首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The use of machinery in vineyards is increasing soil compaction and erosion. However, there is a lack of information about the impacts of different management practices on soil conditions of vineyards. Therefore, the aim of this study was to assess soil compaction in Croatian vineyards under four different management systems: no-tillage (NT) system, conventional tillage (CT), yearly inversed grass covered (INV-GC) and tillage managed (INV-T) treatments. Four key top-soil (0–20 cm) parameters were assessed in the different land uses: bulk density (BD), penetration resistance (PR), soil water content (SWC) and carbon dioxide (CO2) fluxes. Tractor traffic increased the BD and PR in all treatments, with exception of CT treatment, as consequence of tillage. SWC showed higher values in INV-GC treatment during the dry period; meanwhile, it was similar during the wet season in every management type. Lower CO2 fluxes were found in INV-GC and NT than in the CT and INV-T treatments.  相似文献   

2.
Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent. Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C4) and from natural vegetation (C3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg?1 on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment. The increase in the percentage of C4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment.  相似文献   

3.
Past studies have focused on carbon variation in the upper 1 m of the soil profile. However, there is limited information on carbon variation at deeper depths (e.g., 0–4 m) and mathematical functions to extrapolate carbon content at these depths. The objective of this study was therefore to assess the vertical variation in SOC (reached 4 m) of the Tarim River floodplain in northwestern China. The vertical distribution in SOC was described by exponential and power functions based on (1) soil depth, (2) soil depth and silt content, (3) soil depth and SOC at the shallowest and deepest depths, (4) soil depth, silt content, and SOC at the shallowest and deepest depths, and (5) soil depth and SOC at the shallowest depth. We found SOC content decreased with depth from 6.82 g kg?1 at 0–0.2 m to?<?1.0 g kg?1 below 3.2–3.4 m averaged across five locations along the floodplain. Both the power and exponential functions provided a good fit to the measured data in the upper 1 m of the soil profile, whereas the power function provided a better fit to the data when extrapolating to a depth of 3–4 m. The power function describing SOC as a function of soil depth, silt content, and SOC at the shallowest and deepest depths best portrayed the distribution in SOC with depth. Considering the cost and labor in measuring soil properties, our results suggest that SOC at the shallowest depth can provide good estimates of the vertical distribution in SOC in a floodplain.  相似文献   

4.
Soil aggregate stability has been known as one of the most important soil properties which is influenced by cultivation system. This study investigates the effect of different cultivation systems on aggregate stability indices in two statuses of dry (DSA?>?0.25 mm) and wet (WSA?>?0.25 mm). The study was done in six cultivation systems consisting wheat, barley, maize, alfalfa, fallow, and plowed farms. The results showed that aggregate stability indices affected significantly by the type of cultivation system. In contrast, no meaningful effect of soil depth (0–10 and 10–20 cm) on selected soil properties was observed. In addition, soil primary particles as well as organic carbon differed significantly between the cultivation systems. Wheat and alfalfa farms consisted of larger aggregates, while water-stable aggregate for wheat found to be in a greater degree. Moreover, wheat and barley showed the highest contents of organic carbon. The results of WSA?>?0.25 mm indicated that the correlation coefficients for sand, silt, clay, and organic carbon contents were ?0.67, 0.74, 0.12, and 0.70, respectively. Compared to the DSA?>?0.25 mm, the effect of soil organic carbon on the WSA?>?0.25 mm was arisen while the influence of clay fraction reduced.  相似文献   

5.
In the present investigation, an effort has been made to identify the critical sub-watersheds for the development of best management plan for a small watershed of Eastern India using a hydrological model, namely, AVSWAT2000. A total of 180 combinations of various management treatments including crops (rice, maize ground nut and soybean), tillage (zero, conservation, field cultivator, mould board plough and conventional practices) and fertilizer levels (existing half of recommended and recommended) have been evaluated. The investigation reveled that rice cannot be replaced by other crops such as groundnut, maize, mungbean, sorghum and soybean since comparatively these crops resulted in higher sediment yield. The tillage practices with disk plough have been found to have more impact on sediment yield and nutrient losses than conventional tillage practices for the existing level of fertilizer. Sediment yield decreased in the case of zero tillage, conservation tillage, field cultivator, moldboard plough, and conservation tillage as compare to conventional tillage. Lowest NO3–N loss was observed in zero tillage in all the fertilizer treatments, whereas field cultivator, moldboard plough and disk plough resulted in increase of NO3–N loss. As compared to conventional tillage, the losses of soluble phosphorus were increased in moldboard plough. The losses of organic nitrogen were also increased as fertilizer dose increased. After zero tillage the conservation tillage preformed better in all the fertilizer treatments as per loss of organic nitrogen and organic phosphorus is concerned. It can be concluded that the sediment yield was found to be the highest in the case of disk plough followed by moldboard plough, field cultivator, conventional tillage, field cultivator and least in zero tillage practices. The nutrient losses were found to be in different order with tillage practices, resulted highest in disk plough tillage practices. In view of sediment yield and nutrient losses, the conservation tillage practice was found to be the best as the sediment yield is less than the average soil loss whereas nutrient loss is within the permissible limit.  相似文献   

