首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The natural gases in the Upper Paleozoic strata of the Ordos basin are characterized by relatively heavy C isotope of gaseous alkanes with δ 13C1 and δ13C2 values ranging mainly from ?35‰ to ?30‰ and ?27‰ to ?22‰, respectively, high δ13C excursions (round 10) between ethane and methane and predominant methane in hydrocarbon gases with most C1/(C1-C5) ratios in excess of 0.95, suggesting an origin of coal-derived gas. The gases exhibit different carbon isotopic profiles for C1-C4 alkanes with those of the natural gases found in the Lower Paleozoic of this basin, and believed to be originated from Carboniferous-Permian coal measures. The occurrence of regionally pervasive gas accumulation is distinct in the gently southward-dipping Shanbei slope of the central basin. It is noted that molecular and isotopic composition changes of the gases in various gas reservoirs are associated with the thermal maturities of gas source rocks. The abundances and δ13C values of methane generally decline northwards and from the basin center to its margins, and the effects of hydrocarbon migration on compositional modification seem insignificant. However, C isotopes of autogenetic calcites in the vertical and lateral section of reservoirs show a regular variation, and are as a whole depleted upwards and towards basin margins. Combination with gas maturity gradient, the analysis could be considered to be a useful tool for gas migration.  相似文献   

2.
Surface adsorbed gas surveys and geo-microbiological surveys are well known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish inter-se exploration priorities amongst the identified warm areas. The thermogenic surface adsorbed gaseous hydrocarbons distribution patterns in petroliferous areas are considered to be a credible evidence for the upward migration of hydrocarbons. The present investigation aims to explore correlation between the adsorbed gas distribution pattern and microbial oxidizers in identifying the upward migration of hydrocarbons especially in the tropical black soil terrain of known petroliferous Mehsana Block of North Cambay Basin, India. A set of 135 sub-soil samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotope ratios (13Cmethane and δ13Cethane). The microbial prospecting studies showed the presence of high bacterial population for methane (5.4 × 106 cfu/gm), ethane (5.5 × 106 cfu/gm), propane (4.6 × 106 cfu/gm) and butane oxidizing bacteria (4.6 × 106 cfu/gm) in soil samples. The light gaseous hydrocarbon analysis showed that the concentration ranges of C1, C2, C3, iC4 and nC4 are 402 ppb, 135 ppb, 70 ppb, 9 ppb and 18 ppb, respectively, and the value of carbon isotope ranges of methane ?29.5 to ?43.0‰ (V-PDB) and ethane ?19.1 to ?20.9‰ (V-PDB). The existence of un-altered petroliferous microseep (δ13C, ?43‰) of catagenetic origin is observed in the study area. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/gas fields of Mehsana. Microbial surveys can independently precede other geochemical and geophysical surveys to delineate area warm with hydrocarbons, and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the Mehsana Block of Cambay Basin.  相似文献   

3.
Based on the pyrolysis products for the Jurassic low-mature coal under programmed temperature,and chemical and carbon isotopic compositions of natural gas from the Kuqa Depression, the genetic origin of natural gas was determined,and then a gas filling model was established,in combination with the geological background of the Kuqa Depression.The active energy of CH_4,C_2H_6 and C_3H_8 was gotten after the data of pyrolysis gas products under different heating rates(2℃/h and 20℃/h)were fitted by the Gas O...  相似文献   

4.
The surface sediments of two mud mounds (“Mound 11” and “Mound 12”) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded δ18Ocarbonate values ranging between 34.0 and 37.7 ‰ Vienna standard mean ocean water (VSMOW) and δ13Ccarbonate values from ?52.2 to ?14.2 ‰ Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The δ18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (δ18Oporefluid = 0 ‰ VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (δ18Oporefluid ≈5 ‰) in Mound 11. A positive correlation between δ13Ccarbonate and δ18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (δ13Cporefluid ≈0 ‰) and (2) bicarbonate which formed during the AOM (δ13Cporefluid ≈?70 ‰). Furthermore, the δ18Oporefluid composition, with values up to +4.7 ‰ Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boron-enriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (δ13CCH4 = ?38 ‰). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).  相似文献   

