首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
One of the great discoveries of NASA's Galileo mission was the presence of an intrinsically produced magnetic field at Ganymede. Generation of the relatively strong (750 nT) field likely requires dynamo action in Ganymede's metallic core, but how such a dynamo has been maintained into the present epoch remains uncertain. Using a one-dimensional, three layer thermal model of Ganymede, we find that magnetic field generation can only occur if the sulfur mass fraction in Ganymede's core is very low (?3%) or very high (?21%), and the silicate mantle can cool rapidly (i.e. it has a viscosity like wet olivine). However, these requirements are not necessarily compatible with cosmochemical and physical models of the satellite. We therefore investigate an alternative scenario for producing Ganymede's magnetic field in which passage through an eccentricity pumping Laplace-like resonance in Ganymede's past enables present day dynamo action in the metallic core. If sufficient tidal dissipation occurs in Ganymede's silicate mantle during resonance passage, silicate temperatures can undergo a runaway which prevents the core from cooling until the resonance passage ends. The rapid silicate and core cooling that follows resonance escape triggers dynamo action via thermal and/or compositional convection. To test the feasibility of this mechanism we couple our thermal model with an orbital evolution model to examine the effects of resonance passage on Ganymede's silicate mantle and metallic core. We find that, contrary to expectations, there are no physically plausible scenarios in which tidal heating in the silicates is sufficient to cause the thermal runaway necessary to prevent core cooling. These findings are robust to variations in the silicate rheology, tidal dissipation factor of Jupiter (QJ), structure of the ice shell, and the inclusion of partial melting in the silicate mantle. Resonance passage therefore appears unlikely to explain Ganymede's magnetic field and we must appeal to the special conditions described above to explain the presence of the field.  相似文献   

2.
Hauke Hussmann  Tilman Spohn 《Icarus》2004,171(2):391-410
Coupled thermal-orbital evolution models of Europa and Io are presented. It is assumed that Io, Europa, and Ganymede evolve in the Laplace resonance and that tidal dissipation of orbital energy is an internal heat source for both Io and Europa. While dissipation in Io occurs in the mantle as in the mantle dissipation model of Segatz et al. (1988, Icarus 75, 187), two models for Europa are considered. In the first model dissipation occurs in the silicate mantle while in the second model dissipation occurs in the ice shell. In the latter model, ice shell melting and variations of the shell thickness above an ocean are explicitly included. The rheology of both the ice and the rock is cast in terms of a viscoelastic Maxwell rheology with viscosity and shear modulus depending on the average temperature of the dissipating layer. Heat transfer by convection is calculated using a parameterization for strongly temperature-dependent viscosity convection. Both models are consistent with the present orbital elements of Io, Europa, and Ganymede. It is shown that there may be phases of quasi-steady evolution with large or small dissipation rates (in comparison with radiogenic heating), phases with runaway heating or cooling and oscillatory phases during which the eccentricity and the tidal heating rate will oscillate. Europa's ice thickness varies between roughly 3 and 70 km (dissipation in the silicate layer) or 10 and 60 km (dissipation in the ice layer), suggesting that Europa's ocean existed for geological timescales. The variation in ice thickness, including both convective and purely conductive phases, may be reflected in the formation of different geological surface features on Europa. Both models suggest that at present Europa's ice thickness is several tens of km thick and is increasing, while the eccentricity decreases, implying that the satellites evolve out of resonance. Including lithospheric growth in the models makes it impossible to match the high heat flux constraint for Io. Other heat transfer processes than conduction through the lithosphere must be important for the present Io.  相似文献   

