首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimating coastal recession due to sea level rise: beyond the Bruun rule   总被引:2,自引:0,他引:2  
Accelerated sea level rise (SLR) in the twenty-first century will result in unprecedented coastal recession, threatening billions of dollars worth of coastal developments and infrastructure. Therefore, we cannot continue to depend on the highly uncertain coastal recession estimates obtained via the simple, deterministic method (Bruun rule) that has been widely used over the last 50?years. Furthermore, the emergence of risk management style coastal planning frameworks is now requiring probabilistic (rather than deterministic, single value) estimates of coastal recession. This paper describes the development and application of a process based model (PCR model) which provides probabilistic estimates of SLR driven coastal recession. The PCR model is proposed as a more appropriate and defensible method for determining coastal recession due to SLR for planning purposes in the twenty-first century and beyond.  相似文献   

2.
A mathematical model was used to predict the effect of climate change on soft and hard rock coasts in a 2 m tidal environment. Erosional equations represented the effect of wave impact and bottom generated shear stresses in the intertidal and subtidal zones. Model runs were made for: 2900 years with constant sea level; a further 100 years, representing the last century, with either constant or slow sea level rise (0.2 m per century); and another 100 years, representing the present century, with either slow or fast (1 m per century) sea level rise, and with either no change in storm frequency or with a 10% increase in the frequency of the highest waves. The results suggest that rising sea level will trigger faster rates of cliff recession, whereas increased storm wave frequency may have only a fairly minor effect on erosional efficacy. Model runs were used to derive a series of predictive equations relating cliff recession during the present and last centuries.  相似文献   

3.
Abstract

In this paper, an overview of storm waves associated with intense weather systems affecting the east and west coasts of Canada is presented. The paper presents the wave climatology of the east and west coasts in terms of the 100‐year significant and maximum wave heights and further analyses the directional distribution of wave heights at selected locations in the Canadian east and west coasts offshore. The paper also analyses wave hazards associated with storm waves in the Beaufort Sea as well as the Canadian Great Lakes region. A section on ocean wave modelling provides a brief history of the development of ocean surface wave models and its present status. The paper further considers the impact of climate change scenarios on wave hazards and finally examines mitigation measures in terms of wave products available from operational wave models and related wave climatology.  相似文献   

4.
“Coastal squeeze” refers to the process in which coastal ecosystems are threatened by the combination of sea level rise (SLR) and the presence of a physical barrier, such as human infrastructure. This situation prevents the landward migration of ecosystems and species, as the coastline moves inland, and they are thus exposed to local extinction. Our objective was to explore coastal squeeze in the state of Veracruz, Mexico, through the study of urban expansion on the coast, an analysis of coastline geodynamics, and a projection of the potential effect of SLR on the distribution of two focal plant species which are endemic to the coastal dunes of Mexico. Urbanization of the coast, parallel to the shoreline, has been taking place increasingly rapidly, displacing ecosystems, both natural (mangroves, beaches and coastal dunes) and transformed (cultivated fields and pastures). Taking into consideration the geodynamic trends of the coastline and an analysis of its historical evolution, it can be seen that the coastal strip is eroding at rates that vary from slow to very rapid. Finally, the results of ecological niche modeling indicate that, under scenarios of SLR, the potential distribution of the two focal species would diminish: Chamaecrista chamaecristoides by 6–28%, and Palafoxia lindenii by 2–15%. These results indicate that “coastal squeeze” is likely in the study area, and that measures to limit or mitigate this process are required. Such measures could include urbanization programs which limit development to appropriate zones, the restoration and rehabilitation of deteriorated ecosystems and the conservation of those ecosystems which are still healthy.  相似文献   