5.
A suite of natural gases from the northern Songliao Basin in NE China were characterized for their molecular and carbon isotopic composition. Gases from shallow reservoirs display clear geochemical evidence of alteration by biodegradation, with very high dryness (C1/C2+ > 100), high C2/C3 and i-C4/n-C4 ratios, high nitrogen content and variable carbon dioxide content. Isotopic values show wide range variations (δ13CCH4 from −79.5‰ to −45.0‰, δ13CC2H6 from −53.7‰ to −32.2‰, δ13CC3H8 from −36.5‰ to −20.1‰, δ13CnC4H10 from −32.7‰ to −24.5‰, and δ13CCO2 from −21.6‰ to +10.5‰). A variety of genetic types can be recognized on the basis of chemical and isotopic composition together with their geological occurrence. Secondary microbial gas generation was masked by primary microbial gas and the mixing of newly generated methane with thermogenic methane already in place in the reservoir can cause very complicated isotopic signatures. System openness also was considered for shallow biodegraded gas accumulations. Gases from the Daqing Anticline are relatively wet with 13C enriched methane and 13C depleted CO2, representing typically thermogenic origin. Gases within the Longhupao-Da’an Terrace have variable dryness, 13C enriched methane and variable δ13C of CO2, suggesting dominant thermogenic origin and minor secondary microbial methane augment. The Puqian-Ao’nan Uplift contains relatively dry gas with 13C depleted methane and 13C enriched CO2, typical for secondary microbial gas with a minor part of thermogenic methane. Gas accumulations in the Western Slope are very dry with low carbon dioxide concentrations. Some gases contain 13C depleted methane, ethane and propane, indicating low maturity/primary microbial origin. Recognition of varying genetic gas types in the Songliao Basin helps explain the observed dominance of gas in the shallow reservoir and could serve as an analogue for other similar shallow gas systems.  相似文献   

6.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

7.
The paper presents original authors' data on the O, H, C, S, and Sr isotopic composition of water and sediments from the basins into which the Aral Sea split after its catastrophic shoaling: Chernyshev Bay (CB), the basin of the Great Aral in the north, Lake Tshchebas (LT), and Minor Sea (MS). The data indicate that the δ18О, δD, δ13C, and δ34S of the water correlate with the mineralization (S) of the basins (as of 2014): for CB, S = 135.6‰, δ18О = 4.8 ± 0.1‰, δD = 5 ± 2‰, δ13C (dissolved inorganic carbon, DIC) = 3.5 ± 0.1‰, δ34S = 14.5‰; for LT, S = 83.8‰, δ18О = 2.0 ± 0.1‰, δD =–13.5 ± 1.5‰, δ13C = 2.0 ± 0.1‰, δ34S = 14.2‰; and for MS, S = 9.2‰, δ18О =–2.0 ± 0.1‰, δD =–29 ± 1‰, δ13C =–0.5 ± 0.5‰, δ34S = 13.1‰. The oxygen and hydrogen isotopic composition of the groundwaters are similar to those in MS and principally different from the artesian waters fed by atmospheric precipitation. The mineralization, δ13С, and δ34S of the groundwaters broadly vary, reflecting interaction with the host rocks. The average δ13С values of the shell and detrital carbonates sampled at the modern dried off zones of the basins are similar: 0.8 ± 0.8‰ for CB, 0.8 ± 1.4‰ for LT, and –0.4 ± 0.3‰ for MS. The oxygen isotopic composition of the carbonates varies much more broadly, and the average values are as follows: 34.2 ± 0.2‰ for CB, 32.0 ± 2.2‰ for LT, and 28.2 ± 0.9‰ for MS. These values correlate with the δ18O of the water of the corresponding basins. The carbonate cement of the Late Eocene sandstone of the Chengan Formation, which makes up the wave-cut terrace at CB, has anomalously low δ13С up to –38.5‰, suggesting origin near a submarine methane seep. The δ34S of the mirabilite and gypsum (11.0 to 16.6‰) from the bottom sediments and young dried off zone also decrease from CB to MS in response to increasing content of sulfates brought by the Syr-Darya River (δ34S = 9.1 to 9.9‰) and weakening sulfate reduction. The 87Sr/86Sr ratio in the water and carbonates of the Aral basins do not differ, within the analytical error, and is 0.70914 ± 0.00003 on average. This value indicate that the dominant Sr source of the Aral Sea is Mesozoic–Cenozoic carbonate rocks. The Rb–Sr systems of the silicate component of the bottom silt (which is likely dominated by eolian sediments) of MS and LT plot on the Т = 160 ± 5 Ma, I0 = 0.7091 ± 0.0001, pseudochron. The Rb–Sr systems of CB are less ordered, and the silt is likely a mixture of eolian and alluvial sediments.  相似文献   

