首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the accretion disk.There have been extensive investigations on the accretion torque exerted by a coplanar disk that is magnetically threaded by the magnetic field lines from the neutron stars,but relevant works on warped/tilted accretion disks are still lacking.In this paper we develop a simplified twocomponent model,in which the disk is comprised of an inner coplanar part and an outer,tilted part.Based on standard assumption on the formation and evolution of the toroidal magnetic field component,we derive the dimensionless torque and show that a warped/titled disk is more likely to spin up the neutron star compared with a coplanar disk.We also discuss the possible influence of various initial parameters on the torque.  相似文献   

2.
We propose a three-stage model with Blandford-Znajek (BZ) and hyperaccretion process to interpret the recent observations of early afterglows of Gamma-Ray Bursts (GRBs). In the first stage, the prompt GRB is powered by a rotating black hole (BH) invoking the BZ process. The second stage is a quiet stage, in which the BZ process is shut off, and the accretion onto the BH is depressed by the torque exerted by the magnetic coupling (MC) process. Part of the rotational energy transported by the MC process from the BH is stored in the disk as magnetic energy. In the third stage, the MC process is shut off when the magnetic energy in the disk accumulates and triggers magnetic instability. At this moment, the hyperaccretion process may set in, and the jet launched in this restarted central engine generates the observed X-ray flares. This model can account for the energies and timescales of GRBs with X-ray flares observed in early afterglows.  相似文献   

3.
We calculate the polarization of the radiation from an optically thick accretion disk with a vertical averaged magnetic field. The polarization arises from the scattering of light by free electrons in a magnetized disk plasma. The Faraday rotation of the polarization plane during the propagation of a photon in a medium with a magnetic field is considered as the main effect. We discuss various models of optically thick accretion disks with a vertical averaged magnetic field. Our main goal is to derive simple asymptotic formulas for the polarization of radiation in the case where the Faraday rotation angle Ψ ≫ 1 at the Thomson optical depth τ = 1. The results of our calculations allow the magnetic field strength in the region of the marginally stable orbit near a black hole to be estimated from polarimetric observations, including X-ray observations expected in the future. Since the polarization spectrum of the radiation strongly depends on the accretion disk model, a realistic physical model of the accretion disk can be determined from data on the polarization of its radiation.  相似文献   

4.
Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary systems and their immediate surroundings in many ways. Here we discuss some aspects of the interactions of the neutron stars with their environments that are revelaed from their X-ray emission. We discuss some recent developments involving the process of accretion onto high magnetic field neutron stars: accretion stream structure and formation, shape of pulse profile and its changes with accretion torque. Various recent studies of reprocessing of X-rays in the accretion disk surface, vertical structures of the accretion disk and wind of companion star are also discussed here. The X-ray pulsars among the binary neutron stars provide excellent handle to make accurate measurement of the orbital parameters and thus also evolution of the binray orbits that take place over time scale of a fraction of a million years to tens of millions of years. The orbital period evolution of X-ray binaries have shown them to be rather complex systems. Orbital evolution of X-ray binaries can also be carried out from timing of the X-ray eclipses and there have been some surprising results in that direction, including orbital period glitches in two X-ray binaries and possible detection of the most massive circum-binary planet around a Low Mass X-ray Binary.  相似文献   

5.
I show in this paper that two types of magnetic torques can appear in the interaction between an accretion disc and a magnetic accretor. There is the well-known torque resulting from the difference in angular velocity between the accretion disc and the star, but in addition there is a torque coming from the interaction between the stellar magnetic field and the disc's own magnetic field. The latter form of magnetic torque decreases in strength more slowly with increasing radius, and will therefore dominate at large radii. The direction of the disc field is not determined by the difference in angular velocity between the star and the disc as in the Ghosh &38; Lamb model, but rather is a free parameter. The magnetic torque may therefore either spin up or spin down the star, and the torque changes sign if the magnetic field in the disc reverses. I suggest that this mechanism can explain the torque reversals that have been observed in some disc-fed X-ray pulsars.  相似文献   

6.
We compare two methods for estimating the magnetic field near a black hole—based on a statistical formula that relates the magnetic field on the horizon of the black hole to its mass and on a direct magnetic field determination from optical polarimetric observations. An optically thick magnetized accretion disk is usually formed around the black hole in active galactic nuclei. The linear polarization of the radiation emerging from the disk is related to the local magnetic field and the polarization in Milne’s classical problem. The magnetic field in the region from where the radiation with the observed wavelength comes can be estimated by measuring this polarization. On the other hand, this field can be estimated from the above statistical formula if the field near the black hole is extrapolated into the accretion disk using a standard power law. Comparison of the magnetic field obtained from the observed polarization with the extrapolated field can serve to estimate the accuracy of the latter and the exponent in the adopted extrapolation law. As an example, we compare these two methods for the source NGC 4258.  相似文献   

