首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Flume experiments were conducted in order to monitor changes in flow turbulence intensity and suspended sediment concentration at seven stages across the ripple–dune transition and at three different positions above the bed surface. Three‐dimensional velocity measurements were obtained using an acoustic Doppler velocimeter (ADV). Suspended sediment concentration (SSC) was monitored indirectly using ADV signal amplitude. Although limited to time‐averaged parameters, the analysis reveals that SSC varies significantly with stage across the transition and with sampling height. The statistical analysis also reveals an apparent uniformity of suspended sediment concentration with height above the bed in the lower half of the flow depth at the critical stage in the transition from ripples to dunes. This is also the stage at which turbulence intensity is maximized. Statistically significant correlations were also observed between suspended sediment concentrations and root‐mean‐square values of vertical velocity fluctuations. These correlations reflect the various levels of shear‐layer activity and the distinct turbulent flow regions across the transition. Conversely, time‐averaged values of Reynolds shear stress exhibit a very weak relationship with suspended sediment concentrations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
We deployed bottom-mounted quadrapod equipped with acoustic Doppler current profiler (ADCP), acoustic Doppler velocimeter (ADV), and optical backscatter sensor (OBS) over two semidiurnal tidal cycles along the western coast of the Yellow Sea, China. In combination with shipboard profiling of CTD and LISST-100, we resolved the temporal and spatial distributions of tidal currents, turbulent kinetic energy (TKE), suspended sediment concentration (SSC) and particle size distributions. During the observations, tidal-induced bottom shear stress was the main stirring factor. However, weak tidal flow during the ebb phase was accompanied by two large SSC and median size events. The interactions of seiche-induced oscillations with weak ebb flow induced multiple flow reversals and provided a source of turbulence production, which stripped up the benthic fluff layers (only several millimeters) around the Jiaozhou Bay mouth. Several different methods for inferring mean suspended sediment settling velocity agreed well under peak currents, including estimates using LISST-based Stokes’ settling law, and ADCP-based Rouse profiles, ADV-based inertial-dissipation balance and Reynolds flux. Suspended particles in the study site can be roughly classified into two types according to settling behavior: a smaller, denser class consistent with silt and clay and a larger, less dense class consistent with loosely aggregated flocs. In the present work, we prove that acoustic approaches are robust in simultaneously and non-intrusively estimating hydrodynamics, SSC and settling velocities, which is especially applicable for studying sediment dynamics in tidal environments with moderate concentration levels.  相似文献   

3.
The relationship between turbulent fluid motions and sediment particle motions over mobile sand dunes was investigated by using a laser Doppler velocimeter and an acoustic backscatter system in laboratory experiments performed at the USDA-ARS-National Sedimentation Laboratory. Profiles of acoustic backscatter from particles and at-a-point turbulence data were collected while translating both measurement devices downstream at the speed of mobile dune bedforms. The resulting data set was used to examine the frequency (recurrence frequency) at which the fluctuating backscatter and fluid velocity signals exceeded magnitude thresholds based on the standard deviation (σ) of the local velocity and the magnitude the acoustic signal resulting from backscatter from suspended particles. The slope of the downstream and vertical velocity recurrence frequencies generally indicated a gradually increasing recurrence time with increasing elevation. The recurrence frequency for acoustic backscatter data was not strongly variable with elevation. The closest correspondence between the recurrence frequencies of sediment backscatter and vertical velocities at the 1σ magnitude threshold was in a region defined by X/L〈0.4 and y〈6 cm. The downstream velocity was most closely related to backscatter in a small region at 0.4〈X/L〈0.8 and less than 3-4 cm from the bed.  相似文献   

