首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion acoustic shock waves (IASWs) are studied in a plasma consisting of electrons, positrons and ions. Boltzmann distributed positrons and superthermal electrons are considered in the plasma. The dissipation is taken into account the kinematic viscosity among the plasma constituents. The Korteweg–de Vries–Burgers (KdV–Burgers) equation is derived by reductive perturbation method. Shock waves are solutions of KdV–Burgers equation. It is observed that an increasing positron concentration decreases the amplitude of the waves. Furthermore, in the existence of the kinematic viscosity among the plasma, the shock wave structure appears. The effects of ion kinematic viscosity (η 0) and the superthermal parameter (k) on the ion acoustic waves are found.  相似文献   

2.
The type-I radio continuum may arise from the combination of two electrostatic waves, both directed nearly normal to the magnetic field. One wave, near the upper-hybrid frequency, is generated by gyroresonance with superthermal electrons and comes into equilibrium with these electrons. The other wave, at the lower-hybrid frequency, is generated by the loss-cone instability of trapped superthermal protons in those wave directions for which the lower-hybrid frequency is an exact multiple of the proton gyrofrequency. The brightness temperature of the continuum indicates both the energy of the superthermal electrons and the existance of at least a small number of superthermal protons.  相似文献   

3.
Aurass  H.  Chernov  G. P. 《Solar physics》1983,84(1-2):339-345
A new quantitative zebra pattern observation is reported. The mean amplitude ratio of the emission and absorption features of the irregular zebra pattern observed simultaneously with and related to an increased continuum is Q = 3. This is not contradictory to a zebra pattern model in terms of whistler soliton propagation throughout the source of continuum emission.  相似文献   

4.
The problem of arbitrary amplitude electron-acoustic solitary (EAS) waves in a plasma having cold fluid electrons, hot superthermal electrons and stationary ions is addressed. The domain of their allowable Mach numbers enlarges as the spectral index κ increases revealing therefore that the “maxwellisation” process of the hot component favors the propagation of the EAS waves. As the superthermal character of the plasma is increased, the potential pulse amplitude increases while its width is narrowed, i.e, the superthermal effects makes the electron-acoustic solitary structure more spiky. As the spectral index κ decreases, the hot electrons are locally expelled and pushed out of the region of the soliton’s localization. A decrease of the fractional number density of the hot electrons relative to that of the cold ones number density would lead to an increase of the depth as well as the width of the localized EAS wave. Our results should help to understand the salient features of large amplitude localized structures that may occur in the plasma sheet boundary layer and may provide an explanation for the strong spiky waveforms that have been observed in auroral electric fields.  相似文献   

5.
Bin Chen  Yihua Yan 《Solar physics》2007,246(2):431-443
Through the data around 3 GHz from the Radio Spectrometer in Huairou, Beijing, zebra-pattern structures from the 21 April 2002 event have been studied. Zebra stripes consist of periodically pulsating superfine structures in this event. An analysis of temporal profiles of intensities at multiple frequency channels shows that the Gaussian temporal profiles of pulse groups on zebra stripes are caused by drifting zebra stripes with Gaussian spectral profiles. The observed quasiperiodic pulsations with about 30 ms period have a peculiar feature of oscillation near a steady state, probably resulting from relaxation oscillations, which modulate the electron cyclotron maser emission that forms the zebra stripes during the process of wave – particle interactions. All the main properties of the zebra stripes with pulsating superfine structures indicate that the double plasma resonance model might be the most suitable one, with the relaxation oscillations, to form the superfine structures. The model of LaBelle et al. (Astrophys. J. 593, 1195, 2003) could not account for the observed properties of zebra-pattern structures in this event nor for most zebra-pattern structures occupying a wide frequency range, mainly because the allowable frequency range of the zebra-pattern structures in their model is too narrow to reproduce the observed zebras.  相似文献   

6.
A rigorous theoretical investigation on the characteristics of dust-ion-acoustic (DIA) shock waves in an unmagnetized multi component electron-positron-ion dusty plasma (consisting of inertial ions, electrons of two distinct temperatures referred to as low and high temperature superthermal electrons where superthermality is introduced via the κ-type of nonthermal distribution, Boltzmann distributed positrons, and negatively charged immobile dust grains) has been made both theoretically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The influence of superthermal electrons, Maxwellian positrons and ion kinematic viscosity, which are found in this investigation, significantly modify the basic features of DIA shock waves, are briefly discussed. The present investigation can be very effective for studying and understanding the basic characteristics of shock wave propagation through different astrophysical situations where distinct temperature superthermal electrons dominate the wave dynamics.  相似文献   