6.
This paper presents findings from a study that assessed influence of continuous application of a particular traditional tillage practice on weed species richness, diversity and composition and identifies weed species with positive benefits to the communities in semi-arid areas of Mpwapwa district, central Tanzania. In this area farmers apply three different traditional tillage practices which are no-till (NT), shallow tillage (ST) and Ridging System (RT). A total of 36 farm fields were surveyed in 2006/2007 cropping season where 63 weed species from 26 families were identified. Analysis of variance indicated significant differences between practices (p < 0.05), with NT practice having highest weed species richness and diversity. Among the five more prevalent weed species appearing, Bidens lineariloba was observed to exist in all the three practices. Community representatives during focus group discussions indicated 9 weed species out of 63 identified to have beneficial uses. These species are Cleome hirta, Amaranthus graecizans, Bidens lineoriloba, Bidens pilosa, Dactyloctenium aegyptium, Launaea cornuta, Heteropogon contortus, Tragus berteronianus and Trichodesma zeylanicum. Their main uses include leaf-vegetable, medicines, fodder and materials for thatching. From this study NT has highest weed species richness and diversity which therefore suggests that much more time is needed for weeding in this practice compared to other practice which was the farmers’ concern. It was also noted that although weed species have negative effects in crop production and production costs, they still play a vital role in food security and for the health of different people in marginal areas as well as for the complete ecosystem including micro and macrofauna.  相似文献   

7.
The spatial heterogeneity of soil nutrients influences crop yield and the environment. Previous research has focused mainly on the surface layer, with little research being carried out on the deep soil layers, where high root density is highly related to crop growth. In the study, 610 soil samples were collected from 122 soil profiles (0–60 cm) in a random-sample method. Both geostatistics and traditional statistics were used to describe the spatial variability of soil organic matter (SOM) and total nitrogen (TN) deeper in the soil profile (0–60 cm) with high root density from a typical Mollisol watershed of Northeast China. Also, the SOM and TN in farmland and forest (field returned to forest over 10 years) areas was compared. The spatial autocorrelations of SOM at 0–50 cm depth and TN at 30–60 cm depth were strong, and were mainly influenced by structural factors. Compared to farmland, SOM and TN were typically lower in the 0–30 cm depth of the forest areas, while they were higher in the 30–60 cm depth. As well, both SOM and TN decreased from the 0–20 cm layer to the 30–40 cm layer, and then discontinues, while they continuously decreased with increasing soil depth in the farmland. SOM and TN were typically higher at the gently sloped summit of the watershed and part of the bottom of the slope than at mid-slope positions at the 0–30 cm depth. SOM and TN were lower on the back slope at the 30–60 cm depth, but were higher at the bottom of the slope. Also, the spatial distribution of the carbon storage and nitrogen storage were all highest at the bottom of the slope and part of the summit, while they were lowest in most of back slope in depth of 0–60 cm, and mainly caused by soil loss and deposition. SOM at 0–60 cm and TN at 0–40 cm greater than the sufficiency level for crop growth (3.7–79.2 and 0.09–3.09 g kg?1, respectively) covered 99 % of the total area, yet for TN, over 35 % of the total area was less than the insufficiency level at the 40–60 cm depth. Generally, accurately predicting SOM and TN is nearly impossible when based only on soil loss by water, although the fact that variability is influenced by elevation, soil loss, deposition and steepness, was shown in this research. Nitrogen fertilizer and manure application were needed, especially in conjunction with conservation tillage in special conditions and specific areas such as the back slope, where soil loss was severe and the deep soil that lacked TN was exposed at the surface.  相似文献   

