首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
Concentrations of rare earth elements (REE), Y, Th and Sc were recently determined in marine sediments collected using a box corer along two onshore-offshore transects located in the Strait of Sicily (Mediterranean Sea). The REE + Y were enriched in offshore fine-grained sediments where clay minerals are abundant, whereas the REE + Y contents were lower in onshore coarse-grained sediments with high carbonate fractions. Considering this distribution trend, the onshore sediments in front of the southwestern Sicilian coast represent an anomaly with high REE + Y concentrations (mean value 163.4 μg g−1) associated to high Th concentrations (mean value 7.9 μg g−1). Plot of shale-normalized REE + Y data of these coastal sediments showed Middle REE enrichments relative to Light REE and Heavy REE, manifested by a convexity around Sm-Gd-Eu elements. These anomalies in the fractionation patterns of the coastal sediments were attributed to phosphogypsum-contaminated effluents from an industrial plant, located in the southern Sicilian coast.  相似文献   

2.
Matrix bound phosphine (MBP), a kind of chemically reduced phosphorus, has received limited attention in prevailing modeling of the phosphorus biogeochemical cycle. MBP has been found to occur in marine sediments. MBP in the sediments of the Yellow Sea and its coastal areas was measured by gas chromatography from 2004 to 2007. MBP levels in surface sediments were 0.19–38.24 ng kg−1 in the shelf of the Yellow Sea, 0.34–17.15 ng kg−1 in the Jiaozhou Bay, 2.11–71.79 ng kg−1 in the Sanggou Bay and 0.28–319.32 ng kg−1 in the rivers around the Jiaozhou Bay. High levels of MBP occurred in the northern and middle areas of the Yellow Sea. Obvious seasonal variation of MBP was observed in surface sediments of the Sanggou Bay, with the highest MBP level occurring in summer and the lowest in winter. MBP in surface sediments of the inner Jiaozhou Bay was higher than those in the outer region. MBP levels increased with depth in the top 5–10 cm sediments of the Jiaozhou Bay and on the intertidal flats. Environmental factors such as type of sediments, temperature, organic matter and human activity were found to affect the concentrations and distribution of MBP in marine sediments.  相似文献   

3.
The North-East Atlantic porbeagle (Lamna nasus) population has declined dramatically over the last few decades and is currently classified as ‘Critically Endangered’. As long-lived, apex predators, they may be vulnerable to bioaccumulation of contaminants. In this study organohalogen compounds and trace elements were analysed in 12 specimens caught as incidental bycatch in commercial gillnet fisheries in the Celtic Sea in 2011. Levels of organohalogen contaminants were low or undetectable (summed CB and BDE concentrations 0.04–0.85 mg kg−1 wet weight). A notably high Cd concentration (7.2 mg kg−1 wet weight) was observed in one mature male, whereas the range observed in the other samples was much lower (0.04–0.26 mg kg−1 wet weight). Hg and Pb concentrations were detected only in single animals, at 0.34 and 0.08 mg kg−1 wet weight, respectively. These contaminant levels were low in comparison to other published studies for shark species.  相似文献   

4.
Suspended sediments form an integral part of shelf sea systems, determining light penetration for primary production through turbidity and dispersion of pollutants by adsorption and settling of particles. The settling speed of suspended particles depends on their size and on turbulence. Here a method of determining particle size via remote sensing measurements of ocean colour and brightness has been applied to a set of monthly satellite images of the Irish Sea covering a full year (2006). The suspended sediment concentration was calculated from the ratio between green (555 nm) and red (665 nm) wavelengths in MODIS imagery. Empirical formulae were employed to convert suspended sediment concentrations and irradiance reflectance in the red part of the spectrum into specific scattering by mineral particles and floc size. A geographical pattern was evident in all images with shallow areas with fast currents having high year-average suspended sediment concentrations (7.6 mg l−1), high specific scattering (0.225 m2 g−1) and thus small particle sizes (143 μm). The reverse is true for deeper areas with slower currents, e.g. the Gyre southwest of the Isle of Man where turbidity levels are lower (3.3 mg l−1), specific scattering is lower (0.081 m2 g−1) and thus particle sizes are larger (595 μm) on average over a year. Temporal signals are also seen over the year in these parameters with minimum seasonal amplitudes (a factor 3.5) in the Turbidity Maximum and maximum seasonal amplitudes twice as large (a factor 7) in the Gyre. In the Gyre heating overcomes mixing in summer and stratification occurs allowing suspended sediments to settle out and flocs to grow large. The size of aggregated flocs is theoretically proportional to the Kolmogorov scale. This scale was calculated using depth, current, and wind speed data and compared to the size of flocculated particles. The proportionality changes through the year, indicating the influence of biological processes in summer in promoting larger flocs.  相似文献   

