首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental campaign, Study of the Atmospheric Boundary Layer Environmental at Dome C, was held during 2005 at the French-Italian station of Concordia at Dome C. Ground-based remote sensors, as well as in situ instrumentation, were used during the experimental campaign. The measurements allowed the direct estimation of the polar atmospheric boundary-layer height and the test of several parametrizations for the unstable and stable boundary layers. During the months of January and February, weak convection was observed while, during the polar night, a long-lived stable boundary layer occurred continuously. Under unstable stratification the mixing-layer height was determined using the sodar backscattered echoes and potential temperature profiles. The two estimations are highly correlated, with the mixing height ranging between 30 and 350 m. A simple prognostic one-dimensional model was used to estimate the convective mixing-layer height, with the correlation coefficient between observations and model results being 0.66. The boundary-layer height under stable conditions was estimated from radiosounding profiles as the height where the critical Richardson number is reached; values between 10 and 150 m were found. A visual inspection of potential temperature profiles was also used as further confirmation of the experimental height; the results of the two methods are in good agreement. Six parametrizations from the literature for the stable boundary-layer height were tested. Only the parametrization that considers the long-lived stable boundary layer and takes into account the interaction of the stable layer with the free atmosphere is in agreement with the observations.  相似文献   

2.
Summer boundary-layer height at the plateau site of Dome’C,antarctica   总被引:1,自引:1,他引:0  
Measurements of the mean and turbulent structure of the planetary boundary layer using a sodar and a sonic anemometer, and radiative measurements using a radiometer, were carried out in the summer of 1999–2000 at the Antarctic plateau station of Dome C during a two-month period. At Dome C strong ground-based inversions dominate for most of the year. However, in spite of the low surface temperatures (between −50 and −20 °C), and the surface always covered by snow and ice, a regular daytime boundary-layer evolution, similar to that observed at mid-latitudes, was observed during summertime. The mixed-layer height generally reaches 200–300 m at 1300–1400 LST in high summer (late December, early January); late in the summer (end of January to February), as the solar elevation decreases, it reduces to 100–200 m. A comparison between the mixed-layer height estimated from sodar measurements and that calculated using a mixed-layer growth model shows a rather satisfactory agreement if we assign a value of 0.01–0.02 m s−1 to the subsidence velocity at the top of the mixed layer, and a value of 0.003–0.004 K m−1 to the potential temperature gradient above the mixed layer.  相似文献   

3.
In this work, the thermic structure of the atmospheric boundary layer is analyzed by means of direct measurements with radiosonde equipment, remote exploration with a three-monostatic Doppler sodar, and a boundary layer model of order one-and-a-half. Intercomparisons of radiosonde data, sodar data, and model results are made through the study of radiative nocturnal inversion, subsidence inversion, development and height of the mixing layer, and calculus of the temperature structure parameter. The ability of sodar to find the mixing layer height and to detect stable layers is enhanced when these layers are low enough.  相似文献   

4.
The study of the boundary layer can be most difficult when it is in transition and forced by a complex surface, such as an urban area. Here, a novel combination of ground-based remote sensing and in situ instrumentation in central London, UK, is deployed, aiming to capture the full evolution of the urban boundary layer (UBL) from night-time until the fully-developed convective phase. In contrast with the night-time stable boundary layer observed over rural areas, the night-time UBL is weakly convective. Therefore, a new approach for the detection of the morning-transition and rapid-growth phases is introduced, based on the sharp, quasi-linear increase of the mixing height. The urban morning-transition phase varied in duration between 0.5 and 4 h and the growth rate of the mixing layer during the rapid-growth phase had a strong positive relationship with the convective velocity scale, and a weaker, negative relationship with wind speed. Wind shear was found to be higher during the night-time and morning-transition phases than the rapid-growth phase and the shear production of turbulent kinetic energy near the mixing-layer top was around six times larger than surface shear production in summer, and around 1.5 times larger in winter. In summer under low winds, low-level jets dominated the UBL, and shear production was greater than buoyant production during the night-time and the morning-transition phase near the mixing-layer top. Within the rapid-growth phase, buoyant production dominated at the surface, but shear production dominated in the upper half of the UBL. These results imply that regional flows such as low-level jets play an important role alongside surface forcing in determining UBL structure and growth.  相似文献   