3.
Lijie Han  Adam P. Showman 《Icarus》2011,212(1):262-267
We present self-consistent, fully coupled two-dimensional (2D) numerical models of thermal evolution and tidal heating to investigate how convection interacts with tidal dissipation under the influence of non-Newtonian grain-size-sensitive creep rheology (plausibly resulting from grain boundary sliding) in Europa’s ice shell. To determine the thermal evolution, we solved the convection equations (using finite-element code ConMan) with the tidal dissipation as a heat source. For a given heterogeneous temperature field at a given time, we determined the tidal dissipation rate throughout the ice shell by solving for the tidal stresses and strains subject to Maxwell viscoelastic rheology (using finite-element code Tekton). In this way, the convection and tidal heating are fully coupled and evolve together. Our simulations show that the tidal dissipation rate can have a strong impact on the onset of thermal convection in Europa’s ice shell under non-Newtonian GSS rheology. By varying the ice grain size (1-10 mm), ice-shell thickness (20-120 km), and tidal-strain amplitude (0-4 × 10−5), we study the interrelationship of convection and conduction regimes in Europa’s ice shell. Under non-Newtonian grain-size-sensitive creep rheology and ice grain size larger than 1 mm, no thermal convection can initiate in Europa’s ice shell (for thicknesses <100 km) without tidal dissipation. However, thermal convection can start in thinner ice shells under the influence of tidal dissipation. The required tidal-strain amplitude for convection to occur decreases as the ice-shell thickness increases. For grain sizes of 1-10 mm, convection can occur in ice shells as thin as 20-40 km with the estimated tidal-strain amplitude of 2 × 10−5 on Europa.  相似文献   

4.
Ice-shell thickness and ocean depth are calculated for steady state models of tidal dissipation in Europa's ice shell using the present-day values of the orbital elements. The tidal dissipation rate is obtained using a viscoelastic Maxwell rheology for the ice, the viscosity of which has been varied over a wide range, and is found to strongly increase if an (inviscid) internal ocean is present. To determine steady state values, the tidal dissipation rate is equated to the heat-transfer rate through the ice shell calculated from a parameterized model of convective heat transfer or from a thermal conduction model, if the ice layer is found to be stable against convection. Although high dissipation rates and heat fluxes of up to 300 mWm−2 are, in principle, possible for Europa, these values are unrealistic because the states for which they are obtained are thermodynamically unstable. Equilibrium models have surface heat flows around 20 mWm−2 and ice-layer thicknesses around 30 km, which is significantly less than the total thickness of the H2O-layer. These results support models of Europa with ice shells a few tens of kilometers thick and around 100-km-thick subsurface oceans.  相似文献   

5.
G. Tobie  A. Mocquet 《Icarus》2005,177(2):534-549
This paper describes a new approach based on variational principles to calculate the radial distribution of tidal energy dissipation in any satellite. The advantage of the model with respect to classical solutions, is that it relates in a straightforward way the radial distribution of the time-averaged dissipation rate to its sensitivity to the corresponding distribution of viscoelastic parameters. This method is applied to Io-, Europa-, and Titan-like interiors, and it is tested against the results obtained by two classical methods by determining global dissipation as well as radial and lateral distributions within satellite interiors. By exploring systematically the different parameters defining the interior models, we demonstrate that the presence of a deep ocean below an outer ice layer strongly influences the tidal dissipation distribution in both the outer ice layer and in the innermost part of the satellite. On the one hand, the ocean by imposing a large radial displacement at the base of the outer ice I layer, controls the distribution of tidal strain rate within the outer layer, making the tidal strain rate field very weakly sensitive to the viscosity variations. Conversely, in the high-pressure ice layer below the ocean, both tidal strain rate and dissipation are very sensitive to any variation of the ice viscosity. On the other hand, for identical structures of the mantle and of the core, the presence of a subsurface ocean reduces the strength of dissipation in the silicate mantle. The existence of a liquid layer within Europa makes models of the silicate mantle less dissipative than the predictions for Io.  相似文献   

6.
Numerical models of mantle convection that include the ‘basalt barrier’ mechanism are explored for Venus. The ‘basalt barrier’ mechanism is due to the positive buoyancy of subducted basaltic crust between the mantle depths of 660 and 750 km. The inclusion of this mechanism in models of Earth’s evolution has been shown to cause episodic mantle layering early in Earth history and we explore whether it can also operate on Venus. The models presented here include a moderately mobile lithosphere, which is not representative of the current state of Venus, but this allows us to exclude the effects of episodic lithosphere mobility and thus to isolate the effect of the basalt barrier. This is a step in a systematic approach to models with a mostly-static lithosphere. We find the basalt barrier does yield episodically layered mantle convection in some Venus models. The likelihood of episodic layering is increased by Venus high surface temperature and by its less mobile or immobile lithosphere. Surprisingly, secondary differences from Earth, including the lower gravity, density and mantle depth also promote episodic layering. The models suggest that mantle layering and overturns may still be likely to occur in Venus. The breakdown of mantle layering and consequent mantle overturns would lead to dramatic episodes of volcanism, formation of large amounts of crust, and tectonic activity on the planet’s surface, as has been inferred to have happened on Venus around 500 Ma ago from surface morphology and cratering. These results thus suggest that a transient layering of the mantle by the ‘basalt barrier’ mechanism and mantle overturns may be part of the explanation for Venus’s recent resurfacing.  相似文献   

