首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   

2.
In this paper we have extended the entropy-driven model of cluster evolution developed by Bower in order to be able to predict the evolution of galaxy clusters for a range of cosmological scenarios. We have applied this model to recent measurements of the evolution of the L x− T normalization and X-ray luminosity function in order to place constraints on cosmological parameters. We find that these measurements alone do not select a particular cosmological framework. An additional constraint is required on the effective slope of the power spectrum to break the degeneracy that exists between this and the background cosmology. We therefore include a theoretical calculation of the Ω0 dependence on the power spectrum, based on the cold dark matter paradigm, which infers Ω0<0.55 (0.1<Ω0<0.7 for Ω00=1), at the 95 per cent confidence level. Alternatively, an independent measurement of the slope of the power spectrum from galaxy clustering requires Ω0<0.6 (Ω0<0.65 for Ω00=1), again to 95 per cent confidence. The rate of entropy evolution is insensitive to the values of Ω0 considered, although it is sensitive to changes in the distribution of the intracluster medium.  相似文献   

3.
A combined sample of 79 high- and low-redshift Type Ia supernovae (SNe) is used to set constraints on the degree of anisotropy in the Universe out to z ≃1. First, we derive the global most probable values of matter density ΩM, the cosmological constant ΩΛ and the Hubble constant H 0, and find them to be consistent with the published results from the two data sets of Riess et al. and Perlmutter et al. We then examine the Hubble diagram (HD, i.e., the luminosity–redshift relation) in different directions on the sky by utilizing spherical harmonic expansion. In particular, via the analysis of the dipole anisotropy, we divide the sky into the two hemispheres that yield the most discrepant of the three cosmological parameters, and the scatter χ HD2 in each case. The most discrepant values roughly move along the locus −4ΩM+3ΩΛ=1 (cf. Perlmutter et al.), but by no more than Δ≈2.5 along this line. For a perfect Friedmann–Robertson–Walker universe, Monte Carlo realizations that mimic the current set of SNe yield values higher than the measured Δ in ∼1/5 of the cases (for ΩM). We discuss implications for the validity of the Cosmological Principle, and possible calibration problems in the SNe data sets.  相似文献   

4.
Using the ray-bundle method for calculating gravitational lens magnifications, we outline a method by which the magnification probability may be determined specifically in the weak lensing limit for cosmological models obtained from N -body simulations.
16 different models are investigated, which are variations on three broad classes of cold dark matter model: the standard model with  (Ω0, λ 0)=(1.0,0.0)  , the open model with  (Ω0, λ 0)=(0.3,0.0)  and the lambda model, which is a flat model with a cosmological constant  (Ω0, λ 0)=(0.3,0.7)  .
The effects of varying the Hubble parameter, H 0, the power spectrum shape parameter, Γ, and the cluster mass normalization, σ 8, are studied. It is shown that there is no signature of these parameters in the weak lensing magnification distributions. The magnification probability distributions are also shown to be independent of the numerical parameters such as the lens mass and simulation box size in the N -body simulations.  相似文献   

5.
In an attempt to detect cosmic microwave background (CMB) anisotropy on arcmin scales, we have made an 8.7-GHz image of a sky region with a resolution of 2 arcmin and high surface brightness sensitivity using the Australia Telescope Compact Array (ATCA) in an ultracompact configuration. The foreground discrete-source confusion was estimated from observations with higher resolution at the same frequency and in a scaled array at a lower frequency. Following the subtraction of the foreground confusion, the field shows no features in excess of the instrument noise. This limits the CMB anisotropy flat-band power to Q flat < 23.6 μ K with 95 per cent confidence; the ATCA filter function (which is available at the website www.atnf.csiro.au/Research/cmbr/cmbr_atca.html) F l in multipole l -space peaks at l eff = 4700 and has half-maximum values at l  = 3350 and 6050.  相似文献   

6.
We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local ( z ≤0.1) and distant Universe ( z ∼1) . To this end we compare the measured angular correlation function for bright (Akylas et al.) and faint (Vikhlinin & Forman) ROSAT X-ray sources respectively with those expected in three spatially flat cosmological models. Taking into account the different functional forms of the bias evolution, we find that there are two cosmological models which match the data well. In particular, low-Ω cosmological models (ΩΛ=1−Ω=0.7) that contain either (i) high σ 8mass=1.13 value with galaxy merging bias, b ( z )∝(1+ z )1.8 or (ii) low σ 8mass=0.9 with non-bias, b ( z ) ≡ 1 best reproduce the AGN clustering results, while τ CDM models with different bias behaviour are ruled out at a high significance level.  相似文献   