8.
With adoption of appropriate reclamation strategies, minesoils can sequester significant amount of soil organic carbon (SOC). The objective of this study was to isolate different SOC fractions and coal-C in a reclaimed minesoil chronosequence and assess effects of increasing time since reclamation on each SOC fraction and selected soil properties. The chronosequence was comprised of four minesoils with time since reclamation ranging between 2 and 22 years. Total SOC (TSOC, summation of all SOC fractions), ranged between 20 and 8 g kg?1, respectively, at the oldest (Mylan Park) and youngest (WVO1) minesite, indicating increasing SOC sequestration along the chronosequence. The humin fraction accounted for about 43 and 7 % of TSOC, respectively, at Mylan Park and WVO1, indicating increasing humification and biochemical stabilization of SOC with increasing time since reclamation. At WVO1, >60 % of TSOC was apportioned among the acid-hydrolysable (labile) and mineral-bound SOC fractions. Total soil carbon (TSC, TSOC + coal-C) were significantly (p < 0.05) related to the humin fraction in older minesoils, whereas with the acid-hydrolysable (labile) fraction in the younger minesoils indicating that C stabilization mechanisms differed substantially along the chronosequence. Coal-C was unrelated to any SOC fraction at all minesites indicating that SOC sequestration estimations in this chronosequence was unaffected by coal-C. Soil cation exchange capacity and electrical conductivity were significantly (p < 0.05) related to the humin fraction at Mylan Park while to the acid-hydrolysable and mineral-bound SOC fractions at WVO1 indicating that the relative influences of different SOC fractions on soil quality indicators differed substantially along the chronosequence.  相似文献   

9.
Soil inorganic carbon (SIC) and organic carbon (SOC) levels can change with forest development, however, concurrent changes in soil carbon balance and their functional differences in regulating soil properties are unclear. Here, SIC, SOC, and other physicochemical properties of soil (N, alkali-hydrolyzed N, effective Si, electrical conductivity, pH, and bulk density) in 49 chronosequence plots of larch plantation forests were evaluated, by analyzing the concurrent changes in SIC and SOC storage during growth of plantation and the functional difference of these levels in maintaining soil sustainability. These soils had characteristically high SOC (15.34 kg m?2) and low SIC storage (83.38 g m?2 on average). Further, 28 of 30 linear regressions between SIC and SOC storage and larch growth parameters (age, tree size, and biomass density) were not statistically significant (p > 0.05). However, significant changes were observed in ratios of SIC and SOC with these growth parameters (between 0–40 cm and 40–80 cm, respectively; p < 0.05). These results were more useful for determining the changes in SIC and SOC vertical distribution than changes in storage. Moreover, larch growth generally decreased SIC and increased SOC. Linear correlation and multiple-regression analysis showed that the SIC influences soil acidity, whereas SOC affects soil nitrogen. This clearly indicates that larch growth could result in divergent changes in SIC and SOC levels, particularly in their vertical distribution; further, changes in SIC and SOC may variably affect soil physicochemical properties.  相似文献   

10.
Haloxylon ammodendron Bge (C.A. Mey.) is a dominant shrub species in the Gurbantonggut Desert and plays an important role in preventing wind erosion and combating desertification, typically by developing fertile islands in desert ecosystems; however, such islands often depend on the scales. An experiment was conducted to determine the scale dependence for the soil spatial heterogeneity of H. ammodendron in the Gurbantonggut Desert using the soil pH, electrical conductivity (EC), soil organic carbon (SOC), and total nitrogen (TN). The results showed that the soil EC, SOC and TN were significantly higher at the individual scale than the population scale. Moreover, the coefficients of variation (CV %) of the soil parameters at the individual scale were greater than they were at the population scale, with all except for pH (CV = 4.35 % for individual scale and CV = 2.87 % for population scale) presenting a moderate degree of variability (10 % < CV < 100 %). A geostatistical analysis revealed a strong spatial dependence [C 0 /(C 0 + C) < 25 %] within the distance of ranges for the tested parameters at both scales. The kriging interpolation results presented significant accumulation of soil SOC and TN around the shrub center and formed a significant “fertile island” at the individual scale, whereas the soil EC was much lower at the shrub center. At the population scale, patch fragments of the soil chemical properties were observed; however, not all individuals presented significant fertile islands or salt islands, and the soil EC presented a similar distribution as SOC and TN. These differences suggested that different mechanisms controlled the spatial distribution of soil minerals at the two scales and that the spatial heterogeneities are scale-dependent in a desert ecosystem.  相似文献   