5.
The annual and life-cycle mercury bioaccumulation pattern in selected tissues of the economically relevant Elasmobranchii species Scyliorhinus canicula was studied, and the risks associated with its consumption evaluated.Preferential mercury bioaccumulation occurred in muscle tissue, and followed the order muscle > heart > liver > gills > pancreas. Total mercury in muscle tissue ranged from 0.13 mg kg−1 (wwt) in 1+ year old males to 0.8 mg kg−1 (wwt) in 8+ year old mature females, with no significant differences found between genders, and no clear lifespan bioaccumulation pattern observed, except for mature females. Organic mercury in the muscle ranged from 0.05 mg kg−1 (wwt) to 0.52 mg kg−1 (wwt), corresponding to an average of 70% of total mercury content. In mature females, a significant correlation (R = 0.99, P = 0.01) was found between size and organic mercury fraction, suggesting reproduction as an important factor controlling organic mercury bioaccumulation in the spotted dogfish.  相似文献   

6.
The aim of this study is to explore the contribution of living phytoplankton carbon to vertical fluxes in a coastal upwelling system as a key piece to understand the coupling between primary production in the photic layer and the transfer mechanisms of the organic material from the photic zone. Between April 2004 and January 2005, five campaigns were carried out in the Ría de Vigo (NW Iberian Peninsula) covering the most representative oceanographic conditions for this region. Measurements of particulate organic carbon (POC), chlorophyll-a (chl a), phaeopigments (phaeo), and identification of phytoplankton species were performed on the water column samples and on the organic material collected in sediment traps.The POC fluxes measured by the sediment traps presented no seasonal variation along the studied period ranging around a mean annual value of 1085±365 mg m−2 d−1, in the upper range of the previously reported values for other coastal systems. The fact that higher POC fluxes were registered during autumn and winter, when primary production rates were at their minimum levels points to a dominant contribution of organic carbon from resuspended sediments on the trap collected material. On the contrary, fluxes of living phytoplankton carbon (Cphyto) and chl a clearly presented a seasonal trend with maximum values during summer upwelling (546 mg m−2 d−1 and 22 mg chl m−2 d−1, respectively) and minimum values during winter (22 mg m−2 d−1 and 0.1 mg chl m−2 d−1, respectively). The contribution of Cphyto to the vertical flux of POC ranged between 2% and 49% in response to the pelagic phytoplankton community structure. Higher values of Cphyto fluxes were registered under upwelling conditions which favour the dominance of large chain-forming diatoms (Asterionellopsis glacialis and Detonula pumila) that were rapidly transferred to the sediments. By contrast, Cphyto fluxes decreased during the summer stratification associated with a pelagic phytoplankton community dominated by single-cell diatoms and flagellates. Minimal Cphyto fluxes were observed during the winter mixing conditions, when the presence of the benthic specie Paralia sulcata in the water column also points toward strong sediment resuspension.  相似文献   

7.
Marine sediment may contain both settled phytoplankton and benthic microalgae (BMA). In river-dominated, shallow continental shelf systems, spatial, and temporal heterogeneity in sediment type and water-column characteristics (e.g., turbidity and primary productivity) may promote spatial variation in the relative contribution of these two sources to the sediment organic matter pool available to benthic consumers. Here we use photosynthetic pigment analysis and microscopic examination of sediment microalgae to investigate how the biomass, composition, and degradation state of sediment-associated microalgae vary along the Louisiana (USA) inner shelf, a region strongly influenced by the Mississippi River. Three sandy shoals and surrounding muddy sediments with depths ranging from 4 to 20 m were sampled in April, August, and October 2007. Pigment composition suggested that sediment microalgae were primarily diatoms at all locations. We found no significant differences in sediment chlorophyll a concentrations (8–77 mg m−2) at the shoal and off-shoal stations. Epipelic pennate diatoms (considered indicative of BMA) made up a significantly greater proportion of sediment diatoms at sandy (50–98%) compared to more silty off-shoal stations (16–56%). The percentage of centric diatoms (indicators of settled phytoplankton) in the sediment was highest in August. Sediment total pheopigment concentrations on sandy stations (<20 mg m−2) were significantly lower than concentrations at nearby muddy stations (>40 mg m−2), suggesting differences in sediment microalgal degradation state. These observations suggest that BMA predominate in shallow sandy sediments and that phytodetritus predominates at muddy stations. Our results also suggest that the relative proportion of phytodetritus in the benthos was highest where phytoplankton biomass in the overlying water was greatest, independent of sediment type. The high biomass of BMA found on shoals suggests that benthic primary production on sandy sediments represents a potentially significant local source of sediment microalgal carbon that may be utilized by benthic consumers in continental shelf food webs.  相似文献   