7.
The February 5, 1986 flare-related radio continuum depression is studied, compared with other noise storm depression events and discussed in the framework of current type I storm models. The influence of flare plasma flow or shocks and of superthermal electrons on noise storm radiation is considered. The presence of fast drifting emission features just before and during the decrease of the intensity, the association between the depression onset and the microwave burst maximum, the simultaneous appearance of the intensity minimum over a broad spectral range as well as preflare evidence of an interconnection of the flare site and the noise storm source are arguments for a preference of the role of beams of superthermal electrons. We distinguish abrupt and slow depressions (Figure 5). The abrupt depressions are in agreement with Melrose's (1980) predictions. Slow depressions can only be understood by invoking the diffusion of super-thermal electrons through the magnetic field carrying the storm source.  相似文献   

8.
A rigorous theoretical investigation is carried out in analyzing the excitation of electrostatic ion acoustic (IA) solitary wave (SW) structures in two dimensional negative ion magneto-plasmas with superthermal electrons (following κ type distribution). The Zakharov-Kuznetsov (ZK) equation is derived by employing the well known reductive perturbation method, and the analytical solution of ZK equation assists to find out the SW profiles along with their properties. The consequences of different plasma parameters (regarding our considered plasma system) variation on SW structures has been studied. It is found that magnetic field intensity, superthermal parameter κ and temperature of positive and negative ions as well as their densities significantly modify the basic characteristics (amplitude, width, etc.) of the SW waves. A comparison of the SW structures is also presented when the electrons are Maxwellian to when they are superthermal. The relevance of the findings of this work with astrophysical plasmas is briefly pointed out.  相似文献   

9.
A series of solar cm-radio bursts are analyzed by a new inverse method estimating spatial changes of the superthermal electron distribution in solar cm-radio burst sources. It is found that the measure of the spatial change of superthermal electrons in the radio source ν n is always greater than that for the magnetic field ν B and it is linearly dependent on the spectral index of the electrons δ as ν n ≈0.5δ. This relation is explained in the simplified flare-loop model integrating the analytical solutions of the Fokker – Planck equation. The mean value of ν B is found to be 0.36±0.04, which is very close to the value of ν B =0.38±0.02 derived from the dependence of the magnetic field strength on the height in the active region measured by RATAN-600.  相似文献   

10.
The impact of superthermal particles on nonlinear drift solitary and shock like structures are presented in an inhomogeneous electron-ion plasma with κ-distributed electrons. It is shown that the amplitude of the drift solitons and shocks is modified significantly in the presence of superthermal particles. The condition for the existence of drift solitons is found modified in the presence of higher energy particles. Furthermore, Kadomtsev–Petviashvili (KP) equation is also derived for the present plasma model.  相似文献   

11.
A specific combination of spectral fine structures in meter –  decimeter dynamic spectra of solar radio burst emission is reported in observations carried out at the Astrophysical Institute Potsdam. We describe and interpret the occurrence of zebra patterns in fast drifting (type III burst-like) envelopes of absorbed continuum emission. A possible mechanism of the origin of such an involved spectral pattern is put forward, leading to a necessarily multinonequlibrium component coronal plasma. The suggested mechanism is based on the fact that during the passage of a fast electron beam through the corona the loss cone instability (which is caused by electrons captured in a magnetic trap generating the continuum) is quenched. As result, a fast drift burst appears in absorption, and the zebra pattern becomes visible on the low background emission. This zebra pattern is generated by a group of electrons with a nonequilibrium distribution over transverse velocities. In the absence of the beam the pattern is invisible against the background of the stronger continuum. It is shown that the mechanism is sensitive to the distribution parameters of the different electron ensembles. Therefore the effect in dynamic radio spectra is comparatively rare but its proper existence underlines that the simultaneous presence of different ensembles of electrons in the flaring corona can be quite a frequent situation. This can explain some problems in deconvolving X-ray photon spectra to electron energy spectra.  相似文献   

12.
Dust-ion-acoustic (DIA) waves in an unmagnetized dusty plasma system consisting of inertial ions, negatively charged immobile dust, and superthermal (kappa distributed) electrons with two distinct temperatures are investigated both numerically and analytically by deriving Korteweg–de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with its double layers (DLs) solutions using the reductive perturbation technique. The basic features of the DIA Gardner solitons (GSs) as well as DLs are studied, and an analytical comparison among K-dV, mK-dV, and GSs are also observed. The parametric regimes for the existence of both the positive as well as negative SWs and negative DLs are obtained. It is observed that superthermal electrons with two distinct temperatures significantly affect on the basic properties of the DIA solitary waves and DLs; and depending on the parameter μ c (the critical value of relative electron number density μ e1), the DIA K-dV and Gardner solitons exhibit both compressive and rarefactive structures, whereas the mK-dV solitons support only compressive structures and DLs support only the rarefactive structures. The present investigation can be very effective for understanding and studying various astrophysical plasma environments (viz. Saturn magnetosphere, pulsar magnetosphere, etc.).  相似文献   