4.
The measurement of instantaneous sediment concentration remains a challenging task. In this study, a three-step procedure is proposed to estimate instantaneous sediment concentration using acoustic backscatter from Acoustic Doppler Velocimeter (ADV). The influences of acoustic noise and particle diameter on an ADV's performance was first tested in the laboratory, then the three-step procedure was verified based on field measurements in the Zhongxian and Fengjie reaches in the Three Gorges Reservoir. The first step involves reconstructing the backscatter signal time series. Due to contamination from both the noise floor and spurious spikes, the denoising-despiking method was applied instead of the traditional velocity-despiking methods, and this approach performed well based on spectrum ana-lysis. The second step involves calibrating the sediment concentration against the backscatter signal. A linear relation, whose slope and intercept were calibrated to be dependent on particle diameter, is proposed in double logarithmic coordinates. The third step involves calculating the instantaneous sediment concentration using reconstructed instantaneous backscatter based on the proposed relation. The accuracy of the proposed method was evaluated through consideration of the concentration spec-trum and sediment flux, indicating that the proposed three-step procedure is effective for the mea-surement of instantaneous sediment concentration.  相似文献   

5.
ADP在太湖沉积物再悬浮分析中的应用   总被引:4,自引:2,他引:2  
罗潋葱  张发兵 《湖泊科学》2003,15(4):331-338
分析太湖的悬浮物浓度时,使用传统的过滤与称重的方法,难以在短时间内取得大量的数据,并且进行大范围调查时困难较多,特别是在计算悬浮物浓度随时间的变化率时,根据导数的定义其时间间隔应足够小,此时上述方法显然难以得出较为准确的结果.本文从声学后散射原理出发,通过对声学多普勒三维流速仪(ADP)所接收的回声强度在传播距离上的校正,得出了当悬浮物粒径组成较为稳定时,该强度能反映水体中悬浮物浓度(SSC)的结论,并基于2002年在太湖乌龟山的一次为期一周的湖流观测结果,分析了经校正后的回声强度与太湖中悬浮物浓度间的指数相关关系,通过实测资料对上述关系进行了验证,结果表明该经验公式适用于太湖,其回声强度的变化能反映水体中SSC的变化规律,为大范围调查水体中悬浮物浓度提供了更加快速而有效的方法.  相似文献   

6.
A combination of two indirect methods to measure sediment flux is presented in this study to evaluate suspended sediment transport in a hydropower reservoir. The acoustic backscatter signal (ABS) from an Acoustic Doppler Current Profiler (ADCP) is therefore applied in pre-defined transects within the reservoir in combination with a Laser In-Situ Scattering Transmissometry – stream lined device (LISST-SL). The stationary LISST-SL derived suspended sediment concentration (SSC) measurements are used to calibrate the ABS. From the LISST-SL measurements a time series of SSC is obtained. This enables, in addition, a comprehensive data analysis to evaluate the influence of natural fluctuations of the SSC on the calculated sediment flux, which should be taken into account when assessing sediment transport. Furthermore SSC measurements are done with the LISST-SL close to the reservoir bed. In areas close to the bed no information regarding the ABS is available from the ADCP measurements due to the side-lobe interference. In various studies the information from the last three valid cells is used for extrapolation. However, as result of a comparison of the LISST-SL measurements with extrapolated SSC values from the ADCP measurements it can be seen that, especially in deep reservoirs, this method has to be adapted to the in-situ conditions.  相似文献   

7.
Collecting a representative time‐integrated sample of fluvial fine‐grained suspended sediment (<63 μm) is an important requirement for the understanding of environmental, geomorphological, and hydrological processes operating within watersheds. This study (a) characterized the hydrodynamic behaviour of a commonly used time‐integrated fine sediment sampler (TIFSS) using an acoustic Doppler velocimeter (ADV) in controlled laboratory conditions and (b) measured the mass collection efficiency (MCE) of the sampler by an acoustic Doppler current profiler under field conditions. The laboratory results indicated that the hydrodynamic evaluations associated with the original development of the TIFSS involved an underestimation of the inlet flow velocity of the sampler that results in a significant overestimation of the theoretical MCE. The ADV data illustrated that the ratio of the inlet flow velocity of the sampler to the ambient velocity was 87% and consequently, it can be assumed that a representative sample of the ambient fine suspended particles entered into the sampler. The field results showed that the particle size distribution of the sediment collected by the TIFSS was statistically similar to that for the ambient sediment in the Red River, Manitoba, Canada. The MCE of the TIFSS in the field trials appeared to be as low as 10%. Collecting a representative sample in the field was consistent with the previous findings that the TIFSS is a suitable sampler for the collection of a representative sample of sufficient mass (e.g., >1 g) for the investigation of the properties of fluvial fine‐grained suspended sediment. Hydrodynamic evaluation of the TIFSS under a wider range of hydraulic conditions is suggested to assess the performance of the sampler during high run‐off events.  相似文献   