8.
Rapid economic development in East Asian countries has inevitably resulted in environmental degradation in the surrounding seas, and concern for the environment and its protection against pollutants is increasing. Identification of sources of contaminants and evaluation of current environmental status are essential to environmental pollution management, but relatively little has been done in the South China Sea (SCS). In order to investigate the abundance, distribution, and sources of Pb within the SCS, stable Pb isotopes and their ratios were employed to assess the contamination status and to differentiate between natural and anthropogenic origins of Pb in the surface sediments. The total Pb concentrations in sediments varied from 4.18 to 58.7 mg kg−1, with an average concentration of 23.6 ± 8.9 mg kg−1. The observed Pb isotope ratios varied from 18.039 to 19.211 for 206Pb/204Pb, 15.228 to 16.080 for 207Pb/204Pb, 37.786 to 39.951 for 208Pb/204Pb, 1.176 to 1.235 for 206Pb/207Pb, and 2.468 to 2.521 for 208Pb/207Pb. The majority of these ratios are similar to those reported for natural detrital materials. Combined with Pb enrichment factor values, our results show that Pb found within most of the SCS sediments was mainly derived from natural sources, and that there was not significant Pb pollution from anthropogenic sources before 1998. Further studies are needed to reconstruct deposition history and for trend analysis.  相似文献   

9.
The present study was conducted to investigate the tolerance of Spartina densiflora to phenanthrene, and to test its ability in phenanthrene dissipation. A glasshouse experiment was designed to investigate the effect of phenanthrene from 0 to 1000 mg kg−1 on growth and photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigments. We also performed chemical analysis of plant samples, and determined the concentration of phenanthrene remaining in soil. S. densiflora survived to concentrations as high as 1000 mg kg−1 phenanthrene in soil; in fact, there was no significant difference in RGR among the treatments after 30 days. Otherwise, phenanthrene affected photosynthetic apparatus at 100 and 1000 mg kg−1; thus, the lower ΦPSII could be explained by the declined photosynthetic pigment concentrations. Soil extraction indicated a more marked rate of phenanthrene disappearance in the soil in the presence of S. densiflora.  相似文献   

10.
This study examined the potential metal pollution induced by the accidental spill of different acids into seawater. The acids sink to the bottom according to their densities and subsequently react with marine sediments. The acids selected for this study were acetic, hydrochloric, nitric, sulfuric, and phosphoric acids; the metallic elements selected were Cr, Cu, Fe, Mn, Pb and Zn. The sediment was collected in Brest Harbour. The percentages of metals released from this sediment in the presence of various concentrations of acids in seawater were important; concentrations of approximately 7 mg L−1 for Mn and 60 mg L−1 for Zn were observed under our experimental conditions. We also examined the rate of release of these metals from the sediment into the seawater in the presence of the different acids and under different experimental conditions. We found that most of the metallic elements were released from the sediments into the seawater during the first fifteen minutes of exposure. After this time, a high degree of pollution was induced if acids leached into seawater were not rapidly diluted.  相似文献   

11.
In this paper we present the concentrations of Hg, Cd, Se, Pb, Cu, Mn, Zn and Fe in organs of 6 non-common specimens of cetaceans that were stranded along the Israeli Mediterranean coast (IMC), during 2002–2010: two fin whales, one minke whale, one Cuvier’s beaked whale, one rough-toothed dolphin, and one Risso’s dolphin. Most of the specimens were calves stranded by accident. Concentrations of Hg and Cd were low in tissues of the baleen whales and higher in the toothed whales, with maximum concentrations of 1067 mg kg−1 Hg in the liver of the Risso’s dolphin and 29 mg kg−1 Cd in the kidney of the Cuvier’s beaked whale. As far as we are aware, this is the first report of trace elements in baleen whales in the Eastern Mediterranean, and the first report of trace elements in minke whale and rough-toothed dolphin in the Mediterranean.  相似文献   