7.
A key prediction of cosmological theories for the origin and evolution of structure in the Universe is the existence of a 'Doppler peak' in the angular power spectrum of cosmic microwave background (CMB) fluctuations. We present new results from a study of recent CMB observations which provide the first strong evidence for the existence of a 'Doppler peak' localized in both angular scale and amplitude. This first estimate of the angular position of the peak is used to place a new direct limit on the curvature of the Universe, corresponding to a density of Ω = 0.7+0.8−0.5, consistent with a flat universe. Very low-density 'open' universe models are inconsistent with this limit unless there is a significant contribution from a cosmological constant. For a flat standard cold dark matter dominated universe we use our results in conjunction with big bang nucleosynthesis constraints to determine the value of the Hubble constant as H 0 = 30 − 70 km s−1 Mpc−1 for baryon fractions Ωb = 0.05 to 0.2. For H 0 = 50 km s−1 Mpc−1 we find the primordial spectral index of the fluctuations to be n  = 1.1 ± 0.1, in close agreement with the inflationary prediction of n  ≃ 1.0.  相似文献   

8.
The locations of the peaks of the cosmic microwave background (CMB) spectrum are sensitive indicators of cosmological parameters, yet there is no known analytic formula which accurately describes their dependence on them. We parametrize the location of the peaks as   l m = l A( m - φ m )  , where l A is the analytically calculable acoustic scale and m labels the peak number. Fitting formulae for the phase shifts φ m for the first three peaks and the first trough are given. It is shown that in a wide range of parameter space, the acoustic scale l A can be retrieved from actual CMB measurements of the first three peaks within 1 per cent accuracy. This can be used to speed up likelihood analysis. We describe how the peak shifts can be used to distinguish between different models of dark energy.  相似文献   

9.
We use a compilation of cosmic microwave anisotropy data to constrain the epoch of reionization in the Universe, as a function of cosmological parameters. We consider spatially flat cosmologies, varying the matter density Ω0 (the flatness being restored by a cosmological constant), the Hubble parameter h and the spectral index n of the primordial power spectrum. Our results are quoted both in terms of the maximum permitted optical depth to the last-scattering surface, and in terms of the highest allowed reionization redshift assuming instantaneous reionization. For critical-density models, significantly tilted power spectra are excluded as they cannot fit the current data for any amount of reionization, and even scale-invariant models must have an optical depth to last scattering of below 0.3. For the currently favoured low-density model with Ω0=0.3 and a cosmological constant, the earliest reionization permitted to occur is at around redshift 35, which roughly coincides with the highest estimate in the literature. We provide general fitting functions for the maximum permitted optical depth, as a function of cosmological parameters. We do not consider the inclusion of tensor perturbations, but if present they would strengthen the upper limits that we quote.  相似文献   

10.
The fluctuations of the cosmic microwave background (CMB) are investigated for a hyperbolic universe with finite volume. Four-component models with radiation, matter, vacuum energy and an extra spatially constant dark energy X -component are considered. The general solution of the Friedmann equation for the cosmic scalefactor a ( η ) is given for the four-component models in terms of the Weierstrass ℘-function. The lower parts of the angular power spectra C l of the CMB anisotropy are computed for nearly flat models with Ωtot≤0.95. It is shown that the particular compact fundamental cell that is considered in this paper leads to a suppression in C l for l ≲10 and Ωtot≲0.9.  相似文献   

11.
The number density of rich galaxy clusters still provides the most robust way of normalizing the power spectrum of dark matter perturbations on scales relevant to large-scale structure. We revisit this constraint in the light of several recent developments: (1) the availability of well-defined samples of local clusters with relatively accurate X-ray temperatures; (2) new theoretical mass functions for dark matter haloes, which provide a good fit to large numerical simulations; (3) more accurate mass–temperature relations from larger catalogues of hydrodynamical simulations; (4) the requirement to consider closed as well as open and flat cosmologies to obtain full multiparameter likelihood constraints for CMB and SNe studies. We present a new sample of clusters drawn from the literature and use this sample to obtain improved results on σ 8, the normalization of the matter power spectrum on scales of 8  h −1 Mpc, as a function of the matter density and cosmological constant in a universe with general curvature. We discuss our differences with previous work, and the remaining major sources of uncertainty. Final results on the normalization, approximately independent of power spectrum shape, can be expressed as constraints on σ at an appropriate cluster normalization scale R Cl. We provide fitting formulas for R Cl and σ ( R Cl) for general cosmologies, as well as for σ 8 as a function of cosmology and shape parameter Γ. For flat models we find approximately σ 8≃(0.495−0.037+0.034M−0.60 for Γ=0.23, where the error bar is dominated by uncertainty in the mass–temperature relation.  相似文献   