7.
Lijie Han  Adam P. Showman 《Icarus》2010,207(2):834-505
We performed 2D numerical simulations of oscillatory tidal flexing to study the interrelationship between tidal dissipation (calculated using the Maxwell model) and a heterogeneous temperature structure in Europa’s ice shell. Our 2D simulations show that, if the temperature is spatially uniform, the tidal dissipation rate peaks when the Maxwell time is close to the tidal period, consistent with previous studies. The tidal dissipation rate in a convective plume encased in a different background temperature depends on both the plume and background temperature. At a fixed background temperature, the dissipation increases strongly with plume temperature at low temperatures, peaks, and then decreases with temperature near the melting point when a melting-temperature viscosity of 1013 Pa s is used; however, the peak occurs at significantly higher temperature in this heterogeneous case than in a homogeneous medium for equivalent rheology. For constant plume temperature, the dissipation rate in a plume decreases as the surrounding temperature increases; plumes that are warmer than their surroundings can exhibit enhanced heating not only relative to their surroundings but relative to the Maxwell-model prediction for a homogeneous medium at the plume temperature. These results have important implications for thermal feedbacks in Europa’s ice shell.To self-consistently determine how convection interacts with tidal heating that is correctly calculated from the time-evolving heterogeneous temperature field, we coupled viscoelastic simulations of oscillatory tidal flexing (using Tekton) to long-term simulations of the convective evolution (using ConMan). Our simulations show that the tidal dissipation rate resulting from heterogeneous temperature can have a strong impact on thermal convection in Europa’s ice shell. Temperatures within upwelling plumes are greatly enhanced and can reach the melting temperature under plausible tidal-flexing amplitude for Europa. A pre-existing fracture zone (at least 6 km deep) promotes the concentration of tidal dissipation (up to ∼20 times more than that in the surroundings), leading to lithospheric thinning. This supports the idea that spatially variable tidal dissipation could lead locally to high temperatures, partial melting, and play an important role in the formation of ridges, chaos, or other features.  相似文献   

8.
《Icarus》1987,70(1):78-98
The discovery of large volcanic eruptions on Io suggests that Io is one of the most geologically active planetary bodies. The energy source of this geologic activity is believed to be tidal heating induced by Jupiter. A number of thermal history calculations were done to investigate the effect of tidal heating on the thermal history of Io taking into account solid state convection and advective heat transfer. These simulations show that the total tidal heating energy in Io is almost equal to the advectively transferred heat, indicating that the observed heat flow from Io is nearly equal to the total tidal heating energy. Since total tidal heating energy is dependent on the radius of the liquid mantle and the internal dissipation factor (Q), the radius of the liquid mantle can be estimated for a given value of Q. Some reasonable thermal history models of Io were obtained using a model with Q ≈ 25–50 in which the magma source of Ionian volcanism is at a depth of 100–300 km. The models satisfy the heat flow data and the existence of a thick lithosphere. Using a model with Q = 25 and L = 300 km (thickness of the advective region) as the standard model (model II), we then studied the effect of convective heat transfer and the initial temperature distribution on the Ionian thermal history. In these calculations, the other parameters are the same as in the standard model (model II). These calculations show that although the temperature distribution in the central region reflects the difference in the efficiency of convective heat transfer and initial temperature distribution, the temperature distribution in the outer region does not changes appreciably.  相似文献   

9.
Abigail A. Fraeman 《Icarus》2010,210(1):43-57
We present a parameterized convection model of Mars by incorporating a new heat-flow scaling law for stagnant-lid convection, to better understand how the evolution of Mars may be affected by mantle melting. Melting in the mantle during convection leads to the formation of a compositionally buoyant lithosphere, which may also be intrinsically more viscous by dehydration. The consequences of these melting effects on the evolution of terrestrial planets have not been explored before. The temporal evolution of crust and lithospheric mantle is modeled in a self-consistent manner considering mantle melting, convective instability, and the rewetting of dehydrated lithosphere from below by hydrogen diffusion. Though the effect of compositional buoyancy turns out to be minimal, the introduction of viscosity contrast between wet and dry mantle can considerably slow mantle cooling and sometimes lead to non-monotonic core cooling. Furthermore, with or without dehydration stiffening, our model predicts that the martian mantle must have been degassed more extensively (>80%) than previously suggested (<10%); the loss of such a large amount of water from the mantle to surface has significant implications about the role of water in the early surface and climate evolution of Mars.  相似文献   