12.
Water column profiles and near-bed time series of pressure, current velocity, suspended-particulate matter (SPM) concentration and seawater temperature and salinity were collected during three short cruises carried out in May 2005 in the shoreface and inner shelf area adjacent to Cassino Beach, southern Brazil. The measurements were part of the Cassino Experiment, a project conducted at an open, sandy coastal area known for the occurrence of patches of fairly large amounts of muddy sediments that are sporadically fluidized, transported onshore and eventually stranded on the beach. The study area is close to the Patos Lagoon mouth, being influenced by its water and suspended-sediment discharge. The presence of the Patos Lagoon outflow on the inner shelf was detected in one of the cruises (May 13) through measurements of near-surface salinity: while close to shore salinity was 29.4, a minimum value of 13.8 was measured at ∼10 km from the coast. Four days later, no trace of the plume was detected in the area. Regarding seawater temperature, no large temporal or spatial variability was documented with measured values ranging from 19.3 to 20 °C. Water column currents were prominently to N and NE, except at the outermost station, located ∼42 km from the coast, where NW-directed flows were observed at surface and mid-depth. Maximum near-bed current velocity oscillated between 18 and 42 cm s−1 in the east–west direction and between 14 and 42 cm s−1 in the north–south direction. Near-surface concentration of SPM oscillated between 11 and 99 mg L−1, in general one order of magnitude lower than near-bed values. However, near-bed concentration of SPM showed large spatial variability: the highest value (2200 mg L−1) was yielded by a water sample collected at ∼8 m water depth, at a station located ∼2 km away from the shoreline; two water samples collected 500 m, apart from this station, yielded SPM concentrations of 148 and 205 mg L−1, one order of magnitude lower. Spectral analyses of near-bed current speed and SPM concentration indicate the relevance of oscillations in the low-frequency (<0.05 Hz) range. Detailed sampling of bottom sediment indicated that in May 2005 the mud patch was centered at ∼8.5 m water depth.  相似文献   

13.
Phytoplankton biomass and primary production were monitored in the Hauraki Gulf and on the northeastern continental shelf, New Zealand - using ship surveys, moored instruments and satellite observations (1998-2001) - capturing variability across a range of space and time scales. A depth-integrated primary production model (DIM) was used to predict integrated productivity from surface parameters, enabling regional-specific estimates from satellite data. The shelf site was dominated by pico-phytoplankton, with low chlorophyll-a (<1 mg m−3) and annual production (136 g C m−2 yr−1). In contrast, the gulf contained a micro/nano-phytoplankton-dominated community, with relatively high chlorophyll-a (>1 mg m−3) and annual production (178 g C m−2 yr−1). Biomass and productivity responded to physico-chemical factors; a combination of light, critical mixing depths and/or nutrient limitation—particularly new nitrate-N. Relatively low biomass and production was observed during 1999. This coincided with inter-annual variability in the timing and extent of upwelling- and downwelling-favourable along-shelf wind-stress, influencing the fluxes of new nitrate-N to the shelf and gulf. Relationships with the Southern Oscillation Index are also discussed. Our multi-scaled sampling highlighted details associated with stratification and de-stratification events, and deep sub-surface chlorophyll-a not visible to satellite sensors. This study demonstrates the importance of multi-scaled sampling in gaining estimates of regional production and its responses to physico-chemical forcing.  相似文献   

