首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan–eddy-dominated reach with the greatest decrease in stream power narrowed by 22% while the reach with the least decrease in stream power narrowed by 11%. In reaches with the same magnitude of peak flow reduction, meandering reaches narrowed by 15% to 22% and fan–eddy-dominated reaches narrowed by 11% to 12%. Specific stream power was not significantly affected by flow regulation in the meandering reaches.In the diverse array of reach characteristics and deposit types found in the study area, all pre- and post-dam deposits are part of a suite of topographic surfaces that includes a terrace that was inundated by rare pre-dam floods, an intermediate bench that was inundated by rare post-dam floods, and a post-dam floodplain that was inundated by the post-dam mean annual flood. Analysis of historical photographs and tree-ring dating of Tamarix sp. shows that the intermediate bench and post-dam floodplain are post-dam landforms in each reach type. Although these two surfaces occur at different levels, they are forming simultaneously during flows of different magnitude. And while the relative elevation and sedimentologic characteristics of the deposits differ between meandering reaches and reaches with abundant debris fans and eddies, both reach types contain deposits at all of these topographic levels.The process of channel narrowing varied between fan–eddy-dominated and meandering reaches. In the meandering reaches, where stream power has not changed, narrowing was accomplished by essentially the same depositional processes that operated prior to regulation. In fan–eddy-dominated reaches, where significant reductions in stream power have occurred, channel narrowing has been accompanied by a change in dominant depositional processes. Mid-channel sand deposits are aggrading on deposits that, in the pre-dam era, were active gravel bars. These deposits are creating new islands and decreasing the presence of open-framework gravel bars. In eddies, bare sand bars are replaced with vegetated bars that have a simpler topography than the pre-dam deposits.  相似文献   

2.
A typhoon in 1993 induced major aggradation along Oyabu Creek, a steep, gravel bed mountain stream in Kyushu, Japan. Processes of sediment reworking are inferred from a 7-year monitoring program that measured adjustments to channel cross-sections, the longitudinal profile, and the extent/distribution of bedrock outcrops along a 3-km study reach. Over time, the reach adopted a riffle and pool structure, with notable increase in the area of exposed bedrock on the bed. This adjustment process was characterised by progressive reduction in sediment storage change per unit flow. The relaxation pathway following disturbance induced by the typhoon was shaped by the magnitude and frequency of subsequent rainfall events, the capacity of these events to transport available sediments, and physical linkages between reaches. Adjacent subreaches demonstrated differing relaxation pathways in response to these influences, induced by spatial and temporal variability in threshold conditions along the channel. Longer-term evidence indicates that responses to major disturbance, such as the 1993 typhoon, occur as ‘cycles’ of around 20-year duration. A relaxation period of 7 years is required to attain a quasi-equilibrium bed configuration and rate of sediment flux. The timeframe of cycles is considered to reflect changes to hillslope–channel bed coupling, marking the period required to generate sufficient sediment stores to reactivate phases of aggradation and subsequent degradation.  相似文献   

3.
Predicting channel patterns   总被引:1,自引:0,他引:1  
The proposed distinction between meandering and braided river channel patterns, on the basis of bankfull specific stream power and bed material size, is analysed and rejected. Only by using regime-based estimates of channel widths (rather than actual widths) has discrimination been achieved, and it is argued that this procedure is unacceptable.An alternative is to explore the patterning processes underlying the marked pattern scatter on bankfull stream power/bed material size plots. Of the five sets of patterning processes, large-scale bedform development and stability is seen as especially important for meandering and braiding. For gravel-bed rivers, bedforms developed at around or above bankfull stage appear important for pattern generation, with braiding relating to higher excess shear stress and Froude number. There seems to be an upper threshold to both meandering and braiding which is achieved at extreme discharges and steep gradients, as on steep alluvial fans, rather than for the rivers with available flow data here considered. For sand-bed rivers with greater excess shear stress, the equivalent upper plane bed threshold may occur below bankfull, with bed material mobility and bedform modification occurring over a wider range of sub-bankfull discharges. Sand-bed channel margin outlines appear to be less perturbed by bedform effects than gravel bed planforms, and they may have naturally straight or sinuous planforms. Bedform relief may nevertheless lead to some being designated as braided when viewed at low flows.It is concluded that the use of a single-stage stream power measure and bed material size alone is unlikely to achieve meandering/braiding discrimination.  相似文献   