7.
The magnetic field in an accretion disk is estimated assuming that all of the angular momentum within prescribed accretion disk radii is removed by a jet. The magnetic field estimated at the base of the jet is extrapolated to the blazar emission region using a model for a relativistic axisymmetric jet combined with some simplifying assumptions based on the relativistic nature of the flow. The extrapolated magnetic field is compared with estimates based upon the synchrotron and inverse Compton emission from three blazars, MKN 501, MKN 421 and PKS 2155-304. The magnetic fields evaluated from pure synchrotron self-Compton models are inconsistent with the magnetic fields extrapolated in this way. However, in two cases inverse Compton models in which a substantial part of the soft photon field is generated locally agree well, mainly because these models imply magnetic field strengths consistent with an important Poynting Flux component. This comparison is based on estimating the mass accretion rate from the jet energy flux. Further comparisons along these lines will be facilitated by independent estimates of the mass accretion rate in blazars and by more detailed models for jet propagation near the black hole.  相似文献   

8.
本文作者首次发现了EXO 2030+375的回旋吸收线迹象.这是迄今唯一一个同时有用回旋吸收线直接测量的磁场数据和用吸积演化方法间接测量的中子星磁矩数据的X射线脉冲星.两种测量方法的结果有很大差别,本文提出了可能导致这种差别的物理机制.  相似文献   

9.
近年来对吸积流的数值模拟工作证实了在星风吸积中吸积盘的存在。本文在此基础上,讨论具有早型伴星的X射线脉冲星吸积过程中吸积盘与球吸积流的相互作用。我们发现,盘吸积率和球吸积率的相对变化可以导致吸积盘和吸积矩的改变,从而解释了这类脉冲星脉冲周期的复杂变化,我们以典型星VelaX-1和A0535+26为例分别作了讨论。  相似文献   

10.
吴少平  吴学兵 《天文学报》1995,36(3):252-260
本文采用修正的粘滞定律及磁流体力学研究了薄吸积盘内区及外区的稳定性问题。运用微扰方法导出了色散方程,分析了四种情况下吸积盘的不稳定性,结果表明:在同时考虑磁场和修正的粘滞律时,吸积盘中存在着三种振荡模式,其中粘滞模式总是稳定的,磁声速模式(包括向里、向外传播两种模式)通常是不稳定的。这些结果为解释BL Lac天体、Seyfert星系、类星体等活动星系核的光变现象提供了理论依据。  相似文献   

11.
We give an expression for the Lindblad torque acting on a low-mass planet embedded in a protoplanetary disk that is valid even at locations where the surface density or temperature profile cannot be approximated by a power law, such as an opacity transition. At such locations, the Lindblad torque is known to suffer strong deviation from its standard value, with potentially important implications for type I migration, but the full treatment of the tidal interaction is cumbersome and not well suited to models of planetary population synthesis. The expression that we propose retains the simplicity of the standard Lindblad torque formula and gives results that accurately reproduce those of numerical simulations, even at locations where the disk temperature undergoes abrupt changes. Our study is conducted by means of customized numerical simulations in the low-mass regime, in locally isothermal disks, and compared to linear torque estimates obtained by summing fully analytic torque estimates at each Lindblad resonance. The functional dependence of our modified Lindblad torque expression is suggested by an estimate of the shift of the Lindblad resonances that mostly contribute to the torque, in a disk with sharp gradients of temperature or surface density, while the numerical coefficients of the new terms are adjusted to seek agreement with numerics. As side results, we find that the vortensity related corotation torque undergoes a boost at an opacity transition that can counteract migration, and we find evidence from numerical simulations that the linear corotation torque has a non-negligible dependency upon the temperature gradient, in a locally isothermal disk.  相似文献   

12.
By taking magnetic stress in place of viscosity as the mechanism for angular moaentum transfer, the effect of frozen magnetic field on the structure of a geometrically thin accretion disk is examined. It is shown that the disk is quasi-Keplerian and its total luminosity is twice the luminosity in the standard disk model. In the inner region, there exists a narrow cool region and the highly collimated jet is formed under the action of the azimuthal component of the magnetic field. Also, we discuss the possibility that a magnetized corona be formed near the surface of the accretion disk and a wide band radiation issuing therefrom. The model suggested here can easily and reasonably explain the major AGN properties such as the radiation variation, the “bumps” in the optical, ultraviolet and soft X-ray ranges, etc.  相似文献   

13.
We consider the generation of a magnetic field in the Galaxy by the electric currents excited by cosmic-ray particles in the disk and halo. We assume that the sources of relativistic particles are distributed continuously and uniformly in the Galactic disk, their total power is equal to the observed value, and the particles themselves undergo anisotropic diffusion in a homogeneous medium. We take into account the differential rotation of the Galactic disk but disregard the turbulence gyrotropy (the α effect). The strength of the generated magnetic field in our model is shown to strongly depend on the symmetry of the relativistic proton and thermal electron diffusion tensors, as well as on the relations between the tensor components. In particular, if the diffusion is isotropic, then no magnetic field is generated. For the independent tensor components estimated from observed parameters of the Galactic medium and with a simultaneous allowance made for the turbulent field dissipation processes, the mechanism under consideration can provide an observable magnetic-field strength of the order of several microgauss. This mechanism does not require any seed magnetic field, which leads us to suggest that relativistic particles can give an appreciable and, possibly, determining contribution to the formation of the global Galactic magnetic field. However, a final answer can be obtained only from a nonlinear self-consistent treatment, in which the symmetry and magnitude of the particle diffusion tensor components should be determined together with the calculation of the magnetic field.  相似文献   