5.
Use of a High-Resolution Sodar to Study Surface-layer Turbulence at Night   总被引:1,自引:1,他引:0  
Measurements in the atmospheric surface layer are generally made with point sensors located in the first few tens of metres. In most cases, however, these measurements are not representative of the whole surface layer. Standard Doppler sodars allow a continuous display of the turbulent thermal structure and wind profiles in the boundary layer up to 1000 m, with a few points, if any, in the surface layer. To overcome these limitations a new sodar configuration is proposed that allows for a higher resolution in the surface layer. Because of its capabilities (echo recording starting at 2 m, echo intensity vertical resolution of approximately 2 m, temporal resolution of 1 s) this sodar is called the surface-layer mini-sodar (SLM-sodar). Features and capabilities of the SLM-sodar are described and compared with the sodar. The comparison of the thermal vertical structure given by the SLM-sodar and the sodar provides evidence that, in most cases, the surface layer presents a level of complexity comparable to that of the entire boundary layer. Considering its high vertical resolution, the SLM-sodar is a promising system for the study of the nocturnal surface layer. The nocturnal SLM-sodar measurements have shown that, depending on wind speed, the structure of the surface layer may change substantially within a short time period. At night, when the wind speed is greater than 3 m s−1, mechanical mixing destroys the wavy structure present in the nocturnal layer. Sonic anemometer measurements have shown that, in such cases, also the sensible heat flux varies with height, reaching a peak in correspondence with the wind speed peak. Under these conditions the assumption of horizontal homogeneity of the surface layer and the choice of the averaging time need to be carefully treated.  相似文献   

6.
Since 2006 different remote monitoring methods for determining mixing-layer height have been operated in parallel in Augsburg (Germany). One method is based on the operation of eye-safe commercial mini-lidar systems (ceilometers). The optical backscatter intensities recorded with ceilometers provide information about the range-dependent aerosol concentration; gradient minima within this profile mark the tops of mixed layers. Special software for these ceilometers provides routine retrievals of lower atmospheric layering. A second method, based on sodar observations, detects the height of a turbulent layer characterized by high acoustic backscatter intensities due to thermal fluctuations and a high variance of the vertical velocity component. This information is extended by measurements with a radio-acoustic sounding system (RASS) that directly provides the vertical temperature profile from the detection of acoustic signal propagation and thus temperature inversions that mark atmospheric layers. Ceilometer backscatter information is evaluated by comparison with parallel measurements. Data are presented from 2 years of combined ceilometer and RASS measurements at the same site and from comparison with a nearby (60 km) radiosonde for larger-scale humidity information. This evaluation is designed to ensure mixing-layer height monitoring from ceilometer data more reliable.  相似文献   

7.
Sodar has been used for about 20 years to determine mixing height. However, estimation of the height of a convective boundary layer (CBL) that exceeds the sodar-probing range is still an unsolved question. As one possible way, it is suggested that one adapt a simple mixed-layer model to sodar observations during the morning growth period of the CBL, when its top can be clearly detected. Results are compared with other methods for CBL-height estimation from sodar data that have been proposed in the literature. Finally, some prognostic aspects are discussed.  相似文献   

8.
The structure of turbulence in an inversion layer and in an homogeneous convective field of the planetary boundary layer is described. In the first part of the paper, we validate the sodar estimates of turbulent dissipation, by using measurements with an hot-wire anemometric system in situ. Limitations of an ε measurement technique using structure function calculations are given, taking account of atmospheric properties and acoustic Doppler instrumental effects. By comparison between isopleths of backscattering intensity and of turbulent dissipation rates, we observe that in the early morning, turbulence is advected by mechanical turbulence generated by wind shear. The same mechanism seems to be operating in the case of an inversion layer capping thermal instability, when the convective activity is not too greatly developed. A turbulent kinetic energy budget is examined using aircraft, sodar, and tower measurements. This indicates a constant turbulent dissipation profile through a deep convective layer.  相似文献   