5.
Recently published work estimates that global sea level rise (SLR) approaching or exceeding 1 m by 2100 is plausible, thus significantly updating projections by the Fourth Assessment of the Intergovernmental Panel on Climate Change. Furthermore, global greenhouse gas (GHG) emissions over the 21st century will not only influence SLR in the next ??90 years, but will also commit Earth to several meters of additional SLR over subsequent centuries. In this context of worsening prospects for substantial SLR, we apply a new geospatial dataset to calculate low-elevation areas in coastal cities of the conterminous U.S.A. potentially impacted by SLR in this and following centuries. In total, 20 municipalities with populations greater than 300,000 and 160 municipalities with populations between 50,000 and 300,000 have land area with elevations at or below 6 m and connectivity to the sea, as based on the 1 arc-second National Elevation Dataset. On average, approximately 9% of the area in these coastal municipalities lies at or below 1 m. This figure rises to 36% when considering area at or below 6 m. Areal percentages of municipalities with elevations at or below 1?C6 m are greater than the national average along the Gulf and southern Atlantic coasts. In contrast to the national and international dimensions of and associated efforts to curb GHG emissions, our comparison of low-elevation areas in coastal cities of the conterminous U.S.A. clearly shows that SLR will potentially have very local, and disproportionate, impacts.  相似文献   

6.
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.  相似文献   

7.
Accelerated sea-level rise and the effects on coastal areas represent one of the most important impacts of global climate warming as a large part of the world's population and food production is situated along low-lying coasts. Coastal nations of the world should now be planning for one-half to a meter rise in sea level during the next century. While the actual extent of sea rise realized may be larger or perhaps smaller, this amount establishes a reasonable baseline for coastal zone planning activities. With respect to actual measures, priority should be given to projects that are beneficial to presently existing problems in coastal areas.The lowlands along the world's seas will be the areas most vulnerable to impact. They include the deltaic, barrier island, atoll, and marshy coastlines. Increased storm-induced flooding represents the major danger in developing countries because of loss of life. In western countries, beach erosion will be a primary concern, requiring substantial expenditure of public funds to maintain existing recreational beaches. Marshlands will probably be left to their own destiny, which signals a marked decline in most places.The responses to accelerated sea-level rise must be based on more than a simple cost-benefit ratio; a host of important considerations cannot be expressed in simple dollar terms. Each area must be considered on a site-specific basis as there is considerable geographic variation in the environmental (e.g., hydrologic, geologic) and cultural (e.g., population, human development) factors. The problem is further compounded by the time lag of several decades that exists between public recognition of the problem and actual construction and full operation of major coastal protective devices. It may be necessary to retreat from the eroding shore in some areas, while fortifying and even reclaiming land in others. Clearly a global response is required in that international research and cooperative efforts represent the only reasonable approach.  相似文献   

8.
Spatial variations of sea-level rise and impacts: An application of DIVA   总被引:1,自引:0,他引:1  
Due to complexities of creating sea-level rise scenarios, impacts of climate-induced sea-level rise are often produced from a limited number of models assuming a global uniform rise in sea level. A greater number of models, including those with a pattern reflecting regional variations would help to assure reliability and a range of projections, indicating where models agree and disagree. This paper determines how nine new patterned-scaled sea-level rise scenarios (plus the uniform and patterned ensemble mean rises) influence global and regional coastal impacts (wetland loss, dry land loss due to erosion and the expected number of people flooded per year by extreme sea levels). The DIVA coastal impacts model was used under an A1B scenario, and assumed defences were not upgraded as conditions evolved. For seven out of nine climate models, impacts occurred at a proportional rate to global sea-level rise. For the remaining two models, higher than average rise in sea level was projected in northern latitudes or around populated coasts thus skewing global impact projections compared with the ensemble global mean. Regional variability in impacts were compared using the ensemble mean uniform and patterned scenarios: The largest relative difference in impacts occurred around the Mediterranean coast, and the largest absolute differences around low-lying populated coasts, such as south, south-east and east Asia. Uniform projections of sea-level rise impacts remain a useful method to determine global impacts, but improved regional scale models of sea-level rise, particularly around semi-enclosed seas and densely populated low-lying coasts will provide improved regional impact projections and a characterisation of their uncertainties.  相似文献   