12.
We perform Monte Carlo simulations of synthetic EMSS cluster samples, to quantify the systematic errors and the statistical uncertainties on the estimate of Ω0 derived from fits to the cluster number density evolution and to the X-ray temperature distribution up to z =0.83 . We identify the scatter around the relation between cluster X-ray luminosity and temperature to be a source of systematic error, of the order of ΔsystΩ0=0.09 , if not properly taken into account in the modelling. After correcting for this bias, our best Ω0 is 0.66. The uncertainties on the shape and normalization of the power spectrum of matter fluctuations imply relatively large uncertainties on this estimate of Ω0, of the order of ΔstatΩ0=0.1 at the 1 σ level. On the other hand, the statistical uncertainties due to the finite size of the high-redshift sample are twice as small. Therefore, what is needed in order to improve the accuracy of Ω0 estimates based on cluster number density evolution is a more reliable measure of the local temperature function and a better understanding of the cluster observed properties both in the local Universe and at high redshift, that is the relation between cluster mass, temperature and luminosity. This requires detailed observations of X-ray selected cluster samples, in comparison with hydrodynamic simulations including refined physics.  相似文献   

13.
A principal-component analysis of cosmic microwave background (CMB) anisotropy measurements is used to investigate degeneracies among cosmological parameters. The results show that a degeneracy with tensor modes – the 'tensor degeneracy'– dominates uncertainties in estimates of the baryon and cold dark matter densities,   ω bb  h 2  ,   ω cc  h 2  , 1 from an analysis of CMB anisotropies alone. The principal-component analysis agrees well with a maximum-likelihood analysis of the observations, identifying the main degeneracy directions and providing an impression of the effective dimensionality of the parameter space.  相似文献   

14.
We study gravitational lensing statistics, matter power spectra and the angular power spectra of the cosmic microwave background (CMB) radiation in x-matter models. We adopt an equation of state of x-matter which can express a wide range of matter from pressureless dust to the cosmological constant. A new ingredient in this model is the sound speed of the x-component, in addition to the equation of state w 0 =  p x0x0. Except for the cosmological constant case, the perturbations of x-matter itself are considered. Our primary interest is in the effect of non-zero sound speed on the structure formation and the CMB spectra. It is found that there exist parameter ranges where x-matter models are consistent with all current observations. The x-matter generally leaves imprints in the CMB anisotropy and the matter power spectrum, which should be detectable in future observations.  相似文献   

15.
We compare and combine likelihood functions of the cosmological parameters Ωm, h and σ 8, from peculiar velocities, cosmic microwave background (CMB) and type Ia supernovae. These three data sets directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a 'biasing' relation. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat Λ cold dark matter (ΛCDM) cosmology with a scale-invariant adiabatic initial power spectrum and baryonic fraction as inferred from big-bang nucleosynthesis. We find that all three data sets agree well, overlapping significantly at the 2 σ level. This therefore justifies a joint analysis, in which we find a joint best-fitting point and 95 per cent confidence limits of     (0.17,0.39),     (0.64,0.86) and     (0.98,1.37). In terms of the natural parameter combinations for these data     (0.40,0.73),     (0.16,0.27). Also for the best-fitting point,     and the age of the Universe is 13.2 Gyr.  相似文献   