10.
L. Noack  D. Breuer  T. Spohn 《Icarus》2012,217(2):484-498
We calculated 2D and 3D mantle convection models for Venus using digitized atmosphere temperatures from the model of Bullock and Grinspoon (Bullock, M.A., Grinspoon, D.H. [2001]. Icarus 150, 19–37) to study the interaction between interior dynamics and atmosphere thermal evolution. The coupling between atmosphere and interior occurs through mantle degassing and the effect of varying concentrations of the greenhouse gas H2O on the surface temperature. Exospheric loss of hydrogen to space is accounted for as a H2O sink. The surface temperature enters the mantle convection model as a boundary condition.Our results suggest a self-consistent feedback mechanism between the interior and the atmosphere resulting in spatial–temporal surface renewal. Greenhouse warming of the atmosphere results in an increase in the surface temperature. Whenever the surface temperature reaches a critical value, the viscosity difference across the lithosphere becomes smaller than about 105 and the surface becomes locally mobile. The critical surface temperature depends on the activation energy for mantle creep, the stress exponent in the non-Newtonian mantle rheology law, and the mantle temperature. Surface renewal together with surface lava flow may explain why the surface of Venus is young on average, i.e. not older than a few hundred million years.The mobilization of the near-surface lithosphere increases the rate of heat removal from the mantle and thereby the interior cooling rate. The enhanced cooling results in a reduction of the water outgassing rates. As a consequence of decreasing water concentrations in the atmosphere, the surface temperature decreases. Our model calculations suggest that Venus should have been geologically active until recently. This is in agreement with several lines of observational evidence from thermal emissivity measurements and crater distribution analyses.  相似文献   

11.
We analyze the system formed by Pluto and its satellite Charon from the point of view of the theory of tidal evolution. The singular feature of the system, i.e. the configuration of complete synchronism which has been suggested by the available data, is found to represent the stable end-product of the evolution. The time needed for the synchronization is shown to be less than the age of the solar system, provided that Pluto's tidal dissipation function is smaller than 104–105. Moreover, the initial orbital radius of the system could not be largerthan two or three times the present radius, so that Charon has been always a close satellite.Finally, we discuss Lyttleton's hypothesis that Pluto is an escaped satellite of Neptune, suggesting that a possible mechanism of Pluto's ejection could be connected with a retrograde capture of Triton by Neptune or with the subsequent tidal evolution of Triton's orbit.  相似文献   

12.
The tremendous heating dissipated by jovian tides in Io's interior is essentially evacuated by an intense volcanic activity so that the heat is removed from the interior to the surface, much more by advection than by conduction through the lithosphere. The efficiency of this heat pipe cooling process is investigated through numerical models of convection performed in spherical geometry with a permeable top boundary. This new heat-transfer model provides a cooling twice as efficient as that obtained with an impermeable condition traditionally used in mantle convection modeling. The globally averaged temperature varies as Ra−1/2, where Ra is the Rayleigh number, whereas the power law exponent is classically −1/4, so that the expected Ra would not be in excess of 107. If the whole mantle of Io is involved in the convection process, the major portion could remain solid, while a possible molten zone could be confined to a 100-km-thick layer between the solid part and the core. This model predicts the existence of a strong lithosphere, which is required to support the observed topographic amplitude of the Io's relief.  相似文献   

13.
It is shown that the influences of the thermal and tidal effects on Mercury's libration are in equilibrium with the periods of rotation and revolution of Mercury locked in the 32 resonant state. The suggestion by Liu that the solar gravitational couple on the thermal bulges accelerates Mercury's rotation is investigated and the production of mechanical energy to balance the dissipation of the bodily tides is discussed. It is possible for Mercury to rotate with two bulges as a solar thermal engine; the tidal effect causes this engine to function and its maximum power is close to 1016 ergs per sec.  相似文献   