11.
Karst poljes in the Dinaric Mountains have a complex hydrological regime and high potential for crop production. Little information is available about soil organic carbon (SOC), total nitrogen (TN), carbon stocks (SOCS), and nitrogen stocks (TNS) in karst poljes located in the Dinaric area. The objective of this paper was to study the spatial distribution of SOC and TN in topsoil (ranged from 9 to 53 cm depth) and whole profile SOCS and TNS (ranged from 15 to 160 cm depth) in the Livno karst polje depression (Bosnia and Herzegovina) using kriging and co-kriging approaches. We used the following properties as co-variates: distance from hills (DFH), distance from the lake (DFL), sand, silt, and clay content, TN, SOC, SOCS, and TNS. We only used the properties that had a significant correlation with the estimated properties as co-variates. The results showed that soils in the study area had high average SOC (7.92%), TN (0.79%), SOCS (191.05 t ha?1), and TNS (17.91 t ha?1) values. Histosols had the highest SOCS and TNS and Arenosols the lowest. The experimental variogram of LogSOC and LogTN was best-fitted by the spherical model, while the exponential model was the most accurate for LogSOCS and LogTNS. The spatial dependence was moderate for all studied soil properties. The incorporation of auxiliary variables increased the precision of the estimations from 35.7% (SOC?×?TN) to 49.2% (TNS?×?SOCS).  相似文献   

12.
The absence of environmentally sensitive soil management systems can be considered as one of the major risks to sustainability of agricultural soils in Iran. Tillage is the most critical operation in soil management designed to achieve high crop yield, but it can adversely affect the soil fauna in several ways. In the present study, assessment of soil fauna was carried out in Western Iran in 2008 and 2009 in soil subjected to conventional (CT), minimum (MT) and no (NT)-tillage systems and amended with three levels of cattle manure (CM). Earthworm, mite, springtail and nematode populations were measured as indicators of macro, meso and micro fauna groups, respectively. Soil moisture and bulk density were also determined. Generally, low populations of soil fauna were observed consistent with expectations under similar conditions for this region. Earthworm populations were low and had a patchy distribution. Tillage and CM were found to have no effects on soil mites in both years. Soil springtails were reduced by soil tillage, indicating their sensivity to soil disturbance induced by tillage. In 2008, the nematode population was greater with application of 40 ton ha?1 CM applications (113 N.100 g soil?1). Soil tillage-induced disturbance reduced nematode population in 2009 (214 N.100 g soil?1 at CT). Minimum seedbed preparation besides less soil disturbance makes MT a proper tillage system for Zea mays cultivation. Cattle manure application increased Z. mays’ biomass, but according to our results its annual application is not recommended. There were no changes in BD in both years. We conclude that in short-term studies, soil nematode populations are suitable biological indices (under similar soil and climatic conditions) for the ecological comparison of agricultural management systems in Iran.  相似文献   

13.
Soil organic carbon (SOC) storage and erosion in South China at the regional scale in the past decades remains far from being understood. This paper calculated the SOC density, storage and erosion in 14 soil classes in Guangdong Province, South China, based on statistical data from the soil survey and soil erosion survey of Guangdong, which was performed in the 1990s. The purpose of this study is to understand the relationships between soil classes and SOC erosion at the regional scale. The results indicated that the SOC density in the soils of Guangdong varied from 12.7 to 144.9 Mg ha?1 over the entire profile and from 12.6 to 68.4 Mg ha?1 in the top 20-cm soil layer. The average area-weighted SOC density in the topsoil (0–20 cm) and the entire profile was 32 ± 3 and 86 ± 4 Mg ha?1, respectively. The total SOC storage was 1.27 ± 0.06 Pg, with 35.6 % (0.46 ± 0.04 Pg) located in the topsoil. The average area-weighted strength of the SOC erosion in the 1990s was 20.6 ± 0.8 Mg km?2 year?1. The results indicated that SOC erosion was strongly related to soil class.  相似文献   