8.
Carbohydrates are major organic components of dung and are likely to contribute substantially to increased carbon stocks in manured soils. To investigate this hypothesis, a field-scale experiment was conducted on a temperate grassland site in Devon, UK. C4 dung (bulk δ13C value ?12.6‰) was applied to a temperate grassland C3 soil (bulk δ13C value ?30.3‰) in April and the surface soil beneath cow pats sampled at seven dates over a year. Total carbohydrates were extracted as their monosaccharide components and analysed as the alditol acetates using gas chromatography. The δ13C values of the major monosaccharides glucose (?11.5 ±0.6‰), xylose (?10.4 ±0.4‰), arabinose (?10.4 ±0.5‰) and galactose (?8.3 ±1.6‰) extracted from the C4 dung via acid hydrolysis were indicative of their source. Their weighted mean δ13C value was ?10.8‰, 1.8‰ more 13C-enriched than the bulk dung value. The δ13C values of individual monosaccharides recovered by acid hydrolysis in the 0–1 cm and 1–5 cm soil horizons beneath C4 cow pats, compared with control soils determined over 372 days, allowed assessment of the extent of incorporation and fluxes of dung-derived monosaccharides. A maximum of 60% of the dung C in soil was derived from carbohydrates after 56 days, declining to around 20% after 372 days. Incorporation dynamics varied between monosaccharide species. Glucose, xylose and arabinose behaved in a similar manner because of their predominantly plant cell wall derived provenance in the dung, whilst dung-derived galactose and mannose appeared to have a microbial source in the soil. The dynamics of total dung-derived monosaccharides in the top 5 cm was comparable to incorporation and flux of bulk dung C, previously estimated using bulk δ13C values. The movement of dung-derived carbohydrates into the soil was inequivalent between the 0–1 cm and 1–5 cm horizons. The lack of a significant difference in concentration, but the evidence for the persistence of dung-derived monosaccharides in soil based on δ13C values, indicated replacement of existing pools in the soil, suggesting that the ability of this particular soil to sequester further C derived from carbohydrates was limited.  相似文献   

9.
Permian Khuff reservoirs along the east coast of Saudi Arabia and in the Arabian Gulf produce dry sour gas with highly variable nitrogen concentrations. Rough correlations between N2/CH4, CO2/CH4 and H2S/CH4 suggest that non-hydrocarbon gas abundances are controlled by thermochemical sulfate reduction (TSR). In Khuff gases judged to be unaltered by TSR, methane δ13C generally falls between −40‰ and −35‰ VPDB and carbon dioxide δ13C between −3‰ and 0‰ VPDB. As H2S/CH4 increases, methane δ13C increases to as much as −3‰ and carbon dioxide δ13C decreases to as little as −28‰. These changes are interpreted to reflect the oxidation of methane to carbon dioxide.Khuff reservoir temperatures, which locally exceed 150 °C, appear high enough to drive the reduction of sulfate by methane. Anhydrite is abundant in the Khuff and fine grained nodules are commonly rimmed with secondary calcite cement. Some cores contain abundant pyrite, sphalerite and galena. Assuming that nitrogen is inert, loss of methane by TSR should increase N2/CH4 of the residual gas and leave δ15N unaltered. δ15N of Paleozoic gases in Saudi Arabia varies from −7‰ to 1‰ vs. air and supports the TSR hypothesis. N2/CH4 in gases from stacked Khuff reservoirs varies by a factor of 19 yet the variation in δ15N (0.3–0.5‰) is trivial.Because the relative abundance of hydrogen sulfide is not a fully reliable extent of reaction parameter, we have attempted to assess the extent of TSR using plots of methane δ13C versus log(N2/CH4). Observed variations in these parameters can be fitted using simple Rayleigh models with kinetic carbon isotope fractionation factors between 0.98 and 0.99. We calculate that TSR may have destroyed more than 90% of the original methane charge in the most extreme instance. The possibility that methane may be completely destroyed by TSR has important implications for deep gas exploration and the origin of gases rich in nitrogen as well as hydrogen sulfide.  相似文献   