8.
Abstract The suspended sediment load in the middle Yellow River basin (YRB) cannot be well predicted by capacity‐based transport formulas because a large fraction of suspended sediment load is composed of wash load. This study evaluated the spatial variations of sediment rating curves (SRCs) in the middle YRB. Both power and linear SRCs were used to fit daily flow and suspended sediment concentration (SSC) historical data at 49 gauging stations throughout the middle YRB. The spatial variation in regression coefficients was investigated, and the relationship between regression coefficients and the physical characteristics of watersheds was discussed. The results indicate that SRC regression coefficients vary with drainage area and basin slope, but their responses to these parameters are remarkably different in watersheds with different underlying surfaces, which indicates the significance of sediment availability, erodibility, and grain size distribution. For power SRCs representing sediment transport in unsaturated flows, the regression coefficients are more closely correlated with the drainage area in loess regions and with the basin slope in rock mountain regions. For linear SRCs representing sediment transport in saturated flows, saturated SSCs vary with coarse (particle size > 0.05 mm) and fine (particle size < 0.01 mm) fractions in suspended sediment. The maximum saturated SSC among the different gauging stations is associated with the optimal grain size composition of suspended sediment, which has been proposed for loess regions in previous studies. This study provides theoretical support for estimating the regression parameters for sediment transport modelling, especially in ungauged basins.  相似文献   

9.
Collection of samples of suspended sediment transported by streams and rivers is difficult and expensive. Emerging technologies, such as acoustic backscatter, have promise to decrease costs and allow more thorough sampling of transported sediment in streams and rivers. Acoustic backscatter information may be used to calculate the concentration of suspended sand-sized sediment given the vertical distribution of sediment size. Therefore, procedures to accurately compute suspended sediment size distributions from easily obtained river data are badly needed. In this study, techniques to predict the size of suspended sand are examined and their application to measuring concentrations using acoustic backscatter data are explored. Three methods to predict the size of sediment in suspension using bed sediment, flow criteria, and a modified form of the Rouse equation yielded mean suspended sediment sizes that differed from means of measured data by 7 to 50 percent. When one sample near the bed was used as a reference, mean error was reduced to about 5 percent. These errors in size determination translate into errors of 7 to 156 percent in the prediction of sediment concentration using backscatter data from 1 MHz single frequency acoustics.  相似文献   