13.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

14.
Korteweg-de Vries (KdV) equation for electrostatic wave in an unmagnetized negative ion plasma with superthermal electrons is derived using reductive perturbation technique. A generalized Lorentzian distribution (kappa distribution) is assumed for the electrons. The influence of spectral index (kappa) on the soliton is discussed in the presence of the negative ions. It is found that different plasma parameters such as (negative ion temperature, positive ion temperature, negative ion concentration, mass ratio of positive to negative ion) in the presence of superthermal electrons modify the ion acoustic solitary wave structure significantly.  相似文献   

15.
16.
Weak dust acoustic (DA) solitary waves are investigated in a mixed nonthermal high energy-tail electron distribution, focusing on the influence of an interplay between nonthermality and superthermality on the DA soliton energy. It is shown that in a pure superthermal plasma (α=0), electron thermalization (κ→∞) leads to an increase of the energy carried by the soliton. Addition of minute quantities of nonthermal electrons drastically modifies the κ-dependence of the soliton energy E κ,α . The latter first decreases, then exhibits a local minimum before leveling at a constant value. The energy exchange between the non-Maxwellian electrons and the localized solitary structure depends drastically on the interplay between superthermality and nonthermality.  相似文献   

17.
Arbitrary amplitude ion-acoustic solitary waves propagating in a magnetized plasma composed of positive ions, superthermal electrons and positrons are investigated. For this purpose, the ions are represented by the hydrodynamical fluid equations while the non-Maxwellian electrons and positrons densities are assumed to follow kappa (κ) distribution. The basic equations are reduced to a pseudoenergy-balance equation. Existence conditions for large amplitude solitary waves are presented. The analytical and numerical analysis of the latter show that the ion-acoustic solitary wave can propagate only in the subsonic region in our plasma system and it is significantly influenced by the plasma parameters. The present analysis could be helpful for understanding the nonlinear ion-acoustic solitary waves propagating in interstellar medium and pulsar wind, which contain an excess of superthermal particles.  相似文献   

18.
Energetic electron injection events result in the arrival of loss-cone distributions of electrons at energies of a few keV close to the plasmapause at local midnight. These distributions favour the growth of strong electrostatic waves with some conversion to electromagnetic nonthermal continuum emissions near to the geomagnetic equator.GEOS2 located at the geostationary orbit (L = 6.6, 3.3° South) has observed these continuum emissions for a number of electron injection events. Their unique frequency structure provides a measurement of the geomagnetic field strength at the source and hence its radial position, while direction finding measurements at GEOS2 complete the source location determination.Measurements of source locations as a function of time after the start of an electron injection event, yield typical inwards motions of 1REh?1. In this way the emissions provide a remote sensing of the plasmapause location from the geostationary orbit.  相似文献   

19.
A high resolution study in time, frequency, position, and intensity was made at 169 MHz and neighbouring frequencies of the solar radio event of 1971, January 14, 11h 20m–30m UT. The event consisted of two closely resembling groups of type III bursts and type II like details.Before, during, and after the outburst a stationary type IV continuum was seen, with small amplitude pulsating structure. The size of the pulsating structure (which was located inside the continuum) was considerably smaller than the continuum size, and in agreement with an explanation by fluctuating magnetic inhomogeneities inside the continuum source.The continuum moved outward after each outburst at a high speed (2–4000 km s–1). After the second event the continuum source returned inward slowly ( 450 km s–1). The outward motion is discussed. It can be explained by a combination of the impact of a fast magnetohydrodynamic shock and the injection of highly energetic particles during the event, the required number being also necessary to account for the observed radio flux. The slow returning motion can be related to mhd restoring of the magnetic field configuration.  相似文献   

20.
Properties of fully nonlinear electron-acoustic solitary waves in an unmagnetized and collisionless electron-positron-ion plasma containing cold dynamical electrons, superthermal electrons and positrons obeying Cairns’ distribution have been analyzed in the stationary background of massive positive ions. A linear dispersion relation has been derived, from which it is found that even in the absence of superthermal electrons, the superthermal positron component can provide the restoring force to the cold inertial electrons to excite electron-acoustic waves. Moreover, superthermal electron and positron populations seem to enhance the electron acoustic wave phase speed. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in the presence of positron both hump and dip type solitons appear to excite. The present work may be employed to explore and to understand the formation of electron acoustic soliton structures in the space and laboratory plasmas with nonthermal electrons and positrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号