10.
Variations in the carbon isotope composition in gases and waters of mud volcanoes in the Taman Peninsula are studied. The δ13C values in CH4 and CO2 vary from ?59.5 to ?44.0‰ (δ13Cav = ?52.4 ± 5.4‰) and from ?17.8 to +22.8‰ (δ13Cav = +6.9 ± 9.3‰), respectively. In waters from most mud volcanoes of the peninsula, this parameter ranges from +3.3 to +33.1‰, although locally lower values are also recorded (up to ?12‰. Fractionation of carbon isotopes in the CO2-HCO3 system corresponds to the isotope equilibrium under Earth’s surface temperatures. The growth of carbon dioxide concentration in the gaseous phase and increase in the HCO3 ion concentration in their water phase is accompanied by the enrichment of the latter with the heavy 13C isotope. The δ13CTDIC value in the water-soluble carbon depends on the occurrence time of water on the Earth’s surface (exchange with atmospheric CO2, methane oxidation, precipitation of carbonates, and other processes), in addition to its primary composition. In this connection, fluctuations in δ13CTDIC values in mud volcanoes with stagnant waters may amount to 10–20‰. In the clayey pulp, concentrations of carbonate matter recalculated to CaCO3 varies from 1–4 to 36–50 wt %. The δ13C value in the latter ranges from ?3.6 to +8.4‰. Carbonate matter of the clayey pulp represents a mixture of sedimentogenic and authigenic carbonates. Therefore, it is usually unbalanced in terms of the carbon isotope composition with the water-soluble CO2 forms.  相似文献   

11.
The δ13C value of methane in sediments from a tidal freshwater site in the White Oak River Estuary, North Carolina, exhibited a relatively small, but consistent, seasonal variation (∼3‰) with isotopically heavier values occurring during the warmer months (−66.1‰ summer, −69.2‰ winter). These isotopic shifts could have resulted from changes in: (1) isotopic compositions of precursor molecules; (2) kinetic isotope effects associated with methane production; or (3) pathways of methane production. Methane production rate and isotopic data from sediment incubation experiments and field measurements were used to determine the relative contributions of these factors to the observed seasonal variations. Although changes in δ13C values of biogenic methane are typically thought to result from changes in pathways of methane production, this study showed that a significant amount (36 ± 22%) of the seasonal variations between the δ13C value of methane produced in sediment incubation experiments could be attributed to changes in the δ13C value of the ΣCO2 pool. This was due to increased methane production rates and removal of 12CO2 with increasing temperature, a prevalent feature of methanogenic systems that may account for some of the frequently observed 13C enrichment in methane during warmer months. Combining the change in the δ13C value of the ΣCO2 pool with temperature-controlled changes in fractionation (α) resulting from kinetic isotope effects accounted for (53 ± 22%) of the 13C enrichment observed during summer sediment incubation experiments. Although large pathway changes were not observed in sediment incubation experiments, the remaining differences in δ13C values could have resulted from smaller, undetectable changes in the percentage of methane production from acetate (∼14%) and/or a shift in the δ13C values of methane produced from acetate (∼4‰).  相似文献   