10.
Variability of suspended sediment concentration (SSC) versus discharge relationships in streams is often high and illustrates variable particle origins or availability. Particle availability depends on both new sediment supply and deposited sediment stock. The aim of this study is to improve SSC–discharge relationship interpretation, in order to determine the origins of particles and to understand the temporal dynamics of particles for two small streams in agricultural catchments from northwestern France. SSC and discharge were continuously recorded at the outlets and data were examined at different time‐scales: yearly, monthly, with distinction between flood periods and non‐flooding periods, and individual flood events. Floods are classified in relation to SSC–discharge hysteresis, and this typology is completed by the analysis of SSC–discharge ranges during rising and falling flow. We show that particles are mainly coming from channel, banks, either by hydraulic erosion or by cattle trampling. Particle availability presents a seasonal dynamics with a maximum at the beginning of autumn when discharge is low, decreasing progressively during autumn to become a minimum in winter when discharge is the highest, and increasing again in spring. Bank degradation by cattle is the determining factor in the suspended sediment dynamics. Cattle bank‐trampling produces sediment, mostly from spring to autumn, that supplies the deposited sediment stock even outside floods. This hydrologically independent process hides SSC–discharge correlation classically linked to hydraulic erosion and transport. Differences in SSC–discharge relationships and suspended sediment budgets between streams are related to differences in transport capacity and bank degradation by cattle trampling and channelization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Quantifying sediment flux within rivers is a challenge for many disciplines due, mainly, to difficulties inherent to traditional sediment sampling methods. These methods are operationally complex, high cost, and high risk. Additionally, the resulting data provide a low spatial and temporal resolution estimate of the total sediment flux, which has impeded advances in the understanding of the hydro-geomorphic characteristics of rivers. Acoustic technologies have been recognized as a leading tool for increasing the resolution of sediment data by relating their echo intensity level measurements to suspended sediment. Further effort is required to robustly test and develop these techniques across a wide range of conditions found in natural river systems. This article aims to evaluate the application of acoustic inversion techniques using commercially available, down-looking acoustic Doppler current profilers (ADCPs) in quantifying suspended sediment in a large sand bed river with varying bi-modal particle size distributions, wash load and suspended-sand ratios, and water stages. To achieve this objective, suspended sediment was physically sampled along the Paraná River, Argentina, under various hydro-sedimentological regimes. Two ADCPs emitting different sound frequencies were used to simultaneously profile echo intensity level within the water column. Using the sonar equation, calibrations were determined between suspended-sand concentrations and acoustic backscatter to solve the inverse problem. The study also analyzed the roles played by each term of the sonar equation, such as ADCP frequency, power supply, instrument constants, and particle size distributions typically found in sand bed rivers, on sediment attenuation and backscatter. Calibrations were successfully developed between corrected backscatter and suspended-sand concentrations for all sites and ADCP frequencies, resulting in mean suspended-sand concentration estimates within about 40% of the mean sampled concentrations. Noise values, calculated using the sonar equation and sediment sample characteristics, were fairly constant across evaluations, suggesting that they could be applied to other sand bed rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
《国际泥沙研究》2016,(3):237-243
The Three Gorges Reservoir (TGR) is suffering from unexpected fine sediment deposition, to better understand the fine sediment transport processes, field measurements were conducted at the Zhongxian and Fengjie reaches. A method based on the sediment diffusion equation was proposed to measure the settling velocities using the Acoustic Doppler Velocimeter (ADV). The backscatter acoustic intensities (BSI) received from the ADV were calibrated against the sediment concentrations measured via water sampling, suggesting a linear relationship in double logarithmic coordinate system. The instantaneous sediment concentration was calculated using the derived relationship, and then the settling velocity was obtained through the proposed procedure. The settling velocities of the fine particles in the TGR were found to vary with the water depth. Most of the effective settling velocities were within the range of 0.1–10 mm/s, which were larger than those of the primary particles, indicating that the flocculation was likely to occur in the TGR. Additionally, it is suggested that the turbulent motion played an important role in the flocculation in the TGR.  相似文献   

14.
Since 1998, ferry observations have been carried out in the Marsdiep tidal inlet (Dutch Wadden Sea), using amongst other instruments a vessel-mounted acoustic Doppler current profiler (ADCP). Besides 32 cross-sections a day of current velocity data, the instrument also records the echo intensity, which has been interpreted in terms of suspended sediment concentration (SSC) before (Thorne and Hanes, Cont Shelf Res 22:603–632, 2002). However, we show herein that the random phase scattering model as outlined by Thorne and Hanes (Cont Shelf Res 22:603–632, 2002), predicts unrealistically high values of SSC if the depth-averaged current velocity exceeds approximately 0.7 m/s. Therefore, we extended the random phase scattering model by including scattering by turbulence-induced variability in SSC. The important mechanism is that when SSC fluctuations are present at length, scales of the order of the acoustic wavelength, the phase of the returned signal is no longer random and causes stronger backscatter. Such SSC fluctuations occur as a result of turbulent eddies in combination with an SSC gradient. The extended model was compared with data of two field surveys carried out in the Marsdiep inlet. The extended model, when compared with the classical random phase model, showed a large improvement of accuracy of the estimated SSC, which allows us to apply the model to the ferry data set to analyse suspended sediment transports through the Marsdiep tidal inlet.  相似文献   