14.
In this paper we study the interaction of rotation with convection in a deep compressible spherical shell as the Sun's convection zone. We examine how the energy transport and the large scale motions can be affected by rotation. In particular we study how a large scale meridional circulation can give rise to variations of angular velocity with latitude and depth.It is assumed that the energy transport is only due to convection and that the mixing-length theory gives an adequate representation of it. Furthermore we assume that rotation acts as a perturbation of the turbulent convective flux through its transport coefficient.The equations involved in the model are integrated numerically in the limit of large viscosity and slow rotation. After having expanded all physical quantities to the first order in terms of Legendre polynomials, the fitting with the observed solar differential rotation gives the expansion parameter, which represents the coupling constant between rotation and convection.The results show a three-cell circulation extending from the poles to the equator. The first one is located in the lower half of the convection zone with the fluid rising at the equator and sinking at the poles. In the second one the direction of the motion is reversed while the third one, located in a thin upper layer, shows the same characteristics of the first one. The meridional velocities at the surface are directed towards the poles and are about 20 cm s-1. In the other cells the meridional velocities are typically of a few cm s-1 while the radial velocities are of the order of a few tenths of cm s-1.The heat flux relative variation at the surface is about 10-4 (3 × 10-3 at the bottom) with a polar excess. The temperature variation at the surface is of the same order, with an equatorial excess however. The convection seems to be stabilized stronger at the equator. The angular velocity increases inwards and varies about 6% between the surface and the bottom of the convection zone.An attempt is made for explaining the picture which emerges. In particular the negligible flux and temperature variations at the surface are explained in terms of equalization by the particular structure of the latitudinal flow. This configuration of large scale circulation is attributed to the high stratification of the convection zone with depth.  相似文献   

15.
Abstract— Radiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core‐mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present‐day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 times 10?12 W/kg, which corresponds to 39% of the Wanke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 times 10 ?12 W/kg can satisfy both the present‐day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43–50% of the Wanke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core‐mantle boundary temperature would require a larger amount of mantle radioactivity to permit present‐day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 times 106, implying that mantle convection remains moderately vigorous on present‐day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity.  相似文献   

16.
The influence of Saturn's gravitational tide on the atmosphere of Titan is investigated by means of a three-dimensional general circulation model. Titan's orbital eccentricity of 0.0292 gives rise to time-dependent radial and librational tide whose potential circles eastward on Titan. Unlike atmospheric tides on terrestrial planets, Saturn's tide on Titan has a large impact on the dynamic meteorology down to the surface. The surface pressure oscillates by up to 1.5 hPa through the orbit. Near the surface the tidal wind dominates the atmospheric flow and exhibits strong temporal and spatial variation. The superposition of the annually present, thermally forced latitudinal pressure gradient and tidally caused pressure variation produces a unique wind pattern near the surface characterized by equatorward flow and high-latitude whirls. At higher levels the tidal wind manifests itself as eastward traveling planetary-scale wave of wavenumber 2 superposed on the background wind. In general tidal winds are more significant in the troposphere, where other forcing mechanisms are weak. Meridional tidal winds become as fast as 5 m s−1 in the troposphere and change direction periodically through the orbit and along the parallel of latitude. Except in the lower troposphere, zonal winds always remain prograde because the tidal wind amplitude is usually smaller than the mean zonal wind. The tide also has a large impact on the mean zonal circulation in the stratosphere. A meridional drift of the descending Huygens Probe in the troposphere would be the easiest way to verify the tidal wind on Titan, but more complete observations of tropospheric wind and surface pressure by a future mission would be required to unveil the complete details of the tidal wind.  相似文献   