12.
Natural gas reservoirs in organic-rich shales in the Appalachian and Michigan basins in the United States are currently being produced via hydraulic fracturing. Stratigraphically-equivalent shales occur in the Canadian portion of the basins in southwestern Ontario with anecdotal evidence of gas shows, yet there has been no commercial shale gas production to date. To provide baseline data in the case of future environmental issues related to hydraulic fracturing and shale gas production, such as leakage of natural gas, saline water, and/or hydraulic fracturing fluids, and to evaluate hydrogeochemical controls on natural gas accumulations in shallow groundwater in general, this study investigates the origin and distribution of natural gas and brine in shallow aquifers across southwestern Ontario. An extensive geochemical database of major ion and trace metal chemistry and methane concentrations of 1010 groundwater samples from shallow, domestic wells in bedrock and overburden aquifers throughout southwestern Ontario was utilized. In addition, select wells (n = 36) were resampled for detailed dissolved gas composition, δ13C of CH4, C2, C3, and CO2, and δD of CH4. Dissolved gases in groundwater from bedrock and overburden wells were composed primarily of CH4 (29.7–98.6 mol% of total gas volume), N2 (0.8–66.2 mol%), Ar + O2 (0.2–3.4 mol%), and CO2 (0–1.2 mol%). Ethane was detected, but only in low concentrations (<0.041 mol%), and no other higher chain hydrocarbons were present, except for one well in overburden overlying the Dundee Formation, which contained 0.81 mol% ethane and 0.21 mol% propane. The highest methane concentrations (30 to >100 in situ % saturation) were found in bedrock wells completed in the Upper Devonian Kettle Point Formation, Middle Devonian Hamilton Group and Dundee Formation, and in surficial aquifers overlying these organic-rich shale-bearing formations, indicating that bedrock geology is the primary control on methane occurrences. A few (n = 40) samples showed Na–Cl–Br evidence of brine mixing with dilute groundwater, however only one of these samples contained high (>60 in situ % saturation) CH4. The relatively low δ13C values of CH4 (−89.9‰ to −57.3‰), covariance of δD values of CH4 and H2O, positive correlation between δ13C values of CH4 and CO2, and lack of higher chain hydrocarbons (C3+) in all but one dissolved gas sample indicates that the methane in groundwater throughout the study area is primarily microbial in origin. The presence or absence of alternative electron acceptors (e.g. dissolved oxygen, Fe, NO3, SO4), in addition to organic substrates, controls the occurrence of microbial CH4 in shallow aquifers. Microbial methane has likely been accumulating in the study area, since at least the Late Pleistocene to the present, as indicated by the co-variance and range of δD values of CH4 (−314‰ to −263‰) and associated groundwater (−19‰ to −6‰ δD-H2O).  相似文献   

13.
《Applied Geochemistry》1999,14(1):119-131
The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments.Isotopic analyses included δ13C, δD, 14C, and 3H on select CH4 samples and δD and δ18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had δ13C values from −79 to −82‰, typical of natural “drift gas” generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had δ13C values from −63 to −76‰, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The δD values of all the CH4 samples were quite negative ranging from −272 to −299‰. Groundwater sampled from the deeper zones also showed quite negative δD values that explained the light δD observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the till deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely ruled out.  相似文献   

14.
The age of the Katera Group, which occupies a large area in the western North Muya Range and occurs 100–150 km east of the Uakit Group, is a debatable issue. Based on geological correlations with reference sections of the Baikal Group and Patom Complex, the Katera and Uakit groups were previously considered nearly coeval units and assigned to Late Precambrian (Khomentovskii and Postnikov, 2002; Salop, 1964). This was supported partly by the Sm–Nd model datings (Rytsk et al., 2007, 2009, 2011). Finds of the Paleozoic flora substantiated the revision of age of the Uakit Group and its assignment to the Late Devonian–Early Carboniferous (Gordienko et al., 2010; Minina, 2003, 2012, 2014). We have established that Sr and C isotopic compositions in carbonates of these groups differ drastically, as suggested by their different ages. Sediments of the Nyandoni Formation (Katera Group), which contains carbonates characterized by minimum values of 87Sr/86Sr = 0.7056 and maximum values of δ13C = 4.9‰, were accumulated in the first half of Late Riphean (800–850 Ma ago), whereas the overlying Barguzin Formation (87Sr/86Srmin = 0.70715, δ13Cmax= 10.5‰) was deposited at the end of Late Riphean (700–750 Ma). Judging from the isotope data, the Nerunda Formation (Uakit Group), which contains carbonates with characteristics matching the most rigorous criteria of fitness for the chemostratigraphic correlation (Sr content up to 4390 μg/g, Mn/Sr < 0.1, δ18O = 23.0 ± 1.8‰), was deposited at the end of Vendian ~550–540 Ma ago). The sequence includes thick typical carbonate horizons with very contrast carbon isotopic compositions: the lower unit has anomalous high δ13C values (5.8 ± 1.0‰); the upper unit, by anomalous low δ13C values (–5.2 ± 0.5‰]). Their Sr isotopic composition is relatively homogeneous (87Sr/86Sr = 0.7084 ± 0.0001) that is typical of the Late Vendian ocean. The S isotopic composition of pyrites from the Nyandoni Formation (Katera Group) (δ34S = 14.1 ± 6.8‰) and pyrites from the Mukhtunny Formation (Uakit Group) (δ34S = 0.7 ± 1.4‰) does not contradict the C and Sr isotopic stratigraphic data.  相似文献   