15.
It was indicated in this study that there were negative relations between the concentrations of suspended solid (SS) and transparency according to the analysis of measured data of Lake Taihu. Their relations in pervious studies were reviewed, which showed that the changes of transparency in Lake Taihu could be reflected by simulating suspended solid concentration (SSC). Measured data showed that the changes of SSC with wind speed were similar at different water depths. SSC increased with the increasing of wind speed. Both wave and lake current of Lake Taihu had positive relations with SSC. However, wave was the main factor affecting sediment suspension, while flow took the second place. In this study, a numerical model coupling lake current, wave and SSC of Lake Taihu was developed. In the SS model, the combined effects of wave and current were included. The amounts of suspended and deposited sediments near the lake bed surface layer were treated separately. The stochastic characteristics of turbulent flow pulsation near lake beds were also considered, and the start-up conditions of sediment suspension were introduced to the model. The model elucidated the mutual exchange processes between sediment particles in SS and active sediments within and on the bed surface layer. Simulated results showed that lake current had relatively significant effects on the SSC at littoral areas of Lake Taihu, while SSC at the central area of the lake was mainly influenced by wave. The changes of transparency with SSC were simulated for Lake Taihu using this model. Calculated results were validated by measured data with good fitness, which indicated that the model is basically suitable for the simulation and prediction of transparency of Lake Taihu.  相似文献   

16.
Glacierised basins are significant sources of sediments generated by glacial retreat. Estimation of suspended sediment transfer from glacierised basins is very important in reservoir planning for hydropower projects in Himalaya. The present study indicates that storage and release of sediment in proglacial streams may categorise the pattern of suspended sediment transfer from these basins. Assessment of suspended sediment concentration (SSC), suspended sediment load (SSL) and yield has been undertaken for Dunagiri Glacier basin located in Garhwal Himalaya (30o33'20”N, 79o53'36”E), and its results are compared with the Gangotri and Dokriani glaciers sharing close proximity. Out of the total drainage basin area, about 14.3 % of the area is glacierised. Data were collected for five ablation seasons (1984–1989, barring 1986). The mean daily SSCs for July, August and September were 333.9, 286.0 and 147.15 mg/l, respectively, indicating highest concentration of mean daily suspended sediment in July followed by August. SSL trends were estimated to be 93.0, 57.0 and 21.3 tonnes. About 59% of the total SSL of the melt period was transported during the months of August and September. Sediment yield for the study basin was computed to be 296.3 t km?2 yr ?1. It is observed that the cumulative proportion of SSC precedes the discharge throughout the melt season except in the year 1987. Release of SSL in terms of total load is less in the early part of melt season than in the later stage as compared to that of discharge. Diurnal variations in SSC reach their maximum at 2400 h, and therefore, SSC was found to be high during night (2000–0400 h). There was a good relationship between SSC and SSL with discharge for the ablation seasons (1988 and 1989). Mean monthly SSC and mean monthly SSL provide a good exponentional relationship with mean monthly temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Few hyperpycnal flows have ever been observed in marine environments although they are believed to play a critical role in sediment dispersal within estuarine and deltaic depositional systems. The paper describes hyperpycnal flows observed in situ off the Huanghe (Yellow River) mouth, their relationship to tidal cycles, and the mechanisms that drive them. Simultaneous observations at six mooring stations during a cruise off the Huanghe mouth in the flood season of 1995 suggest that hyperpycnal flows observed at the river mouth are initiated by high concentrations of sediment input from river and modulated by tides. Hyperpycnal flows started near the end of ebb tides, when near‐bottom suspended sediment concentration (SSC) increased rapidly and salinity decreased drastically (an inverse salt wedge). The median grain size of suspended particles within the hyperpycnal layer increased, causing strong stratification of the suspended sediments in the water column. Towards the end of flood tides, the hyperpycnal flow attenuated due to frictions at the upper and lower boundaries of the flow and tidal mixing, which collapsed the stratification of the water column. Both sediment concentration and median grain size of suspended particles within the bottom layer significantly decreased. The coarser sediment particles were deposited and the hyperpycnal flows stopped. The intra‐tidal behaviors of hyperpycnal flows are closely associated with the variations of SSC, salinity, and stratification of the water column. As nearly 90% of riverine sediment is delivered to the sea during the flood seasons when hyperpycnal flows are active, hyperpycnal flows at the Huanghe mouth and the river's high sediment loads have caused rapid accretion of the Huanghe delta. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Remote sensing was used to understand the seasonal and spatial variation of suspended sediment in the Ganges and Brahmaputra Rivers in Bangladesh for two different discharge periods. Suspended sediment concentration (SSC) in these rivers was estimated from the reflectance of Landsat TM band 3. During the high discharge period, SSC in the Ganges is higher than that in the Brahmaputra. But in the low discharge period, this is reversed. Both erosional and depositional processes are active on their flood plains. Significant fluctuations in SSC and in suspended sediment load were observed along their courses because of river bank erosion and deposition and/or scouring and aggradation of river beds. Owing to scouring and turbulence, SSC increases markedly at the confluence of these rivers. Reflectance of AVHRR band 1 data was also analysed to study the distribution of suspended sediment along other reaches of these rivers. Like SSC, reflectance at the confluence zone increases compared with that in the Brahmaputra. However, this increase is not marked compared with the Ganges. The influence of their tributaries on the suspended sediment load could be inferred from the pattern of reflectance. Remote sensing data used in this study was corrected for atmospheric effects. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
《国际泥沙研究》2020,35(5):444-454
Turbidity is used as a surrogate for suspended sediment concentration (SSC), and as a regulatory tool for indicating land use disturbance and environmental protection. Turbidity relates linearly to suspended material, however, can show non-linear responses to particulate organic matter (POM), concomitant with changes in particle size distribution (PSD). In the paper the influence of ultra-fine particulate matter (UFPM) on specific turbidity and its association with POM in suspended sediment are shown for alpine rivers in the Southern Alps of New Zealand. The approach was two-fold: a field-based investigation of the relations between SSC, POM, and turbidity sampled during event flow; and experimental work on hydrodynamic particle size effects on SSC, POM, PSD, and turbidity. Specific turbidity changes over event flow and are sensitive to increasing proportional amounts of sand, UFPM, and POM in suspension. Furthermore, the UFPM is the size fraction (<6 μm) where POM increases. The implications of the current study are that the slopes of turbidity-SSC relations are undesirable in locations that may be dominated by cyclic release of POM or distinct pulses of fine-grained material. At locations where the turbidity-SSC slopes approximate 2, the POM proportion is usually <10% of the total suspended load. However, when turbidity-SSC slopes are <1 this is likely caused by high amounts of side-scatter from UFPM concomitant with higher proportions of POM. Thus, the use of turbidity as a proxy for determining SSC may have serious consequences for the measurement of representative suspended sediment data, particularly in locations where POM may be a significant contributor to overall suspended load.  相似文献   