16.
We examine the ability of the future Planck mission to provide a catalogue of galaxy clusters observed via their Sunyaev–Zel'dovich (SZ) distortion in the cosmic microwave background (CMB). For this purpose we produce full-sky SZ maps based on N -body simulations and scaling relations between cluster properties for several cosmological models. We extrapolate the N -body simulations by a mass function to high redshifts in order to obtain a realistic SZ background. The simulated Planck observations include, besides the thermal and kinematic SZ effects, contributions from the primordial CMB, extragalactic point sources as well as Galactic dust, free–free and synchrotron emission. A harmonic-space maximum-entropy method is used to separate the SZ signal from contaminating components in combination with a cluster detection algorithm based on thresholding and flux integration to identify clusters and to obtain their fluxes. We estimate a survey sensitivity limit (depending on the quality of the recovered cluster flux) and provide cluster survey completeness and purity estimates. We find that, given our modelling and detection algorithm, Planck will reliably detect at least several thousands of clusters over the full sky. The exact number depends on the particular cosmological model (up to 10 000 cluster detections in a concordance ΛCDM model with  σ8= 0.9  ). We show that the Galaxy does not significantly affect the cluster detection. Furthermore, the dependence of the thermal SZ power spectrum on the matter variance on scales of  8 h −1  Mpc and the quality of its reconstruction by the employed method are investigated. Our simulations suggest that the Planck cluster sample will not only be useful as a basis for follow-up observations, but also will have the ability to provide constraints on cosmological parameters.  相似文献   

17.
The plethora of recent cosmologically relevant data has indicated that our Universe is very well fitted by a standard Friedmann–Lemaître–Robertson–Walker (FLRW) model, with     and  ΩΛ≈ 0.73  – or, more generally, by nearly flat FLRW models with parameters close to these values. Additional independent cosmological information, particularly the maximum of the angular-diameter (observer area) distance and the redshift at which it occurs, would improve and confirm these results, once sufficient precise Type Ia supernovae data in the range  1.5 < z < 1.8  become available. We obtain characteristic FLRW-closed functional forms for   C = C ( z )  and     , the angular-diameter distance and the density per source counted, respectively, when  Λ≠ 0  , analogous to those we have for  Λ= 0  . More importantly, we verify that for flat FLRW models z max– as is already known but rarely recognized – the redshift of C max, the maximum of the angular-diameter distance, uniquely gives  ΩΛ  , the amount of vacuum energy in the universe, independent of H 0, the Hubble parameter. For non-flat models, determination of both z max and C max gives both  ΩΛ  and ΩM, the amount of matter in the universe, as long as we know H 0 independently. Finally, determination of C max automatically gives a very simple observational criterion for whether or not the universe is flat – presuming that it is FLRW.  相似文献   

18.
We explore the prospects for using future supernova observations to probe the dark energy. We focus on quintessence, an evolving scalar field that has been suggested as a candidate for the dark energy. After simulating the observations that would be expected from the proposed SuperNova / Acceleration Probe satellite ( SNAP ), we investigate two methods for extracting information concerning quintessence from such data. First, by expanding the quintessence equation of state as   w Q ( z ) = w Q (0) −α ln(1 + z )  , to fit the data, it is possible to reconstruct the quintessence potential for a wide range of smoothly varying potentials. Secondly, it will be possible to test the basic properties of the dark energy by constraining the parameters  Ω Q , w Q   and α. We show that it may be possible, for example, to distinguish between quintessence and the cosmological constant in this way. Furthermore, when supernova data are combined with other planned cosmological observations, the precision of reconstructions and parameter constraints is significantly improved, allowing a wider range of dark energy models to be distinguished.  相似文献   

19.
We examine the possibility of the decay of the vacuum energy into a homogeneous distribution of a thermalized cosmic microwave background (CMB), which is characteristic of an adiabatic vacuum energy decay into photons. It is shown that observations of the primordial density fluctuation spectrum, obtained from CMB and galaxy distribution data, restrict the possible decay rate. When photon creation due to an adiabatic vacuum energy decay takes place, the standard linear temperature dependence   T ( z ) = T 0(1 + z )  is modified, where T 0 is the present CMB temperature, and can be parametrized by a modified CMB temperature dependence     . From the observed CMB and galaxy distribution data, a strong limit on the maximum value of the decay rate is obtained by placing a maximum value  βmax≃ 3.4 × 10−3  on the β parameter.  相似文献   

20.
We forecast the constraints on the values of  σ8, Ωm  and cluster scaling-relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Λ cold dark matter Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity–temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only  ( T , z )  self-calibration, we expect to measure Ωm to ±0.03 (and  ΩΛ  to the same accuracy assuming flatness), and σ8 to ±0.05, also constraining the normalization and slope of the luminosity–temperature relation to ±6 and ±13 per cent (at 1σ), respectively, in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity–temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2σ or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new 'smoothed ML' (Maximum Likelihood) estimate of expected constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号