15.
塔里木盆地西部阿克莫木气田形成初探   总被引:6,自引:2,他引:6       下载免费PDF全文
塔里木盆地西部阿克莫木气田天然气为非烃组份含量较高的干气,干燥系数高达99.7%;天然气δ13C1和δ13C2值明显偏重,δ13C1为- 25.2‰~-21.9,δ13C2为-21.2~-20.2‰,如果按传统的观点该天然气应为过成熟煤成气。但是综合气源对比研究表明阿克莫木气田天然气主要源自石炭系Ⅱ型烃源岩,成藏过程研究表明该气田主要聚集了石炭系烃源岩在Ro为1.5%~1.8%之后生成的天然气,具有晚期阶段聚气的特征,这是造成阿克1井天然气组份很“干”、碳同位素很重的主要原因。  相似文献   

16.
Variability in baseline groundwater methane concentrations and isotopic compositions was assessed while comparing free and dissolved gas sampling approaches for a groundwater monitoring well in Alberta (Canada) over an 8-year period. Methane concentrations in dissolved gas samples (n?=?12) were on average 4,380?±?2,452 μg/L, yielding a coefficient of variation (CV) >50 %. Methane concentrations in free gas samples (n?=?12) were on average 228,756?±?62,498 ppm by volume, yielding a CV of 27 %. Quantification of combined sampling, sample handling and analytical uncertainties was assessed via triplicate sampling (CV of 19 % and 12 % for free gas and dissolved gas methane concentrations, respectively). Free and dissolved gas samples yielded comparable methane concentration patterns and there was evidence that sampling operations and pumping rates had a marked influence on the obtained methane concentrations in free gas. δ13CCH4 and δ2HCH4 values of methane were essentially constant (?78.6?±?1.3 and ?300?±?3?‰, respectively) throughout the observation period, suggesting that methane was derived from the same biogenic source irrespective of methane concentration variations. The isotopic composition of methane constitutes a robust and highly valuable baseline parameter and increasing δ13CCH4 and δ2HCH4 values during repeat sampling may indicate influx of thermogenic methane. Careful sampling and analytical procedures with identical and repeatable approaches are required in baseline-monitoring programs to generate methane concentration and isotope data for groundwater that can be reliably compared to repeat measurements once potential impact from oil and gas development, for example, may occur.  相似文献   

17.
It is shown that the gas and water phases of the thermal nitrogen–methane waters in the Talysh fold zone of the Lesser Caucasus mountain system contain helium and strontium with mantle isotope signatures (3Не/4Не from 200 × 10–8 to 401 × 10–8 and 87Sr/86Sr from 0.70490 to 0.70562). At the same time, clear signs of the mantle component in other gases (nitrogen, methane, and carbon dioxide) are absent. The δ15N value in nitrogen varies from +0.3 to +1.7‰, methane is mainly characterized by δ13C from–57.4 to–38.0‰, while δ13C(CО2) varies from–24.4 to–11.3‰. An increase of the CО2 content is accompanied by the decrease of δ13C in CО2, against the background of increasing SO4 content in the salt composition of waters. This indicates a microbial nature of CO2 in the studied gases. Thus, the presence of mantle helium and strontium in the thermal waters is likely related to their leaching from the Pleogene–Neogene host volcanic rocks. The studies of the oxygen and hydrogen isotope composition in water revealed quite different mechanisms for the formation of cold and thermal waters of the region. The cold waters are mainly fed by local infiltration, whereas the feeding of thermal nitrogen–methane waters is strongly provided by transit atmogenic waters (>50%), which are formed in the mountain ranges at altitudes no less than 1600 m and spaced at 20–40 km or more from the thermal discharge sites.  相似文献   