14.
The vegetation community succession influences soil nutrient cycling, and this process is mediated by soil microorganisms in the forest ecosystem. A degraded succession series of karst forests were chosen in which vegetation community changed from deciduous broadleaved trees (FO) toward shrubs (SH), and shrubs–grasses (SHG) in the southwest China. Soil organic carbon (SOC), total nitrogen (TN), labile organic carbon (LOC), water extractable organic matter (WEOM), microbial biomass carbon and nitrogen (MBC and MBN), bacterial and fungal diversity, as well as soil enzyme activities were tested. The results showed that SOC, LOC, MBC, MBN, and enzyme activities declined with vegetation succession, with the relatively stronger decrease of microbial biomass and functions, whereas WEOM was higher in SHG than in other systems. In addition, soil bacterial and fungal composition in FO was different from both SH and SHG. Despite positive relationship with SOC, LOC, and TN (p < 0.01), MBC, MBN appeared to be more significantly correlated to LOC than to SOC. It suggested that vegetation conversion resulted in significant changes in carbon fractions and bioavailability, furthermore, caused the change in soil microbial community and function in the forest ecosystem.  相似文献   

15.
土壤有机碳(SOC)是评价土壤肥力和固碳能力的重要指标。因此,研究土壤有机碳的变化,对准确评价区域土壤固碳潜力,实现土壤资源的可持续利用具有重要的意义。利用黑龙江省第二次土壤普查数据和2019年实测土壤数据,运用GIS空间分析方法,分析了1986—2019年黑龙江省松嫩平原表层(0~20 cm)土壤有机碳密度(SOCD)的时空变化特征,运用土壤类型法估算了土壤有机碳储量,运用平衡法估算了土壤固碳潜力。结果表明:30多年来表层SOCD平均减少1.06 kg/m2,SOCD减少的地区主要分布在黑龙江省松嫩平原中部和东南部地区;表层SOC储量减少约143.99 Tg,SOC储量减少较多的土壤类型是草甸土、黑钙土和黑土,三者减少量占总SOC储量减少量的84.55%;当前黑龙江省松嫩平原表层土壤固碳潜力为-2.08 Tg,其中暗棕壤、白浆土、黑土为正潜力,其余土壤类型为负潜力。建议通过增施有机化肥、秸秆还田、推广免耕少耕等方法措施,以提高松嫩平原土壤固碳潜力。  相似文献   

16.
Soil quality evaluation under different land management practices   总被引:5,自引:0,他引:5  
Sustainable agricultural production requires prudent management backed by reliable information that accurately elucidates the complex relationships between land management practices and soil quality trends. Therefore, this study investigates the influence of management on soil properties acquired at different depths, and yields, at five different field sites within Ohio, USA. The principal management systems considered were no till with or without manure and cover crops, natural vegetation (NV) or forest, and conventional tillage (CT) defined as farms with surface residue cover (<30 %). Analyses of variance (ANOVA), correlation analyses, stepwise regression, and the principal component analyses (PCA) were used to elucidate and model the link between four different management practices and the soil physical and chemical properties. The ANOVA results indicate that the available water capacity and electrical conductivity (EC) were the major variables affected by management. In contrast, soil pH, bulk density (ρ b), porosity, soil organic carbon (SOC), and total nitrogen (TN), were invariable with management, yet only pH and EC did not significantly vary with the interaction of soil type and management effects. In comparison, the PCA results suggest that SOC, TN, porosity, ρ b, and EC were the major determining factors controlling yield variability. Interestingly, the derived models revealed that the highest yields, notably 10 and 2.7 Mg ha?1 for corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) occurred in soils under CT management. Quantifying the nexus between soil properties and management choices as demonstrated in this study, can provide critical insight for sustainable agricultural production.  相似文献   

17.
Unlike the studies in small parcels by systematic measurements, the spatial variability of soil properties is expected to increase in those over relatively large areas or scales. Spatial variability of soil hydraulic conductivity (K h) is of significance for the environmental processes, such as soil erosion, plant growth, transport of the plant nutrients in a soil profile and ground water levels. However, its variability is not much and sufficiently known at basin scale. A study of testing the performance of cokriging of K h compared with that of kriging was conducted in the catchment area of Sarayköy II Irrigation Dam in Cank?r?, Turkey. A total of 300 soil surface samples (0–10 cm) were collected from the catchment with irregular intervals. Of the selected soil properties, because the water-stable aggregates (WSA) indicated the highest relationship with the hydraulic conductivity by the Pearson correlation analysis, it is used as an auxiliary variable to predict K h by the cokriging procedure. In addition, the sampling density was reduced randomly to n = 175, n = 150, n = 75 and n = 50 for K h to determine if the superiority of cokriging over kriging would exist. Statistically, the results showed that all reduced K h was as good as the complete K h when its auxiliary relations with WSA were used in cokriging. Particularly, the results of the “Relative Reduction in MSE” (RMSE) revealed that the reduced data set of n = 75 produced the most accurate map than the others. In this basin-scaled study, there was a clear superiority of the cokriging procedure by the reduction in data although a very undulating topography and topographically different aspects, two different land uses with non-uniform vegetation density, different parent materials and soil textures were present in the area. Hence, using the statistically significant auxiliary relationship between K h and WSA might bring about a very useful data set for watershed hydrological researches.  相似文献   

