuz in central Anatolia and consists of the Cokumkaya gabbro, the Agacoren granitoid, and young dikes. The Agacoren granitoid is the predominant lithology of the Agacoren Intrusive Suite, and is differentiated into several subunits ranging in composition from monzonite, through granite, to alkali feldspar granite. The Cokumkaya gabbro occurs as stocks enclosed in the Agacoren granitoid; individual bodies range in size from 10 m × 20 m to 7 km × 3 km. Young dikes cut both the Cokumkaya gabbro and the Agacoren granitoid, and are particularly abundant in the central part of the intrusive body.

Centimeter- to meter-size mafic microgranular enclaves (MME) are enclosed in the Agacoren granitoid. The enclaves are diorite, quartz diorite, and monzodiorite in composition, and represent blobs of mafic magma injected into a felsic host magma. The MME have a mineral assemblage (plagioclase + amphibole + biotite ± quartz ± K-feldspar) almost identical to that of host granitoid, but with different mineral proportions. The characteristic petrographic features of the MME are the presence of acicular apatite, blade-shaped biotite, quartz ocelli, and K-feldspar poikilitically enclosing mafic minerals. Microprobe analyses performed on amphibole and plagioclase reveal similar mineral chemistries for both the MME and the host granitoid. The anorthite contents of the plagioclases show an increase from rim to core in both the MME and the host granitoid. The rims of the MME plagioclase have compositions ranging from An5 to An40, whereas those of the host granitoid vary from An0 to An42. The cores, on the other hand, range from An30 to An90 and An20 to An90 in the MME and the host, respectively. Amphiboles are essentially of ferro-hornblende composition in the MME, and of ferro- to magnesiohornblende composition in the host granitoid. The similarity in mineral compositions reflects chemical equilibrium attained through the magma-mixing process.  相似文献   

8.
锡山钨锡多金属矿是粤西阳春盆地内一个中型石英脉型矿床,成矿岩体岩性为钾长花岗岩,主要矿物组成为钾长石、斜长石、石英、黑云母,副矿物包括锆石、磷灰石、金红石、钛铁矿和铌铁矿等。文章利用电子探针技术对主要矿物的矿物学特征进行了研究,结果表明花岗岩中斜长石为钠长石,钾长石为透长石,黑云母属于铁叶云母。黑云母化学成分显示其w(Ti)介于0.19~0.39,具有低的氧逸度(log f(O2)Ni-Ni O),指示其有利于钨锡矿床的形成且仍具有较好的找矿潜力。结合已有的区域地质资料,文章认为锡山钨锡多金属矿床是岩石圈伸展背景下的产物。  相似文献   

9.
Mafic microgranular enclaves (MMEs) are widespread in the Horoz pluton with granodiorite and granite units. Rounded to elliptical MMEs have variable size (from a few centimetres up to metres) and are generally fine-grained with typical magmatic textures. The plagioclase compositions of the MMEs range from An18?CAn64 in the cores to An17?CAn29 in the rims, while that of the host rocks varies from An17 to An55 in the cores to An07 to An33 in the rims. The biotite is mostly eastonitic, and the calcic-amphibole is magnesio-hornblende and edenite. Oxygen fugacity estimates from both groups?? biotites suggest that the Horoz magma possibly crystallised at fO2 conditions above the nickel?Cnickel oxide (NNO) buffer. The significance of magma mixing in their genesis is highlighted by various petrographic and mineralogical characteristics such as resorption surfaces in plagioclases and amphibole; quartz ocelli rimmed by biotite and amphibole; sieve and boxy cellular textures, and sharp zoning discontinuities in plagioclase. The importance of magma mixing is also evident in the amphiboles of the host rocks, which are slightly richer in Si, Fe3+ and Mg in comparison with the amphiboles of MMEs. However, the compositional similarity of the plagioclase and biotite phenocrysts from MMEs and their host rocks suggests that the MMEs were predominantly equilibrated with their hosts. Evidence from petrography and mineral chemistry suggests that the adakitic Horoz MMEs could be developed from a mantle-derived, water-rich magma (>3 mass%) affected by a mixing of felsic melt at P >2.3?kbar, T >730°C.  相似文献   