9.
Global sea-level rise poses a significant threat not only for coastal communities as development continues but also for national economies. This paper presents estimates of how future changes in relative sea-level rise puts coastal populations at risk, as well as affect overall GDP in the conterminous United States. We use four different sea-level rise scenarios for 2010–2100: a low-end scenario (Extended Linear Trend) a second low-end scenario based on a strong mitigative global warming pathway (Global Warming Coupling 2.6), a high-end scenario based on rising radiative forcing (Global Warming Coupling 8.5) and a plausible very high-end scenario, including accelerated ice cap melting (Global Warming Coupling 8.5+). Relative sea-level rise trends for each US state are employed to obtain more reasonable rates for these areas, as long-term rates vary considerably between the US Atlantic, Gulf and Pacific coasts because of the Glacial Isostatic Adjustment, local subsidence and sediment compaction, and other vertical land movement. Using these trends for the four scenarios reveals that the relative sea levels predicted by century's end could range – averaged over all states – from 0.2 to 2.0 m above present levels. The estimates for the amount of land inundated vary from 26,000 to 76,000 km2. Upwards of 1.8 to 7.4 million people could be at risk, and GDP could potentially decline by USD 70–289 billion. Unfortunately, there are many uncertainties associated with the impact estimates due to the limitations of the input data, especially the input elevation data. Taking this into account, even the most conservative scenario shows a significant impact for the US, emphasizing the importance of adaptation and mitigation.  相似文献   

10.
长江口海平面上升预测及其对滨海湿地影响   总被引:1,自引:0,他引:1  
选择吴淞站和吕四站2个验潮站数据,通过统计学方法进行长江口海平面上升预测,从而构建了一套长江口地区较完备的海平面上升情景库:以2013年为基准年份,其最佳预测值的范围在2030年、2050年、2100年分别为50~217 mm,118~430 mm,256~1215 mm。以此情景库为基础,探究海平面上升变化对长江口滨海湿地的影响,结果表明:随着海平面上升值的增加,长江口滨海湿地的面积不断减少;在基于验潮站数据作趋势外推得到的情景下,湿地面积减少较平缓,而在考虑全球变暖背景的情景下,湿地面积减少迅速;且不论在何种情景下,时间尺度越大,湿地减少的面积越大。  相似文献   

11.
Sea level rise (SLR) projections along the coast of Florida present an enormous challenge for management and conservation over the long term. Decision makers need to recognize and adopt strategies to adapt to the potentially detrimental effects of SLR. Structured decision making (SDM) provides a rigorous framework for the management of natural resources. The aim of SDM is to identify decisions that are optimal with respect to management objectives and knowledge of the system. Most applications of SDM have assumed that the managed systems are governed by stationary processes. However, in the context of SLR it may be necessary to acknowledge that the processes underlying managed systems may be non-stationary, such that systems will be continuously changing. Therefore, SLR brings some unique considerations to the application of decision theory for natural resource management. In particular, SLR is expected to affect each of the components of SDM. For instance, management objectives may have to be reconsidered more frequently than under more stable conditions. The set of potential actions may also have to be adapted over time as conditions change. Models have to account for the non-stationarity of the modeled system processes. Each of the important sources of uncertainty in decision processes is expected to be exacerbated by SLR. We illustrate our ideas about adaptation of natural resource management to SLR by modeling a non-stationary system using a numerical example. We provide additional examples of an SDM approach for managing species that may be affected by SLR, with a focus on the endangered Florida manatee.  相似文献   

12.
Against a background of climate change, Macau is very exposed to sea level rise(SLR) because of its low elevation,small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macau, both historical and, especially,possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macau is now rising at an accelerated rate: 1.35 mm yr-1over 1925–2010 and jumping to 4.2 mm yr-1over 1970–2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macau contributes little to local sea level change. In the future, the rate of SLR in Macau will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8–12, 22–51 and 35–118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the +8.5 W m-2Representative Concentration Pathway(RCP8.5) scenario the increase in sea level by2100 will reach 65–118 cm—double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21 st century but begin to diverge thereafter.  相似文献   