9.
Some characteristics of wavelike motions in the atmospheric boundary layer observed by sodar are considered. In an experiment carried out in February 1993 in Milan, Italy, Doppler sodar measurements were accompanied by in situ measurements of temperature and wind velocity vertical profiles using a tethered balloon up to 600 m. The oscillations of elevated wavy layers containing intense thermal turbulence, usually associated with temperature-inversion zones, were studied by using correlation and spectral analysis methods. The statistics of the occurrence of wavelike and temperature-inversion events are presented. The height distributions of Brunt–Vaisala frequency and wind shear and their correlation within elevated inversion layers were determined, with a strong correlation observed between the drift rate of the wavy layers and the vertical velocity measured by Doppler sodar inside these layers. Spectral analysis showed similarities regarding their frequency characteristics. The phase speed and propagation direction of waves were estimated from the time delay of the signals at three antennae to provide estimates of wavelength. Moreover, wavelengths were estimated from the intrinsic frequency obtained from sodar measurements of the Doppler vertical velocity and oscillations of wavy turbulent layers. The two wavelength estimates are in good agreement.  相似文献   

10.
The applicability of the one-way nesting technique for numerical simulations of the heterogeneous atmospheric boundary layer using the large-eddy simulation (LES) framework of the Weather Research and Forecasting model is investigated. The focus of this study is on LES of offshore convective boundary layers. Simulations were carried out using two subgrid-scale models (linear and non-linear) with two different closures [diagnostic and prognostic subgrid-scale turbulent kinetic energy (TKE) equations]. We found that the non-linear backscatter and anisotropy model with a prognostic subgrid-scale TKE equation is capable of providing similar results when performing one-way nested LES to a stand-alone domain having the same grid resolution but using periodic lateral boundary conditions. A good agreement is obtained in terms of velocity shear and turbulent fluxes, while velocity variances are overestimated. A streamwise fetch of 14 km is needed following each domain transition in order for the solution to reach quasi-stationary results and for the velocity spectra to generate proper energy content at high wavelengths, however, a pile-up of energy is observed at the low-wavelength portion of the spectrum on the first nested domain. The inclusion of a second nest with higher resolution allows the solution to reach effective grid spacing well within the Kolmogorov inertial subrange of turbulence and develop an appropriate energy cascade that eliminates most of the pile-up of energy at low wavelengths. Consequently, the overestimation of velocity variances is substantially reduced and a considerably better agreement with respect to the stand-alone domain results is achieved.  相似文献   

11.
A model of the evolution of the nocturnal stable boundary layer height, based on the heat conservation equation for a turbulent flow, is presented. This model is valid for nights with weak winds and little cloudiness in rural areas. The model includes an expression of vertical profile of potential temperature within the boundary layer, which is obtained using micrometeorological information from Prairie Grass, Wangara and O'Neill Projects. The expression turned out to be a second-grade polynomial of the dimensionless height of the nocturnal stable boundary layer. The resulting model is a function of the Monin–Obukhov length, the surface potential temperature of air and the roughness length. This model was satisfactorily compared with micrometeorological data. It was applied at three stations of Argentina, using surface hourly meteorological information. From the results that were obtained, the monthly average values of the stable boundary layer thickness were analysed. The maximum monthly average values occur during the cold season and the minimum ones take place during the hot season. It was observed that the monthly average thickness increases with latitude.  相似文献   

12.
Observations from the Cloud-Aerosol Interaction and Precipitation Enhancement Experiment-Integrated Ground Observation Campaign (CAIPEEX-IGOC) provide a rare opportunity to investigate nocturnal atmospheric surface-layer processes and surface-layer turbulent characteristics associated with the low-level jet (LLJ). Here, an observational case study of the nocturnal boundary layer is presented during the peak monsoon season over Peninsular India using data collected over a single night representative of the synoptic conditions of the Indian summer monsoon. Datasets based on Doppler lidar and eddy-covariance are used for this purpose. The LLJ is found to generate nocturnal turbulence by introducing mechanical shear at higher levels within the boundary layer. Sporadic and intermittent turbulent events observed during this period are closely associated with large eddies at the scale of the height of the jet nose. Flux densities in the stable boundary layer are observed to become non-local under the influence of the LLJ. Different turbulence regimes are identified, along with transitions between turbulent periods and intermittency. Wavelet analysis is used to elucidate the presence of large-scale eddies and associated intermittency during nocturnal periods in the surface layer. Although the LLJ is a regional-scale phenomenon it has far reaching consequences with regard to surface-atmosphere exchange processes.  相似文献   