4.
Northwestern California is prone to regional, high magnitude winter rainstorms, which repeatedly produce catastrophic floods in the basins of the northern Coast Ranges. Major floods on the Eel River in 1955 and 1964 resulted in substantial geomorphic changes to the channel, adjacent terraces, and tributaries. This study evaluated the changes and the effects of a moderate flood in 1997 through field observations and examination of aerial photographs that spanned from 1954 to 1996. The purpose was to document the nature and magnitude of geomorphic responses to these three floods and assess the rates and controls on the recovery of the Eel River and its tributaries. Channel widening from extensive bank erosion was the dominant geomorphic change along the lower Eel River during major floods. As a result of the 1964 flood, the largest amount of widening was 195 m and represented an 80% change in channel width. Channel narrowing characterized the periods after the 1955 and 1964 floods. More than 30 years after the 1964 flood, however, the river had not returned to pre-flood width, which suggests that channel recovery required decades to complete. A long recovery time is unusual given that the Eel River is located in an area with a “superhumid” climate and has an exceptionally high sediment yield. This long recovery time may reflect highly seasonal precipitation and runoff, which are concentrated in 3–5 months each winter. In contrast to the main stem of the Eel River, the dominant effects of floods on the tributaries of the Eel River were rapid aggradation of channel bed and valley floor followed by immediate downcutting. Dendrogeomorphic data, aerial photographs, and field observations indicate that thick wedges of gravel, derived largely from hillslope failures in upper reaches of the tributaries, are deposited at and immediately upstream of the mouths of tributaries as the stage of the Eel River exceeded that of the tributaries during major floods. In the waning stages of the flood, the tributaries cut through the gravel at a rate equal to the lowering of the Eel and generated unpaired terraces and nickpoints. The complete process of deposition and incision can occur within a few days of peak discharge. Although reworking of some sediment on the valley floor may continue for years after large floods, channel morphology in the tributaries appears to be a product of infrequent, high magnitude events. The morphology of the tributary channel also appears to be greatly influenced by the frequency and magnitude of mass wasting in headwater areas of small basins.  相似文献   

5.
黄河内蒙古不同河型段对洪水过程的响应特征   总被引:7,自引:0,他引:7  
黄河内蒙古河段的河道淤积近年来有所加重,一些人寄望于人造洪峰冲沙来降低河床。本文根据典型年份的最大洪水的流量—水位过程线变化特征,揭示黄河内蒙古不同河型段对这些洪水的响应机制,得出黄河内蒙古河段洪水的流量—水位过程线类型有线形、顺时针环线、逆时针环线3类单一关系和线形+逆时针环线、逆时针环线+线形、"8"字形+线形、嵌套状逆时针环线以及交叉线形5类复合关系。这些关系总体上可以反映洪水过程中河床是侵蚀还是沉积、何时侵蚀何时沉积、以及冲淤是否具有反复性。黄河内蒙古冲积性河段的河道对同一次洪水过程的响应沿程表现出分化现象,其中辫状河段以河床侵蚀下降为特征,弯曲河段以河床明显沉积升高为特征,而顺直河段以少量沉积或冲淤平衡为特征。不同河型段的河道对洪水的响应趋势与洪水动能的沿程减小相适应,洪峰含沙量沿程减小是该趋势的具体体现。人造洪峰冲沙难以逆转上述淤积趋势,对防治洪灾帮助有限。  相似文献   