10.
The bulk compositions of the groundmass alkali feldspar from the Hell Canyon Pluton is 0.146mole% albite. The composition of the outermost zone of the oscillatory zoned plagioclase is 0.686 mole% albite, whereas the most calcic cores have a composition of 0.43 mole% albite. The structural state of the alkali feldspar is near orthoclase. Both composition of coexisting feldspars and structural state of the alkali feldspar are nearly constant throughout the pluton.Exsolved albite in the alkali feldspar have a composition of 0.965 mole% albite and the orthoclase host has a composition of 0.032 mole%. Singe crystal X-ray studies indicate that the albite intergrowths are coherent with the host.Equilibrium temperatures derived from the coexisting feldspar average 554 ° C; about 150 ° C, too low for the minimum solidus temperatures for reasonable emplacement pressures (2 kb). If this minimum solidus temperature is assumed, then the alkali feldspar has lost about 0.15 mole% albite. This loss was most likely caused by hydrothermal solutions associated with the crystallizing magma and equilibrated at about 550 ° C. However, based on the coherent albite intergrowths and the orthoclase structure state it can be inferred that the system was relatively free of volatiles below 500 ° C. Final equilibirium between orthoclase host and albite intergrowths occurred at about 311 ° C.  相似文献   

11.
Feldspar chemical variations in representative leucite-bearing and related rocks from well-known localities in Italy, Germany, Uganda and Australia demonstrate that phenocrystal core to rim variations may not represent the feldspar crystallization trend in the host lava and only the groundmass feldspar zoning trend is a reliable indicator of crystal-liquid relationships. Textural relationships indicate that coexisting plagioclase and alkali feldspar crystallized sequentially, the latter after the former, rather than cotectically.Groundmass alkali feldspar show Ca-, Na-depletion and K-enrichment zoning trends. Plagioclase crystallization follows Ca-depletion, Na and K-enrichment trends. Typically, Sr and Ba solid solubility is significant, particularly in groundmass feldspar.The alkali feldspar variation trend from groundmass assemblages is not consistent with the theoretical phase relationships in the system NaAlSiO4-KAlSiO4 CaAl2Si2O8-SiO2 (The phonolite pentahedron) proposed by Carmichael et al. (1974).Factors believed to be important in controlling feldspar crystallization trends are the Sr-Ba feldspar components, the role of the coexisting pyroxene and the presence of F, Cl and/or their alkali compounds.  相似文献   

12.
An unusual magmatic three-feldspar syenogabbro occurs 3 m inside the contact of the Klokken gabbro-syenite stock. It contains plagioclase, mesoperthite and cryptoperthite, together with a low temperature symplectite intergrowth. Textural relationships have been investigated by cathodoluminescence, bulk chemistry by microprobe, and exsolution microtextures and intracrystalline boundaries by TEM. The mesoperthite has a bulk composition around Or26Ab52An22, well outside accepted limits of ternary feldspar solid solution. It is a mainly coherent, lamellar intergrowth of sodic andesine and orthoclase with incipient Mtwinning. The cryptoperthite, bulk composition around Or61Ab33An6, is a coherent lamellar intergrowth of orthoclase and sodic low oligoclase. The compositions of the exsolved phases have been estimated. The meso- and cryptoperthite crystals have sharp boundaries with each other. Plagioclase (zoned An 55-35, with 2–3% Or) defines a solidus fractionation path. It behaved as an inert phase during crystallization of the perthites, which grew as homogeneous monoclinic phases in equilibrium on the strain-free ternary solvus, defining a solvus isotherm at ~ 950° C. Both of the monoclinic phases exsolved on reaching the coherent ternary spinodal at temperatures estimated to be close to 800–850° C and 700–830° C respectively. Lamellar periodicities (529±149 nm and 148±18 nm respectively) are considerably finer scale than predicted by coarsening experiments, suggesting that An and/or Al-Si order greatly inhibit coarsening. The symplectite is a coarse, incoherent intergrowth of sodic andesine and nearly pure K-feldspar, probably produced by simultaneous crystallization at <400° C. The new data and literature analyses are used to construct the geometry of the ternary feldspar system. Solvus isotherms implied by existing experimental data approach the Ab apex too closely at high temperature. The critical solution curve becomes slightly more albitic after leaving the binary Ab-Or join, and then turns sharply towards the An-Or join. It intersects the proposed new limit of feldspar solid solution near Or36Ab44An20 at 1,060° C. This probably approximates to the highest temperature on the ternary critical curve at 1 bar.  相似文献   