14.
Drifting sediment traps were deployed at 9 stations in May-June (ice-covered conditions) and July-August (ice-free conditions) 2004 in the Chukchi Sea to investigate the variability in export fluxes of biogenic matter in the presence and absence of sea ice cover. Measurements of chlorophyll-a (Chl-a), particulate organic carbon (POC), particulate nitrogen (PN), phytoplankton, zooplankton fecal pellets, and the stable carbon isotope composition (δ13C) of the sinking material were performed along Barrow Canyon (BC) and a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. POC export fluxes were similarly high in the presence (378±106 mg C m−2 d−1) and in the absence of ice cover (442±203 mg C m−2 d−1) at the BC stations, while fluxes were significantly higher in the absence (129±98 mg C m−2 d−1) than in the presence of ice cover (44±29 mg C m−2 d−1) at the EHS stations. The C/N ratios and δ13C values of sinking organic particles indicated that POC export fluxes on the Chukchi continental shelf were mostly composed of freshly produced labile material, except at the EHS stations under ice cover where the exported matter was mostly composed of refractory material probably advected into the EHS region. Chl-a fluxes were higher under ice cover than in ice-free water, however, relatively low daily loss rates of Chl-a and similar phytoplankton carbon fluxes in ice-covered and ice-free water suggest the retention of phytoplankton in the upper water column. An increase in fecal pellet carbon fluxes in ice-free water reflected higher grazing pressure in the absence of ice cover. Elevated daily loss rates of POC at the BC stations confirmed other indications that Barrow Canyon is an important area of carbon export to the basin and/or benthos. These results support the conclusion that there are large spatial and temporal variations in export fluxes of biogenic matter on the Chukchi continental shelf, although export fluxes may be similar in the presence and in the absence of ice cover in highly productive regions.  相似文献   

15.
The contents of 31 samples from free-drifting sediment traps deployed in the Gulf of St. Lawrence (GSL) were analyzed for the individual contribution of the different types of particles encountered to the total particulate organic carbon (POC) flux. Two trap models were used in 1993-1994: small traps at 50 m depth and large traps at 50 and 150 m. Total POC fluxes averaged 42 mg C m−2 d−1 for the more reliable large trap and 149 mg C m−2 d−1 for the small trap. The POC fluxes were attributed to different classes of particles based upon microscopically determined particle dimensions and carbon/volume algorithms available in the literature. Fecal pellets, followed by phytoplankton, were the major attributable components, with important contributions by microzooplankton, particularly during the summer of 1994. The mean fluxes for pellets (6 and 60 mg  C m−2 d−1, for the large and small traps, respectively) and phytoplankton (3.2 and 42.9 mg C m−2 d−1) were in the range of those encountered in other areas of moderate primary productivity. Mean zooplankton carbon fluxes (1.8 and 8.5 mg C m−2 d−1, respectively), however, reflect higher than average zooplankton abundances in the GSL. The C fluxes of specific algal groups confirmed the existence of three trophic regimes previously identified from water column studies and numeric cell fluxes: (1) a period when diatoms were dominant during the spring, (2) a longer interval, which was dominated by dinoflagellates at most others times of the year, and (3) a period of transition during summer. Carbon of animal origin dominated the attributable flux, including an important fraction associated with heterotrophic dinoflagellates. The contribution of marine snow to the total flux (estimated as the difference between the total POC flux and the sum of the attributed components) frequently amounted to more than 60%. The true importance of marine snow remains uncertain, however, because the errors associated with each of the measured components accumulate to produce large uncertainties. The methodological problems involved are discussed.  相似文献   

16.
The influence of riverine inputs on biogeochemical cycling and organic matter recycling in sediments on the continental shelf off the Rhône River mouth (NW Mediterranean Sea) was investigated by measuring sediment oxygen uptake rates using a combination of in situ and laboratory techniques. Four stations were investigated during two cruises in June 2001 and June 2002, with depths ranging from 9 to 192 m and over a distance to the Rhône River mouth ranging from 4 to 36 km. Diffusive oxygen uptake (DOU) rates were determined using an in situ sediment microprofiler and total oxygen uptake (TOU) rates were measured using sediment core incubations. There was good agreement between these two techniques which indicates that the non-diffusive fraction of the oxygen flux was minimal at the investigated stations. DOU rates ranged from 3.7±0.4 mmol O2 m−2 d−1 at the continental shelf break to 19.3±0.5 mmol O2 m−2 d−1 in front of the Rhône River mouth. Sediment oxygen uptake rates mostly decreased with increasing depth and with distance from the Rhône mouth. The highest oxygen uptake rate was observed at 63 m on the Rhône prodelta, corresponding to intense remineralization of organic matter. This oxygen uptake rate was much larger than expected for the increasing bathymetry, which indicates that biogeochemical cycles and benthic deposition are largely influenced by the Rhône River inputs. This functioning was also supported by the detailed spatial distribution of total organic carbon (TOC), total nitrogen (TN) and C/N atomic ratio in surficial sediments. Sediments of the Rhône prodelta are enriched in organic carbon (2–2.2%) relative to the continental shelf sediments (<1%) and showed C/N ratios exceeding Redfield stoichiometry for fresh marine organic matter. A positive exponential correlation was found between DOU and TOC contents (r2=0.98, n=4). South-westward of the Rhône River mouth, sediments contained highly degraded organic matter of both terrestrial and marine origin, due to direct inputs from the Rhône River, sedimentation of marine organic matter and organic material redeposition after resuspension events.  相似文献   