6.
The Milk River, the northernmost tributary to the Missouri–Mississippi River system, exhibits an anomalous sand-bed braiding reach in an otherwise meandering system. Shortly after leaving Alberta and entering Montana the river suddenly changes to braiding and maintains this pattern for 47 km before entering Fresno Reservoir. Measured stream gradient and bankfull discharge in the braiding reach severely fail the Leopold and Wolman [U.S. Geol. Surv. Prof. Pap. 282B (1957) 39] slope–discharge test for differentiating channel patterns. While channel slope has long been regarded as one of the primary variables associated with braiding, our data from the sand-bed Milk River do not support this relationship. Instead, the data show that the braiding reach has a lower channel slope (0.00047) than the meandering reach (0.00055). Coupled with a constant discharge the unit length stream power is comparable between the two reaches. At the morphologic transition between meandering and braiding, a dramatic reduction in channel bank strength occurs where the sampled silt–clay content declines from 65% in the meandering reach to 18% in the braiding. This enables channel widening which is reflected in a 60% reduction in unit area stream power in the braiding reach. Thus, sediment transport capacity declines and channel bars are deposited. During waning flows, these bars are dissected, producing a braiding morphology. We suggest that for sand-bed braiding rivers the silt–clay percentage in the channel banks may be more important than slope. A review of the original Leopold and Wolman [U.S. Geol. Surv. Prof. Pap. 282B (1957) 39] dataset, and many subsequent analyses, reveals that most braided rivers studied were gravel-bed. As a result, causal variables associated with braiding in sand-bed environments may need a thorough evaluation.  相似文献   

7.
At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30 years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.  相似文献   

8.
This paper examines channel dynamics and bed load transport relations through an obstruction-forced pool in a forest, gravel-bed stream by comparing flow conditions, sediment mobility, and bed morphology among transects at the pool head, centre, and tail. Variable sediment supply from within and outside of the channel led to a complex pattern of scour and fill hysteresis. Despite the large flood magnitude, large portions of the bed did not scour. Scour was observed at three distinct locations: two of these were adjacent to large woody debris (LWD), and the third was along the flow path deflected by a major LWD obstruction. Bed material texture showed little change in size distribution of either surface or subsurface material, suggesting lack of disruption of the pre-flood bed. Fractions larger than the median size of the bed surface material were rarely mobile. Sediment rating relations were similar, although temporal variation within and among stations was relatively high. Relations between bed load size distribution and discharge were complex, showing coarsening with increasing discharge followed by fining as more sand was mobilized at high flow. Lack of local scour in the pool combined with bed load fining and net fill by relatively fine material implied that the dominant sources of mobile sediment were upstream storage sites and local bank collapse. Patterns of flow, channel dynamics, and sediment mobility were strongly affected by a LWD flow obstruction in the pool centre that created turbulent effects, thereby enhancing entrainment and transport in a manner similar to scour at bridge piers.  相似文献   

9.
S.S. Li  R.G. Millar  S. Islam   《Geomorphology》2008,95(3-4):206-222
A two-dimensional (2D) numerical hydrodynamic-morphological model is developed to investigate gravel transport and channel morphology in a large wandering gravel-bed river, the Fraser River Gravel Reach, in British Columbia, Canada. The model takes into count multi-fraction bedload transport, including the effects of surface coarsening, hiding and protrusion. Model outputs together with river discharge statistics were analyzed, producing distributed sediment budget and well-defined, localised zones of aggradation and degradation along the gravel reach. Long-term channel response to gravel extraction from aggrading zones as a flood hazard mitigation measure was also investigated numerically to assess the effectiveness of such an extraction. The total computed sediment budget agrees well with results based on field measurements of gravel transport available to us. This study points to the importance of a number of factors to bedload predictions: the gravel-to-sand ratio, the adequacy of resolving the wandering planform, and the distinction between bed shear stress driving bedload transport and bed resistance on the flow. These are in addition to the physical processes governing the flow field and gravel mobilization. The methodology presented in this paper can provide a scientific basis for gravel management including monitoring and extraction in order to maintain adequate flood protection and navigation, while preserving the ecosystem.  相似文献   

10.
Rivers in drylands typically are characterized by extreme flow variability, with long periods of little or no flow interspersed with occasional large, sometimes extreme, floods. Complete adjustment of river form and process is sometimes inhibited, resulting in a common assumption that equilibrium conditions may rarely, if ever, exist in dryland rivers, and that transient and unstable (nonequilibrium) behavior is the norm. Examples from the Channel Country and the Northern Plains in central Australia challenge that notion. Along the middle reaches of these intermediate and large, low-gradient rivers, where long duration floods generate moderate to low unit stream powers and boundary resistance is high as a result of indurated alluvial terraces, cohesive muds or riparian vegetation, there is evidence that: (1) channels have remained essentially stable despite large floods; (2) sediment transport discontinuities, while present at a catchment scale, are largely insignificant for channel form and process in individual reaches; (3) there are strong correlations between many channel form and process variables; and (4) many rivers appear to be adjusted to maximum sediment transport efficiency under conditions of low gradient, abundant within-channel vegetation and declining downstream discharge. In these middle reaches, rivers are characterized by equilibrium conditions. However, in the aggradational lower reaches of rivers on the Northern Plains, where upstream terraces are buried by younger sediments and channels are less confined, nonequilibrium conditions prevail. Here, channels sometimes undergo sudden and substantial changes in form during large floods, sediment transport discontinuities are readily apparent, and landforms such as splays remain out-of-balance with normal flows. Hence, dryland rivers can exhibit both equilibrium and nonequilibrium conditions, depending on factors such as catchment size, channel gradient, flood duration, unit stream power, channel confinement, sediment cohesion, and bank strength. [Key words: dryland rivers, floods, equilibrium, nonequilibrium, central Australia.]  相似文献   