13.
The morphodynamic response of large tidal inlet/basin systems to future relative sea level rise (RSLR), incorporating both Eustatic sea level rise and local land subsidence effects, is qualitatively investigated using the state-of-the-art Delft3D numerical model and the Realistic analogue modelling philosophy. The modelling approach is implemented on a highly schematised morphology representing a typical large inlet/basin system located on the Dutch Wadden Sea (Ameland Inlet) over a 110-year study period. Three different RSLR Scenarios are considered: (a) No RSLR, (b) IPCC lower sea level rise (SLR) projection (0.2?m SLR by 2100 compared to 1990) and land subsidence, and (c) IPCC higher SLR projection (0.7?m SLR by 2100 compared to 1990) and land subsidence. Model results indicate that, for the 110-year study duration, the existing flood dominance of the system will increase with increasing rates of RSLR causing the ebb-tidal delta to erode and the basin to accrete. The rates of erosion/accretion are positively correlated with the rate of RSLR. Under the No RSLR condition, the tidal flats continue to develop while under the high RSLR scenario tidal flats eventually drown, implying that under this condition the system may degenerate into a tidal lagoon within the next 110?years. The tidal flats are stable under the low RSLR scenario implying that, at least for the next 100?years, this may be the critical RSLR condition for the maintenance of the system. Essentially the results of this study indicate that, as the Eustatic SLR is likely to be greater than the apparently critical rise of 0.2?m (by 2100 compared to 1990), the tidal flats in these systems will at least diminish. In the worst, but not unlikely, scenario that the Eustatic SLR is as high as the IPCC higher projections (0.7?m by 2100), the tidal flats may completely disappear. In either case, the associated environmental and socio-economic impacts will be massive. Therefore, more research focusing on the quantification of the physical and socio-economic impacts of RSLR on these systems is urgently needed to enable the development of effective and timely adaptation strategies.  相似文献   

14.
Large-area coastal exposure and impact analysis has focussed on using sea-level rise (SLR) scenarios and has placed little emphasis on socioeconomic scenarios, while neglecting spatial variations of population dynamics. We use the Dynamic Interactive Vulnerability Assessment (DIVA) Framework to assess the population exposed to 1 in 100-year coastal flood events under different population scenarios, that are consistent with the shared socioeconomic pathways (SSPs); and different SLR scenarios, derived from the representative concentration pathways (RCPs); and analyse the effect of accounting for regionalised population dynamics on population exposure until 2100. In a reference approach, we use homogeneous population growth on national level. In the regionalisation approaches, we test existing spatially explicit projections that also account for urbanisation, coastal migration and urban sprawl. Our results show that projected global exposure in 2100 ranges from 100 million to 260 million, depending on the combination of SLR and population scenarios and method used for regionalising the population projections. The assessed exposure based on the regionalised approaches is higher than that derived from the reference approach by up to 60 million people (39%). Accounting for urbanisation and coastal migration leads to an increase in exposure, whereas considering urban sprawl leads to lower exposure. Differences between the reference and the regionalised approaches increase with higher SLR. The regionalised approaches show highest exposure under SSP5 over most of the twenty-first century, although total population in SSP5 is the second lowest overall. All methods project the largest absolute growth in exposure for Asia and relative growth for Africa.  相似文献   

15.
Changing climate may impact wildlife populations in national parks and conservation areas. We used logistic and non-linear matrix population models and 35 years of historic weather and population data to investigate the effects of climate on the population dynamics of elk in Rocky Mountain National Park (RMNP), Colorado, U.S.A. We then used climate scenarios derived from Hadley and Canadian Climate Center (CCC) global climate models to project the potential impact of future climate on the elk population. All models revealed density-dependent effects of population size on growth rates. The best approximating logistic population model suggested that high levels of summer precipitation accelerated elk population growth, but higher summer minimum temperatures slowed growth. The best approximating non-linear matrix model indicated that high mean winter minimum temperatures enhanced recruitment of juveniles, while high summer precipitation enhanced the survival of calves. Warmer winters and wetter summers predicted by the Hadley Model could increase the equilibrium population size of elk by about 100%. Warmer winters and drier summers predicted by the CCC Model couldraise the equilibrium population size of elk by about 50%. Managers of national parks have relied on effects of weather, particularly severe winters, to regulate populations of native ungulates and prevent harmful effects of overabundance. Our results suggest that these regulating effects of severe winter weather may weaken if climate changes occur as those that are widely predicted in most climate change scenarios.  相似文献   