20.
This paper contributes a field study of suspended sediment transport through aquatic vegetation. The study was run over a 3 month period which was selected to coincide with scheduled weed cutting activities. This provided the opportunity to obtain data points with no vegetation cover, as well as to investigate the effects of weed cutting on Suspended Sediment Concentrations (SSC), particle size distributions and river hydraulics. Aquatic vegetation cover was quantified through remote sensing with Unmanned Aerial Vehicles and biomass estimated from ground truth sampling. SSC was highly dependent on aquatic vegetation abundance, and the distance upstream that had been cleared of aquatic vegetation. The data indicates that fine sediment was being trapped and stored by aquatic vegetation, then likely remobilised after vegetation removal. Investigation of suspended sediment spatial dynamics illustrated changes in particle size distribution due to preferential settling of coarse particles within aquatic vegetation, for example D50 decreased from 36.08 μm to 15.64 μm after suspended sediment travelled 304.2 m downstream and passed ~3700 kg of aquatic vegetation biomass. Hydraulic resistance in the study reach (parameterized by Manning's n) dropped by over 70% following vegetation cutting. Prior to cutting hydraulic resistance was discharge dependent (likely due to vegetation pronating at higher flows), while post cutting hydraulic resistance was approximately invariant of discharge. Aerial surveying captured interesting changes in aquatic vegetation cover prior to vegetation cutting, where some very dense regions of aquatic vegetation were naturally removed (without any high flow events) leaving behind unvegetated riverbed and fine sediment. The weed cutting boat had a lower impact on SSC than was originally expected, which indicates that it may offer a less damaging solution to aquatic vegetation removal in rivers than some other approaches such as mechanical excavation. This paper contributes valuable field data (which are generally scarce) on the research topic of flow-vegetation-sediment interactions, to supplement laboratory and numerical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号