11.
Recent morphological evolution of the Lower Mississippi River   总被引:1,自引:0,他引:1  
This study documents slope and stream power changes in the Lower Mississippi River during the pre-cutoff (1880s–1930s), and post-cutoff (1943–1992) periods. The study reach extends from New Madrid, MO, to Natchez, MS, a distance of about 900 km. Analyses for six major reaches and 13 sub-reaches for the pre- and post-cutoff periods indicate that the river presently has a much larger slope and stream power than prior to the cutoffs. The largest increases have occurred between Fulton, TN, and Lake Providence, LA, where slope and stream power increases range from about 27% to 36% and 20% to 38%, respectively. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. Previous investigations have shown that no coarsening of the bed material has occurred since 1932, and that the bed material may actually be somewhat finer overall. As the Lower Mississippi River is not a sediment-starved system, an increase in stream power with no change in D50 would be expected to be offset by an increase in the bed material load as the river adjusts towards equilibrium. Previous investigators have inferred a reduction in the sediment loads on the Mississippi River this century based on analyses of total measured suspended loads. However, these results should be viewed as primarily representing the changes in wash load and should not be taken to imply that bed material loads have also decreased. Therefore, the bed material loads in the study reach should be greater than in the pre-cutoff period. Excess stream power in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These elevated sediment loads play a key role in driving morphological adjustments towards equilibrium in the post-cutoff channel. The stability status of the channel in the study reach currently ranges from dynamic equilibrium in the farthest upstream reaches through severe degradation to dynamic equilibrium in the middle reaches, and aggradation in the lowest reaches. These evolutionary trends cannot be explained by consideration of changes in slope and stream power alone. Changes in the incoming bed material load to each reach generated by upstream channel evolution must also be considered.  相似文献   

12.
Confluence dynamics in the Ganga–Ramganga valley in the western Ganga plains of India has been studied through systematic mapping of channel configuration using multi-date remote sensing images and topographic sheets for a period spanning nearly 100 years (1911–2000). The study has been supplemented with a detailed analysis of the channel morphology, hydrology and sediment transport characteristics of the different rivers. Our study indicates that new confluences have been created during this period and that the confluence points have moved both upstream and downstream on a historical time scale. Apart from major avulsions, other processes that have controlled the confluence movements include river capture, cut-offs and aggradation in the confluence area. River capture occurs through lateral bank erosion and migration, encroachment by the master stream and beheading of smaller rivers resulting in upstream movement of the confluence point. Another process which influences the upstream migration of the confluence is an increase in sinuosity of one of the channels near the confluence and then a cut-off. Aggradation in the confluence area and local avulsions of the primary channel in a multi-channel system seem to be the major process controlling the downstream movement of the confluence point. Analysis of channel morphology, hydrology and sediment budget for the study period supports our interpretations.  相似文献   

13.
长江中下游阻隔性河段作用机理   总被引:1,自引:0,他引:1  
阻隔性河段能够阻隔上游河势调整向下游的传递,对稳定河势起到关键性作用。本文以长江中下游34个单一河段为研究对象,在系统总结长江中下游河道演变规律的基础上,归纳出阻隔性河段控制要素包括:单一微弯的河道平面形态、河段中上部无挑流节点;河相系数小于4;河道纵比降大于1.2?;凹岸黏粒含量高于9.5%;床沙中值粒径大于0.158 mm等。从Navier-Stokes方程出发,推导出河湾水流动力轴线弯曲半径的表达式,进而分析了各控制要素对水流动力轴线摆动及阻隔性河段形成的作用。阻隔性河段的判别条件为:不同流量级下水流动力轴线摆动力与河道边界条件约束力的比值始终小于1;阻隔性河段作用机理在于:即便上游河势发生调整,本河段的河道边界始终能约束主流摆动幅度,归顺上游不同河势条件下的主流平面位置,为下游河道提供了相对稳定的入流条件,从而阻隔上游河势调整向下游传递。  相似文献   