17.
The newly introduced polychaete Linopherus canariensis Langerhans, 1881 was found in the Lake of Faro (NE Sicily), during a study comparing the macrobenthos in artificial modules with a neighboring sandy bottom assemblage. Of a total of 4465 specimens, almost 6% showed morphological variation related to branchial turfs and mean body size. The sandy bottom exhibited an average density of 41.86 ind L−1 and a wet biomass of 30.35 mg L−1, whereas the artificial substratum reached levels of 205.29 ind L−1 and 318.44 mg L−1. The highest estimated immigration rate was 3.7 ind L−1 d−1 (5.8 mg L−1 d−1). In the artificial microhabitat, 0.4% of the population showed mid-anterior fragmentation, with anterior- (2%), mid- (<1%) and posterior- (1%) regenerating lineages, which contributed significantly to the dispersion ability of this species. L. canariensis was a selective micro-deposit feeder, even under conditions of reduced sediments. Linopherus was found to be a new potential invader of stressed environments that is probably tied to the import of oysters.  相似文献   

18.
The first analyses of PAHs in marine sediments within Rijeka Bay started in 1998 at three sampling sites offshore from the petroleum refinery facilities and were extended in 1999 to three more sampling points in front of the repair shipyard within the same east industrial zone. The small Svezanj cove, lying between the shipyard and the petroleum refinery was chosen as the reference point. The concentrations of PAHs were considerably higher in the shipyard environment (average: 3009-6314 μg kg−1 d.w.) in comparison to the petroleum refinery area (average: 279-919 μg kg−1 d.w.), while the PAHs load at reference point was close to the latter level (average: 717 μg kg−1 d.w.). The Phe/Anth and Flo/Py ratios indicate the dominant pyrogenic sources, except for the results from 1999 to 2000 with dominant petrogenic origin at some sites. A declining trend of total PAHs, and consequently toxicity indices was observed at all sites.  相似文献   

19.
Anomalously high levels of mercury in sediment in the Lenga estuary, Chile are comparable to the most contaminated sites previously reported elsewhere. Total mercury (Hgtotal) concentrations range from 0.5 to 129 mg kg−1 and organic mercury (Hgorg) from 11 to 53 μg kg−1. The highest levels are in areas near the previous wastewater outfall of a chlo-alkali plant. The results show that the proportion of Hgorg/Hgtotal in the sediment varies by more than two orders of magnitude (0.02–5.7%) according to the concentration of Hgtotal. No correlation between the concentration of Hgorg and Hgtotal was found. The lack of correlation does contrast with the findings of other authors in culture media. Our results indicate that even at very high concentrations of Hgtotal and organic matter do not influence organic mercury formation in estuary sediments. The disparity in Hgtotal and Hgorg concentrations also attests to environmental differences in the formation.  相似文献   

20.
Nitrogen (N) cycling and respiration rates were measured in sediment columns packed with southeastern United States continental shelf sands, with high permeability (4.66×10−11 m2) and low organic carbon (0.05%) and nitrogen (0.008%). To simulate porewater advection, natural shelf seawater was pumped through columns of different lengths to achieve fluid residence times of approximately 3, 6, and 12 h. Experiments were conducted seasonally at in situ temperature. Fluid flow was uniform in nearly all columns, with minimal dead zones and channeling. Significant respiration (O2 consumption and ∑CO2 production) occurred in all columns, with highest respiration rates in summer. Most (78–100%) remineralized N was released as N2 in the majority of cases, including columns with oxic porewater throughout, with only a small fraction released as NO3 from some oxic columns. A rate of 0.84–4.83×1010 mol N yr−1, equivalent to 1.06–6.09×10−6 mmol N cm−2 h−1, was calculated for benthic N2 production in the South Atlantic Bight, which can account for a large fraction of new N inputs to this shelf region. Metal and sulfate reduction occurred in long residence time columns with anoxic outflow in summer and fall, when respiration rates were highest. Because permeable sediments dominate continental shelves, N2 production in high permeability coastal sediments may play an important role in the global N cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号