13.
In an inversion-capped planetary boundary layer (PBL), the structure of the turbulent fluxes as well as the height of the inversion are determined by the interaction of turbulent mixing in the PBL, large-scale subsidence above the PBL and radiational cooling. Here the sensitivity of the inversion height and of the turbulent fluxes due to radiational processes is investigated with the aid of a three-layered model for a well mixed PBL. For an example of the Trade-Wind region, the inversion height (i.e., the difference between surface pressure and pressure at the inversion level) varies between 46 and 257 mb and the surface flux of moist static energy between 417 and 99 W m-2, if the (mean) radiative net flux divergence for both the inversion and the well-mixed layer is changed over a reasonable range of values. None of the parameterization schemes existing in the literature is able to describe these radiational effects in an appropriate way. This is due to the fact that these parameterizations are either not or not flexibly enough linked to the thermodynamical model parameter. Therefore the demand for an adequate parameterization of the radiational influence in a well-mixed PBL under a subsidence inversion is obvious.  相似文献   

14.
Mixing heights have been determined independently from sodar and boundary-layer wind profiler measurements carried out at the Meteorological Observatory Lindenberg of the German Weather Service between 1 June 1994 and 6 July 1994. Good agreement between both systems was found for mixing height values between about 250 m and 700 m, i.e., in an evolving convective boundary layer. Considering the typical sounding ranges of the sodar (50 m up to 800 m) and of the wind profiler (200 m up to higher than 3000 m), simultaneous operation of the two systems is demonstrated to be a promising tool for continously monitoring the mixing height throughout its complete diurnal cycle.  相似文献   

15.
Summary ?This paper describes the configuration of measurement systems operated continuously at the Meteorological Observatory Lindenberg with the aim of constructing combined profiles of wind and temperature – so-called composite profiles – covering the boundary layer with high temporal and vertical resolution. This is required for the forcing of a micro-α-scale model in order to simulate the atmospheric boundary layer structure over a heterogeneous landscape during the LITFASS-98 experiment. The problems of combining measurements of different remote sensing and in-situ systems are briefly discussed. Although the measuring range of individual remote sensing systems is variable, the height coverage of wind and temperature profile measurements by sodar/RASS and two wind profiler radar/RASS complement each other very well. Using a simple merging procedure composite wind and temperature profiles have been synthesized based on radiosonde, windprofiler/RASS, sodar/RASS and tower measurements. Time-height cross sections of hourly composite profiles show considerably more details of the boundary layer structure than simple radiosonde interpolation due to the higher sampling frequency, higher vertical resolution and increased accuracy at the lower levels. Finally some qualifications of the formulated algorithm are suggested for future application. Received June 18, 2001; revised May 30, 2002; accepted June 6, 2002  相似文献   

16.
Turbulence structures of high Reynolds number flow in the near-neutral atmospheric boundary layer (ABL) are investigated based on observations at Shionomisaki and Shigaraki, Japan. A Doppler sodar measured the vertical profiles of winds in the ABL. Using the integral wavelet transform for the time series of surface wind data, the pattern of a descending high-speed structure with large vertical extent (from the surface to more than 200-m level) is depicted from the Doppler sodar data. Essentially this structure is a specific type of coherent structure that has been previously shown in experiments on turbulent boundary-layer flows. Large-scale high-speed structures in the ABL are extracted using a long time scale (240 s) for the wavelet transform. The non-dimensional interval of time between structures is evaluated as 3.0–6.2 in most cases. These structures make a large contribution to downward momentum transfer in the surface layer. Quadrant analyses of the turbulent motion measured by the sonic anemometer (20-m height) suggest that the sweep motion (high-speed downward motion) plays a substantial role in the downward momentum transfer. In general, the contribution of sweep motions to the momentum flux is nearly equal to that of ejection motions (low-speed upward motions). This contribution of sweep motions is related to the large-scale high-speed structures.  相似文献   

17.
Some aspects of determining the stable boundary layer depth from sodar data   总被引:3,自引:2,他引:1  
The question of estimating the height of the stable boundary layer (SBL) based on digitalized vertical profiles of sodar signal intensity has been re-examined. A simple one-dimensional numerical boundary-layer model is used to compute vertical profiles of the temperature structure parameterC T 2 . It is shown that especially at the beginning of the night (when stratification is weak) one can not expect any significant profile structure in the upper part of the SBL if its depth is determined in terms of common turbulent height scales. From this it is concluded that the SBL-height will be underestimated early in the night when derived from the maximum gradient in the signal intensity profiles. Later in the night in contrast, the computations often show elevated maxima or even zones with reduced, and above them enhanced, vertical gradients ofC T 2 , from which a SBL-height can be deduced that compares well with other common height scales. The computed profiles ofC T 2 are shown to be in qualitative agreement with observed profiles of sodar signal intensity for several analysed cases from the HAPEX-MOBILHY experiment.Comparing different SBL-depth scales with sodar observations, it is demonstrated that most of them are often closely related to a sodar-derived SBL-height only during certain phases of the night. Thus the sodar-SBL-height can, after a transition period, be perhaps associated with the lower turbulent layer of the growing surface inversion during the first part and with the height of the low-level wind maximum during the second part of the night.  相似文献   