14.
This article analyzes the water and suspended solid fluxes through a straightened meander of the southern branch of the Danube Delta (the St. George branch) during episodic flooding. The Mahmudia study site corresponds to a vast natural meander which was cut off in 1984–1988 by an artificial canal opened to shipping. The meander correction accelerated fluxes through the artificial canal and dramatically enhanced deposition in the former meander. After his formation, the cutoff meander acted as sediment storage locations, essentially removing channel and point bar sediments from the active sediment budget of the main channel. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. During the one-hundred-year recurrent flood in April 2006, bathymetry, flow velocity and discharge data were acquired across several sections of both natural and artificial channels with an acoustic Doppler current profiler (aDcp Workhorse Sentinel 600 kHz, Teledyne RDI) in order to investigate the distribution of the flow and sediment and his impact on sedimentation in a channelized reach and its adjacent cutoff. The contrasting hydro-sedimentary processes at work in both channels and bifurcation/confluence nodal points are analyzed from the measured flux distribution, morphological profiles and velocity and concentration patterns. In the cutoff, a diminishing of the intensity of the flow velocity (c. 50%) and of the SSC was observed correlated with the aggradation of the river bed. In the bifurcation/confluence nodal points and in the artificial canal were observed the most intensive hydrodynamic activity (high flow velocity, SSC concentration, degradation of the river bad). Both the event-scale and long-term morphological trends of the alluvial system are discussed analyzing the boundary shear stress and SSC variability. Excess boundary shear stress in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These high sediment loads play a key role in driving morphological adjustments towards equilibrium in the cutoff channel.The approach followed in this paper combines detailed episodic in-situ aDcp measurements and robust numerical 1D modeling in order to provide a practical comprehension of the relevant morphodynamical processes. The 1D model reproduces robustly the continuity of hydrodynamical variables along the streamwise axes of the two-channel network. The simulated are used in the paper for highlighting reach-scale morphological processes, at both event and long-term scales.  相似文献   

15.
师长兴 《地理科学》1997,17(1):56-62
以西辽河红山水库修建后上游河道调整为例,说明了除来水来沙等的变化所引起的河流系统调整外,存在由于河流系统可调要素之间的相互联系,相互作用,在水库水位上升后造成的溯源淤积发展中,主、支流河道、上、下游河段冲淤相互影响,槽,滩淤积相互转换,地生态系统调整的影响下,产生的可调要素的复杂多向的调整过程。  相似文献   

16.
基于对Leopold-Wolman关系修正的河床河型判别   总被引:1,自引:0,他引:1  
许炯心 《地理学报》2004,59(3):462-467
在广泛收集中国和世界上冲积河流资料的基础上,以近200条河流的大样本对著名的、国际上沿用40余年的 Leopold-Wolman关系,即用于河型判别的比降-流量关系进行了检验。结果发现,该关系不能用于包括砾石与砂质河床在内的河型判别。这是由于比降-流量关系主要反映砾石河床与砂质河床之间差异,其次才反映分汊与弯曲河型之间的差异。为此,对于Leopold-Wolman关系进行了改进,提出了以比降和河宽来判别河型的新关系。这一关系综合反映了河流在纵向上的能耗、阻力与输沙特性与在横向上的流场与环流分布特性的组合关系,因而具有更好的河型判别效果,可以用于包括砾石与砂质河床在内的河型判别。  相似文献   