17.
Shun-ichiro Karato 《Icarus》2011,212(1):14-229
The rheological properties of the mantle of super-Earths have important influences on their orbital and thermal evolution. Mineral physics observations are reviewed to obtain some insights into the rheological properties of deep mantles of these planets where pressure can be as high as ∼1 TPa. It is shown that, in contrast to a conventional view that the viscosity of a solid increases with pressure (at a fixed temperature), viscosity will decrease with pressure (and depth) when pressure exceeds ∼0.1 TPa. The causes for pressure-weakening include: (i) the transition in diffusion mechanisms from vacancy to interstitial mechanism (at ∼0.1 TPa), (ii) the phase transition in MgO from B1 to B2 structure (at ∼0.5 TPa), (iii) the dissociation of MgSiO3 into MgO and SiO2 (at ∼1 TPa), and (iv) the transition to the metallic state (at ∼1 TPa). Some (or all) of them individually or in combination reduce the effective viscosity of constituent materials in the deep interior of super-Earths. Taken together, super-Earths are likely to have low viscosity deep mantle by at least 2-3 orders of magnitude less than the maximum viscosity in the lower mantle of Earth. Because viscosity likely decreases with pressure above ∼0.1 TPa (in addition to higher temperatures for larger planets), deep mantle viscosity of super-Earths will decrease with increasing planetary mass. The inferred low viscosity of the deep mantle results in high tidal dissipation and resultant rapid orbital evolution, and affects thermal history and hence generation of the magnetic field and the style of mantle convection.  相似文献   

18.
In this paper we study the dependence on depth and latitude of the solar angular velocity produced by a meridian circulation in the convection zone, assuming that the main mechanism responsible for setting up and driving the circulation is the interaction of rotation with convection. We solve the first order equations (perturbation of the spherically symmetric state) in the Boussinesq approximation and in the steady state for the axissymmetric case. The interaction of convection with rotation is modelled by a convective transport coefficient k c = k co + ?k c2 P 2(cos θ) where ? is the expansion parameter, P 2 is the 2nd Legendre polynomial and k c2 is taken proportional to the local Taylor number and the ratio of the convective to the total fluxes. We obtain the following results for a Rayleigh number 103 and for a Prandtl number 1:
  1. A single cell circulation extending from poles to the equator and with circulation directed toward the equator at the surface. Radial velocities are of the order of 10 cm s?1 and meridional ones of the order of 150 cm s?1.
  2. A flux difference between pole and equator at the surface of about 5 percent, the poles being hotter.
  3. An angular velocity increasing inwards.
  4. Angular velocity constant surfaces of spheroidal shape. The model is consistent with the fact that the interaction of convection with rotation sets up a circulation (driven by the temperature gradient) which carries angular momentum toward the equator against the viscous friction. Unfortunately also a large flux variation at the surface is obtained. Nevertheless it seems that the model has the basic requisites for correct dynamo action.
  相似文献   

19.
If a molten, or partially molten, lunar core exists at present, constraints would be placed on the viscosity of the solid mantle and the distribution of radioactive heat sources. Models in which the heat sources have been concentrated near the surface would rapidly solidify if the effective viscosity was equal to, or less than, 1022 cm2 s−1. Retention of most of the heat sources throughout the mantle would permit present day solid convection to occur without cooling the core.  相似文献   

20.
A number of synchronous moons are thought to harbor water oceans beneath their outer ice shells. A subsurface ocean frictionally decouples the shell from the interior. This has led to proposals that a weak tidal or atmospheric torque might cause the shell to rotate differentially with respect to the synchronously rotating interior. Applications along these lines have been made to Europa and Titan. However, the shell is coupled to the ocean by an elastic torque. As a result of centrifugal and tidal forces, the ocean would assume an ellipsoidal shape with its long axis aligned toward the parent planet. Any displacement of the shell away from its equilibrium position would induce strains thereby increasing its elastic energy and giving rise to an elastic restoring torque. In the investigation reported on here, the elastic torque is compared with the tidal torque acting on Europa and the atmospheric torque acting on Titan.Regarding Europa, it is shown that the tidal torque is far too weak to produce stresses that could fracture the ice shell, thus refuting an idea that has been widely advocated. Instead, it is suggested that the cracks arise from time-dependent stresses due to non-hydrostatic gravity anomalies from tidally driven, episodic convection in the satellite’s interior.Two years of Cassini RADAR observations of Titan’s surface have been interpreted as implying an angular displacement of ∼0.24° relative to synchronous rotation. Compatibility of the amplitude and phase of the observed non-synchronous rotation with estimates of the atmospheric torque requires that Titan’s shell be decoupled from its interior. We find that the elastic torque balances the seasonal atmospheric torque at an angular displacement ?0.05°, effectively coupling the shell to the interior. Moreover, if Titan’s surface were spinning faster than synchronous, the tidal torque tending to restore synchronous rotation would almost certainly be larger than the atmospheric torque. There must either be a problem with the interpretation of the radar observations, or with our basic understanding of Titan’s atmosphere and/or interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号