18.
With few available soil organic carbon (SOC) profiles and the heterogeneity of those that do exist, the estimation of SOC pools in karst areas is highly uncertain. Based on the spatial heterogeneity of SOC content of 23,536 samples in a karst watershed, a modified estimation method was determined for SOC storage that exclusively applies to karst areas. The method is a “soil-type method” based on revised calculation indexes for SOC storage. In the present study, the organic carbon contents of different soil types varied greatly, but generally decreased with increasing soil depth. The organic carbon content decreased nearly linearly to a depth of 0–50 cm and then varied at depths of 50–100 cm. Because of the large spatial variability in the karst area, we were able to determine that influences of the different indexes on the estimation of SOC storage decreased as follows: soil thickness > boulder content > rock fragment content > SOC content > bulk density. Using the modified formula, the SOC content in the Houzhai watershed in Puding was estimated to range from 3.53 to 5.44 kg m?2, with an average value of 1.24 kg m?2 to a depth of 20 cm, and from 4.44 to 14.50 kg m?2, with an average value of 12.12 kg m?2 to a depth of 100 cm. The total SOC content was estimated at 5.39 × 105 t.  相似文献   

19.
Dynamic and vigorous top soil is the source for healthy flora, fauna, and humans, and soil organic matters are the underpinning for healthy and productive soils. Organic components in the soil play significant role in stimulating soil productivity processes and vegetation development. This article deals with the scientific demand for estimating soil organic carbon (SOC) in forest using geospatial techniques. We assessed distribution of SOC using field and satellite data in Sariska Tiger Reserve located in the Aravalli Hill Range, India. This study utilized the visible and near-infrared reflectance data of Sentinel-2A satellite. Three predictor variables namely Normalized Difference Vegetation Index, Soil Adjusted Vegetation Index, and Renormalized Difference Vegetation Index were derived to examine the relationship between soil and SOC and to identify the biophysical characteristic of soil. Relationship between SOC (ground and predicted) and leaf area index (LAI) measured through satellite data was examined through regression analysis. Coefficient of correlation (R 2) was found to be 0.95 (p value < 0.05) for predicted SOC and satellite measured LAI. Thus, LAI can effectively be used for extracting SOC using remote sensing data. Soil organic carbon stock map generated through Kriging model for Landsat 8 OLI data demonstrated variation in spatial SOC stocks distribution. The model with 89% accuracy has proved to be an effective tool for predicting spatial distribution of SOC stocks in the study area. Thus, optical remote sensing data have immense potential for predicting SOC at larger scale.  相似文献   

20.
In semiarid Sahelian region, the dynamics of soil organic carbon (SOC) and water are key to sustainable land management. This work focuses on the behaviour of carbon. A total of 33 soil profiles in four polders, ranging from 10 to 65 years in age, were sampled, analysed (0–1 m), and matched with marsh soil profiles in recent sediments considered as reference (t0) for carbon stocks determination. SOC and soil inorganic carbon (SIC) stocks show a spatial variability between polders. SOC stocks were t0 200 ± 0.8; t60 183 ± 34; and t65 189 ± 1.1 MgC·ha?1, whereas the SIC stocks were negligible. These results show the highest stocks of soil carbon observed for this climatic region. The SOC stocks were also calculated for the equivalent soil mass at a defined depth (0–0.3 m); the corrected calculation of SOC stocks (Scorr) for 2450 Mg·ha?1 of equivalent soil mass is t0 64 ± 1.9, t60 59 ± 9.8, and t65 53 ± 2.2 MgC·ha?1; the stocks decrease by ?7.8% and ?17.2% from t0 to t60 and t65. Carbon was inherited from the pre-existing·marsh and the polders have conserved high stock values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号