17.
The upper Columbia River, British Columbia, Canada, shows typical anastomosing morphology — multiple interconnected channels that enclose floodbasins — and lateral channel stability. We analysed field data on hydraulic and sedimentary processes and show that the anastomosing morphology of the upper Columbia River is caused by sediment (bedload) transport inefficiency, in combination with very limited potential for lateral bank erosion because of very low specific stream power (≤ 2.3 W/m2) and cohesive silty banks. In a diagram of channel type in relation to flow energy and median grain size of the bed material, data points for the straight upper Columbia River channels cluster separately from the data points for braided and meandering channels. Measurements and calculations indicate that bedload transport in the anastomosing reach of the upper Columbia River decreases downstream. Because of lateral channel stability no lateral storage capacity for bedload is created. Therefore, the surplus of bedload leads to channel bed aggradation, which outpaces levee accretion and causes avulsions because of loss of channel flow capacity. This avulsion mechanism applies only to the main channel of the system, which transports 87% of the water and > 90% of the sediment in the cross-valley transect studied. Because of very low sediment transport capacity, the morphological evolution of most secondary channels is slow. Measurements and calculations indicate that much more bedload is sequestered in the relatively steep upper anastomosing reach of the upper Columbia River than in the relatively gentle lower anastomosing reach. With anastomosing morphology and related processes (e.g., crevassing) being best developed in the upper reach, this confirms the notion of upstream rather than downstream control of upper Columbia River anastomosis.  相似文献   

18.
师长兴 《地理科学》2016,36(6):895-901
对黄河内蒙古段河道大断面进行了连续4 a的测量,分析了断面泥沙冲淤与形态调整的变化过程;通过对河床形态指标变化与水沙条件的相关分析,揭示了河床调整主要的影响因素。结果显示:近4 a内不存在河槽萎缩的现象,整个河段河道存在总的冲刷降低的趋势,继承了自2004年以来该段河道以深度加大为主,河槽逐渐缓慢扩大的变化方向。整个河段平均从2011年汛后至2014年汛后,全断面冲刷了64 m2,河槽河底降低了0.16 m,河槽断面面积增加了4.4%,平均深度增加了4.9%,河槽宽度只增加了0.88%,河槽宽深比减小了4.8%。河槽冲刷和形态调整主要发生在2011年汛后至2012年汛后期间,与2012年较大的洪峰有关。分析河槽冲淤和断面形态变化与水沙条件的关系,结果显示滩唇高度、河槽过水面积、平均深度及宽深比变率与流量大小关系密切。滩唇高度、河槽过水面积、平均深度随着流量的增大而增加,宽深比随着流量的增大而减小。相反,河床断面面积和主槽宽度的变化与水沙条件的关系不显著。除了滩唇高度与平均含沙量有关外,平均含沙量和来沙系数与河床冲淤以及河槽形态变化之间关系都不显著。揭示出近年来内蒙河道主槽以垂向冲淤为主,并且流量变化控制着河槽冲淤与形态调整过程。  相似文献   

19.
师长兴 《地理科学》2000,20(5):416-421
研究黄河和滹沱河对季节河化的适应性调整,发现季节化程度较高的滹沱河下游河床断面和平面形态调整幅度不大,而河床的糙率成倍增加造成下游的小水大灾现象;黄河下游近年流量减小,不断断流,主槽淤积,虽然河槽断面形态在游荡段变得更窄深,但主槽明显变小、变窄、变高,构成下游近年出现的小水大灾现象的主要原因。  相似文献   

20.
黄河上游沙漠宽谷段高含沙支流对干流的淤堵影响   总被引:1,自引:1,他引:0  
王平  胡恬  郭秀吉  张原锋 《中国沙漠》2017,37(6):1240-1249
黄河上游沙漠宽谷段支流——十大孔兑的高含沙洪水多次淤堵黄河干流,造成灾害。基于实测水文泥沙资料和模型试验手段对孔兑高含沙洪水特点、淤堵干流过程和交汇区沙坝形态进行了研究。结果表明:孔兑洪水具有陡涨陡落、持续时间短、洪峰流量大、含沙量高、输沙量大等特点;孔兑洪水形成沙坝、淤堵黄河的过程可分为形成、相对稳定和冲刷3个阶段,支流洪水量级较大,形成的沙坝规模较大,沙坝冲刷历时也较长;孔兑高含沙水流入黄交汇区水流结构分区包括壅水区、回流区、高流速带、剪切层等组成要素,沙坝淤积形态模式包括壅水区、回流区、回流区下游淤积体和交汇区输水输沙窄槽;基于沙坝淤堵判别方法以及实测和试验数据提出了孔兑入黄交汇区沙坝判别条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号