13.
An antiperthite feldspar (composition of the main part An27.2 Ab69.2Or3.6) has been studied by x-rays and transmission electron microscopy. Complex twinning and exsolution on very fine scale are described for the first time for this compositional range. Evidence is given for a distinct intermediate region between the plagioclase and the potash feldspar. The formation of the crystal probably involves partial replacement, at least two step exsolution, and transformation of monoclinic plagioclase to triclinic plagioclase.  相似文献   

14.
Miocene volcanism of the Oglakci region (Sivrihisar, Eskisehir) in northwestern Central Anatolia, Turkey, is represented by basaltic and trachytic groups of rocks. Samples of both groups have been investigated using mineral-chemical data together with whole-rock major-, trace-element, and radiogenic Sr-Nd isotopic data. The basaltic volcanic rocks consist of mugearites and shoshonites, whereas the trachytic rocks include trachytes, latite, and rhyolite. Both groups are of alkaline character. The basaltic rocks contain plagioclase (An29-63), alkali feldspar (Or12-74), olivine, orthopyroxene (En64-67), clinopyroxene (Wo43-48), biotite (Mg#82-88), and Fe-Ti oxide phenocrysts, whereas the trachytic rocks contain plagioclase (An21-64), alkali feldspar (Or10-53), clinopyroxene (Wo41-49), amphibole (Mg#64-83), biotite (Mg#79-85), Fe-Ti oxide, titanite, apatite, and quartz phenocrysts. The measured 87Sr/86Sr ratios of basaltic samples range from 0.7045 to 0.7048, and those of trachytic samples from 0.7054 to 0.7056. The basaltic samples have 143Nd/144Nd ratios ranging from 0.512753 to 0.512737, and those of trachytic samples are 0.512713 to 0.512674. Isotopic, major-, and trace-element data suggest that the Oglakci volcanic rocks are products of postcollisional magmatism and originated from a complex interplay of crustal assimilation, magma mixing, and fractional crystallization processes following the demise of Neotethys. Trace-element characters also are consistent with an OIB-like mantle source. These volcanic rocks probably were associated with extensional tectonics, which occurred within the Anatolian plate as a result of collision of the Eurasian and Afro-Arabian plates during the neotectonic evolution of Turkey.  相似文献   

15.
Time studies were performed in the quinary system Qz-Or-Ab-An-H2O at kbars and T=665 ° and 660 ° C. Starting material was a mixture of quartz, alkali feldspar Or80 and plagioclase An31. The compositions of plagioclases of run products were determined and compared with the plagioclase of stable solidus conditions.The solidus of the granite system was fixed at P HäO=5 kbars using various plagioclase — and appropriate alkali feldspar — compositions besides quartz in the starting mixture (Fig. 1).The results of time studies (Table 3 and Fig. 3) reveal metastable melting in the granite system Qz-Or-Ab-An-H2O. Plagioclase melts almost stoichiometrically. The new plagioclase compositions formed during melting of cotectic compositions approach the theoretically expected stable plagioclase compositions only extremely slowly. An extrapolation of the data achieved in run times of 5–1,500 h indicates attainment of equilibrium after 1014 years. Metastable melting of granitic compositions is not only considered as an experimental problem but also as a rock forming process in nature.  相似文献   

16.
Artificial shock pressures up to 52.5 GPa have no influence on the K-Ar system of plagioclase feldspar. The 40Ar-39Ar analysis of feldspar (labradorite An67 from anorthosite of North-Eastern Minnesota) shocked up to 45 GPa—in vacuo, to prevent massive entrapment of atmospheric argon-shows that the age spectra and the argon diffusion properties remain unaltered. Similar feldspar samples (labradorite An51 from Nain, Labrador), shocked in air up to 52.5 GPa and dated by the conventional K-Ar method, also yield the same age as unshocked samples but with a higher atmospheric argon contribution. The Minnesota anorthosite has an 40Ar-39Ar age of 1075 ± 10 m.y. No information on a possible previous history of the anorthosite became apparent.  相似文献   