14.
Previous works suggested that the state transitions in an X-ray binary can be triggered by accreting an inverse magnetic field from its companion star. A key point of this mechanism is the accretion and magnification of large-scale magnetic fields from the outer boundary of a thin disk. However, how such a process can be realized is still an open question. In this work, we check this issue in a realistic X-ray binary system. According to our calculations, a quite strong initial magnetic field, B~10~2- 10~3 G, is required in order to assure that the large-scale magnetic field can be effectively dragged inward and magnified with the accretion of gas. Thus, such a picture probably can be present in high-mass X-ray binaries possessing a strong stellar magnetic field, e.g., Cyg X-1.  相似文献   

15.
We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.  相似文献   

16.
Daily maps of magnetic neutral lines derived from H observations have been superimposed on solar X-ray images for the period 15–30 June 1973. Nearly all X-ray-emitting structures consist of systems of arches covering chromospheric neutral lines. Areas of low emissivity, coronal holes, appear as the areas between arcades of arches. The presence of a coronal hole, therefore, is determined by the spacing between neutral lines and the scale of the arches over those neutral lines. X-ray emissivity on the solar disk extends from neutral lines in proportion to the vertical and horizontal scale of the arches over those neutral lines. Increasing scale of arches corresponds with increasing age of magnetic fields associated with the neutral line. All X-ray filament cavities coincided with neutral lines, but filaments appeared under cavities for only part of their length and for only a fraction of the disk passage.A substantial portion of this work was done while a visitor at American Science and Engineering, Cambridge, Mass. 02139, U.S.A.  相似文献   

17.
This paper investigates the tidal effect on accretion disk in CVs and sets up a simplified model in which the secondary's gravitation is substituted by a mean tidal torque. We find that a linear tidal torque will not be able to maintain an equilibrium disk. By using the result of the radius of the equilibrium disk approximately equals to the tidal radius, which was obtained by using the two dimensional numerical simulation invoking nonlinear tidal effect, we give the modified tidal dissipation function for our simplified model which could be used to interpret the outburst of the dwarf nova with tidal effect. The paper also shows that the radius of an equilibrium disk with a torus is slightly small than the Lubow-Shu radius, and the tidal effect may also cause the cycle of quiescence-superoutburst in addition to the cycle of quiescence-outbursts-superoutburst.  相似文献   

18.
本文在中子星磁层与吸积盘之间引入了一个速度、密度、压强和磁场都连续变化的有限厚度的剪切层,以代替Anzer理论中的切向间断面,用磁流体力学方法讨论了中子星磁层与吸积盘交界处等离子体可压缩情况下平面波扰动的K-H不稳定性。结果表明,K-H不稳定性依然存在,径向波矢扰动成为不稳定的主要模式。文中特别讨论了剪切层厚度取值对中子星自转的影响,表明适当调节剪切层厚度就可解释X射线脉冲星周期的变化。将此模型应用到脉冲X射线源Her X-1上,得到较好的结果。  相似文献   

19.
We show that the set of observational characteristics for low-mass X-ray binaries in the optical and X-ray bands can be explained in terms of the model of an optically thick accretion disk with an atmosphere irradiated by a central X-ray source. We show that this set of observational data can be successfully used to measure the orbital inclination of a binary, the geometric parameters of its accretion disk, and the reprocessing time of X-emission to optical one. For the burster GS 1826-238, a low-mass X-ray binary with a neutron star, we have estimated the binary inclination and the thickness of the disk atmosphere at the outer edge from the mean optical flux and the amplitude of periodic modulations in the optical light curve: i = 62.5° ± 5.5° and H d/R d = 0.145 ± 0.009. The optical response time of the binary to an X-ray burst disagrees with the geometric delay in the propagation of X-ray photons in the binary. We believe that this points to a finite X-ray reprocessing/reradiation time, 1.0 s ≲ τ repr ≲ 2.2 s, in the hot atmosphere above the accretion disk.  相似文献   

20.
Magnetic fields in an accretion disk around the central black hole can modify the size of the innermost stable circular orbit (ISCO) and can produce a difference to the classical Novikov‐Thorne radius. We estimated the ISCO magnetic field strength from the polarimetric observations of the accretion‐disk radiation. This estimate is obtained taking into account the effect of the Faraday rotation of the polarization plane at the distance of the mean free path of photons between successive electron scattering events. We present the new method for estimating the ISCO radius in the accretion disk, i.e. in the nearest vicinity of a central black hole. Our estimates confirmed the Frolov, Shoom & Tzounis (2014) and Ranea‐Sandoval & Garcia (2015) conclusion that the magnetic field in the accretion disk decreases the size of the innermost stable circular orbit. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号