18.
The stable isotope values of carbon (δ13Cmethane) and hydrogen (δ2Hmethane) from methane molecules trapped in gas hydrates are useful for differentiation of methane from microbial and thermal origins, providing valuable information during hydrocarbon exploration. Recent studies have reported catalysis of methane hydrates when smectite clays and biosurfactants are present in hydrate-hosting sediments, but catalytic influences on the values of δ13Cmethane and δ2Hmethane are not well documented. In this study, pressure vessel methane hydrates were formed from solutions in contact with smectite clays (montmorillonite and nontronite) and biosurfactants (rhamnolipids and surfactin). Experiments show less than 1‰ differences in values of δ13Cmethane between free and encaged molecules and up to 10‰ variations in values of δ2Hmethane between free and encaged molecules. Notably, methane consumption increased in methane hydrates formed from solutions containing biosurfactants and biosurfactant–smectite mixtures. Results presented here indicate that a hydrate formed in the presence of smectite clays and biosurfactants are characterized by small shifts in free and encaged values of δ13Cmethane and δ2Hmethane and do not complicate interpretation of gas origin. In contrast, methane consumption in hydrates formed under the catalytic effect of smectite clays and biosurfactants modifies gas wetness, obscures gas origin and complicates interpretation of thermal maturity.  相似文献   

19.
The stable carbon isotopic compositions of light hydrocarbon gases adsorbed in near-surface soil and sediments from the Saurashtra basin were characterized for their origin and maturity. Saurashtra is considered geologically prospective for oil and gas reserves; however, a major part of the basin is covered by the Deccan Traps, hindering the exploration of Mesozoic hydrocarbon targets. Surface geochemical prospecting, based on micro-seepage of hydrocarbons from subsurface accumulations, could be advantageous in such areas. In light of this, 150 soil samples were collected from the northwestern part of Saurashtra, around the Jamnagar area, where a thick sedimentary sequence of about 2–3 km exists under 1–1.5 km of Deccan basalt. The concentration of acid desorbed alkane gases from soil samples was found to vary (in ppb) as: methane (C1) = 3–518; ethane (C2) = 0–430; propane (C3) = 0–331; i-butane (iC4) = 0–297; n-butane (nC4) = 2–116; i-pentane (iC5) = 0–31 and n-pentane (nC5) = 0–23, respectively.Fifteen samples with high concentrations of alkane gases were measured for their δ13C1; δ13C2 and δ13C3 compositions using gas chromatography–combustion-isotope ratio mass spectrometry (GC–C-IRMS). The values for methane varied from ? 27 to ? 45.4‰, ethane from ? 20.9 to ? 27.6‰, and propane from ? 20.4 to ? 29.1‰ versus the Vienna PeeDee Belemnite (VPDB). The carbon isotope ratio distribution pattern represents isotopic characteristics pertaining to hydrocarbon gases derived from thermogenic sources. Comparisons of carbon isotopic signatures and compositional variations with the standard carbon isotopic models suggest that hydrocarbon gases found in the shallow depths of the study area are not of bacterial origin but are formed thermally from deeply buried organic matter, likely to be mainly a terrestrial source rock with a partial contribution from a marine source. These gases may have migrated to the near-surface environment, where they represent an admixture of thermally generated hydrocarbon gases from mixed sources and maturity. The maturity scale (δ13C versus Log Ro %) applied to the surface sediment samples of the Jamnagar area indicated the source material to be capable of generating oil and gas. The detection of thermogenic alkane gases in near-surface sediments offers the possibility of hydrocarbons at depth in Saurashtra.  相似文献   

20.
The Patom Complex is characterized by a unique association of carbonate rocks with ultralow (≤8‰) and ultrahigh (>6‰) δ13C values. The thickness, stable isotopic composition along the strike, and lithological and geochemical parameters suggest that these rocks could not form as a result of short-term local events or epigenetic processes. Ultralow δ13C values (less than ?8‰) in carbonate rocks of the Zhuya Group, which substantially exceed all the known negative C isotope anomalies in thickness (up to 1000 m) and amplitude (δ13C = ?10 ± 2‰), point to sedimentation under conditions of extreme “contamination” of water column by oxidized isotopically light organic (hereafter, light) carbon. The decisive role in this contamination belonged to melting and oxidation of huge volumes of methane hydrates accumulated in sediments during the powerful and prolonged Early Vendian glacial epoch. The accumulation of δ13C-depleted carbonates was preceded by the deposition of carbonates with anomalously high δ13C values. These carbonates formed at high rates of the burial of organic matter and methane in sediments during periods when the sedimentation basin consumed carbon dioxide from the atmosphere and organic carbon was conserved in sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号