16.
两层正压准平衡海洋模型的中纬度自由涡旋波动解   总被引:2,自引:2,他引:0  
建立了具有瑞利摩擦且仅考虑大洋西海岸或同时考虑大洋东、西海岸的两层正压准平衡海洋模型,并做了解析求解,用以研究中纬度的自由涡旋波。得到的主要结论有:模型中该波动的解为波包。在仅考虑大洋西海岸时该波包的载频频率是连续谱;而同时考虑大洋东、西海岸时其为离散谱;且均有载频频率越高(周期越短)水平尺度越大的特点,对过分低频的波动,则会使准平衡的假定不再适用。模型中该波动波包载频的周期约在26天至24年。因考虑了摩擦,该波包的振幅随时间呈指数衰减,但摩擦系数的大小仅影响其衰减程度而不改变其空间结构,最终该波包振幅趋于0,故该两层正压海洋模型的解就趋于大气风场的强迫特解。模型中该波包的载频都是西传的;频率较高则西传较快,波包的特性和变形都很明显;频率低,则西传慢,其波形接近平面简谐波。在该两层正压模型中,该波动上层流场与正压模型中的流动类似,而下层海洋流动则其流速与上层海洋相同,而流向相反。该模型中该波动的性质是准平衡(准无辐散)的涡旋波,当摩擦不太大且其水平尺度在10km以上时,其性质则为准地转的Rossby波。  相似文献   

17.
Uncertainties in the human dimensions of global change deeply affect the assessment and responses to climate change impacts such as sea-level rise (SLR). This paper explores the uncertainties in the assessment process and in state-level policy and management responses of three US states to SLR. The findings reveal important political, economic, managerial, and social factors that enable or constrain SLR responses; question disasters as policy windows; and uncover new policy opportunities in the history of state coastal policies. Results suggest that a more realistic, and maybe more useful picture of climate change impacts will emerge if assessments take more seriously the locally embedded realities and constraints that affect individual decision-makers’ and communal responses to climate change.  相似文献   

18.
Toward a physically plausible upper bound of sea-level rise projections   总被引:3,自引:1,他引:2  
Anthropogenic sea-level rise (SLR) causes considerable risks. Designing a sound SLR risk-management strategy requires careful consideration of decision-relevant uncertainties such as the reasonable upper bound of future SLR. The recent Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment reported a likely upper SLR bound in the year 2100 near 0.6 m (meter). More recent studies considering semi-empirical modeling approaches and kinematic constraints on glacial melting suggest a reasonable 2100 SLR upper bound of approximately 2 m. These recent studies have broken important new ground, but they largely neglect uncertainties surrounding thermal expansion (thermosteric SLR) and/or observational constraints on ocean heat uptake. Here we quantify the effects of key parametric uncertainties and observational constraints on thermosteric SLR projections using an Earth system model with a dynamic three-dimensional ocean, which provides a mechanistic representation of deep ocean processes and heat uptake. Considering these effects nearly doubles the contribution of thermosteric SLR compared to previous estimates and increases the reasonable upper bound of 2100 SLR projections by 0.25 m. As an illustrative example of the effect of overconfidence, we show how neglecting thermosteric uncertainty in projections of the SLR upper bound can considerably bias risk analysis and hence the design of adaptation strategies. For conditions close to the Port of Los Angeles, the 0.25 m increase in the reasonable upper bound can result in a flooding-risk increase by roughly three orders of magnitude. Results provide evidence that relatively minor underestimation of the upper bound of projected SLR can lead to major downward biases of future flooding risks.  相似文献   

19.
Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2 °C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5 %. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.  相似文献   

20.
In an attempt to estimate accurate local sea level change, “sea level trend” modes are identified and separated from natural variability via cyclostationary empirical orthogonal function (CSEOF) analysis applied to both the tide gauge data (1965–2013) and the reconstruction data (1950–2010) around the Korean Peninsula. For the tide gauge data, ensemble empirical mode decomposition (EEMD) method is also used to estimate sea level trend to understand an uncertainty from different analysis tools. The three trend models—linear, quadratic, and exponential—are fitted to the amplitude time series of the trend mode so that future projection of sea level can be made. Based on a quadratic model, the rate of local sea level rise (SLR) is expected to be 4.63?±?1.1 mm year?1 during 2010–2060. The estimates of “local” sea level trend vary up to ~30%. It should be noted that, although the three trend models estimate similar sea level trends during the observational period, the projected sea level trend and subsequent SLR differ significantly from one model to another and between the tide gauge data and the reconstruction data; this results in a substantial uncertainty in the future SLR around the Korean Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号