17.
Back-scattered electron (BSE)-derived zoning patterns of plagioclase phenocrysts are used to identify magma processes at Bezymianny Volcano, Kamchatka, based on the 2000–2007 sequence of eruptive products. The erupted magmas are two-pyroxene andesites, which last equilibrated at ~915°C temperature, 77–87 MPa pressure, and a water content of ~1.4 wt%. Textural and compositional zoning of individual plagioclase phenocrysts typically includes a repeated core-to-rim sequence of oscillatory zoning (An50–60) truncated by a dissolution surface followed by an abrupt increase in An content (up to An85), which then gradually decreases rimward. This zoning pattern is interpreted to be the result of frequent replenishments of the magma chamber which cause both thermal and chemical interaction between resident and recharge magmas. The outermost 70- to 150-μm-wide zoning patterns of plagioclase phenocrysts are composed of dissolution surface with a subsequent increase in An and Fe contents. Zoning patterns of the rims exhibit correlation among plagioclase phenocrysts within one eruption. Rims are interpreted as a result of crystallization of a batch of magma in the conduit after recharge event.  相似文献   

18.
Li, Be, B and δ7Li SIMS analyses of plagioclase phenocrysts from the 1040–1941 Niki dacite lava (Nea Kameni, Santorini, Greece) exhibit varied processes. From their anorthite contents alone, the crystals may be segregated into four main types: type-N shows the normal decline in An during crystallisation (An62–40); type-O has only oscillatory zoning accompanied by resorption surfaces (An58–39); type-C is complex with high-An cores (subtype C1: An64–58, subtype C2: An88–73) and normal rims (An55–42). Type-A plagioclase with high An content (An92–82) is found within mafic enclaves. On the basis of their Li concentrations, type-O crystals may be subdivided into subtype O1 with flat Li concentration profiles and subtype O2 with decreasing Li concentration from core to rim. The concentrations of Be and B of all four types show a negative correlation with anorthite content (An), but Li concentration profiles differ amongst the different plagioclase types. Types N and O1, and the cores of type-C, are equilibrated in Li concentration. Types O2 and A, and the mantles of type-C display an initial enrichment in Li, probably from volatile influx into the melt. Consistent with the propensity towards equilibrium with the melt, these crystals display dramatic rim-ward declines in Li concentration. All analysed plagioclase crystals, except for the xenocrystic type-A, have nearly the same Li, Be and B concentrations at their rims. These coincide with the composition of plagioclase microlites in the groundmass, thereby affording estimates of plagioclase-melt partitioning for the light elements: K Li = 0.19–0.28, K Be = 0.24–0.38 and K B = 0.007–0.009. δ7Li profiles in type-O2 and type-A phenocrysts manifest an unmistakable inverse relation to Li concentration, with variations of up to ~39 ‰, revealing preferential kinetic diffusion. This may have been driven by Li loss from the melt, most likely through degassing during decompression, perhaps in the course of magma ascent to subsequent eruption. Considering the rapid diffusion of Li in plagioclase, in situ phenocryst analyses may yield useful information about processes leading up to, or even causing, eruptions.  相似文献   

19.
Mid-Oceanic Ridge Basalt (MORB) samples collected from southern East Pacific Rise (SEPR) have been investigated. These highly phyric plagioclase basalts (HPPB) and moderately phyric plagioclase basalts (MOPB) show rare cumulate and vitrophyric textures with plagioclase (>10% as phenocryst) and abundant glass (>72%). Electron Probe Micro Analysis (EPMA) showed large compositional variations in the megacrysts as well as microcrysts of plagioclase (An62 to An82), olivine (Fo78 to Fo87), pyroxene (ferroaugite to augite) and iron oxides, mostly titaniferous magnetite. Olivine grains show high Mg# (>80%) and distinctly low in NiO (0.01–0.2%). Ferroan trevorite (NiO =16.22 and FeO(t) =83.06) a characteristic meteoritic mineral has been identified from the olivine megacrysts of MORB, possibly attributed to Ni-enrichment, resulted from heterogeneity of the lower mantle. Wide range of An composition in plagioclase is indicative of large pressure range of crystal nucleation under decompression at a depth of ∼70 km (An82) up to the ocean spreading centre. Absence of zoning observed in all the minerals present in the MORB samples, possibly attributed to unmixing and dominant fractionation process.  相似文献   

20.
Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38±2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36±4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism.Authors listed alphabeticallyPublished by permission of the Director, New York State Museum, Journal Series Number 299  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号