18.
Presented are the results of the sounding of the lower atmospheric 500-meter layer for the period of 2004–2012 carried out at the Meteorological Observatory of the Moscow State University (MSU) with the MODOS Doppler acoustic radar (sodar) produced by METEK (Germany). Discussed is the methodological basis of the sodar wind data analysis. It is demonstrated that in the air layer up to 200 m the maximum values in the annual course of the wind speed are observed more often in autumn and winter, and the minimum values, in summer; this is associated with the fact that during the cold period of the year Moscow is often located in the zones of intense gradient currents. The diurnal course of the wind speed is characterized by the daytime maximum and night-time minimum in the layer up to 40–60 m from the surface; it is poorly pronounced and characterized by the minimum in the morning in the layer of 80–120 m; and the daytime minimum and night-time maximum are observed above 140–160 m. The layer from 80 to 120 m approximately corresponds to the height of the wind rotation. The amplitude of diurnal variations of the wind speed increases from 0.3 m/s at the height of 7 m and 0.6 m/s at the height of 15 m, to 4.5 m/s at the height of 400 m; however, its secondary minimum (0.5 m/s) associated with the rotation height is registered at the altitude of 80 m. The statistical relationship between the wind speed and surface air temperature is direct during the cold season, inverse during the warm season, and is absent in April and October. The average maximum wind speed over Moscow for ten minutes in the layer up to 500 m from the surface reaches 30–35 m/s in some cases if two conditions concur: the capital is located on the periphery of vast pressure formations (usually of deep cyclones) and the local low-level jet stream is present in the wind profile.  相似文献   

19.
地基微波辐射计探测大气边界层高度方法   总被引:4,自引:3,他引:1       下载免费PDF全文
采用2013年中国科学院大气物理研究所香河大气综合观测试验站的地基微波辐射计和激光雷达观测数据,以激光雷达探测的大气边界层高度为参考,分别利用非线性神经网络和多元线性回归方法建立微波亮温直接反演大气边界层高度的算法,并对比两种方法的反演能力, 同时分析非线性神经网络算法在不同时段及不同天气状况下反演结果的差异。结果表明:非线性神经网络算法的反演能力优于多元线性回归算法,其反演结果与激光雷达探测的大气边界层高度有较好一致性,冬、春季的相关系数达到0.83,反演精度比线性回归算法约高26%;对于不同时段和不同天气条件,春季的反演结果最好,晴空的反演结果好于云天; 四季和不同天气状况的划分也有利于提高反演精度。  相似文献   

20.
Summary Within the Mesoscale Alpine Programme MAP conducted in autumn 1999, the vertical structure and the temporal evolution of the planetary boundary layer (PBL) in the Rhine Valley 2km south of Lake Constance were observed with a Remtech PA2 sodar (sound-detection-and-ranging instrument) rendering half-hour averages of the three-dimensional wind profile within the lowest kilometre above ground. During Foehn events, tethered balloon soundings and wind profiler measurements were conducted in addition to the rawinsonde network which was built up for the MAP field campaign.The remote sensing instrument renders a surprisingly high number of valid data during south Foehn. Due to the frequent formation of a cold air pool with stable conditions below the Foehn flow with near-neutral static stability, even more sodar data is valid during Foehn periods than during no Foehn periods. A significant reduction of the sodar data quality is only observed during Foehn events with grounding of the Foehn at the sodar site due to high background noise. At higher levels, a Foehn signal can be detected from the sodar wind and turbulence intensitiy information. With Foehn, higher wind speeds and larger turbulence intensities occur than without Foehn. Comparisons to rawinsonde and tethersonde soundings and wind profiler measurements at sites nearby reveal the spatial inhomogeneity of the Foehn flow within this part of the valley as well as instrumental short-comings. Different methods to determine the mixing height using the vertical sounding devices lead to some uncertainty of mixing height estimates which however can reasonably be explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号