首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Glaciations had a profound impact on the global sea-level and particularly on the Arctic environments. One of the key questions related to this topic is, how did the discharge of the Siberian Ob and Yenisei rivers interact with a proximal ice sheet? In order to answer this question high-resolution (1–12 kHz), shallow-penetration seismic profiles were collected on the passive continental margin of the Kara Sea Shelf to study the paleo-drainage pattern of the Ob and Yenisei rivers. Both rivers incised into the recent shelf, leaving filled and unfilled river channels and river canyons/valleys connecting to a complex paleo-drainage network.These channels have been subaerially formed during a regressive phase of the global sea-level during the Last Glacial Maximum. Beyond recent shelf depths of 120 m particle transport is manifested in submarine channel–levee complexes acting as conveyor for fluvial-derived fines. In the NE area, uniform draping sediments are observed. Major morphology determining factors are (1) sea-level fluctuations and (2) LGM ice sheet influence. Most individual channels show geometries typical for meandering rivers and appear to be an order of magnitude larger than recent channel profiles of gauge stations on land.The Yenisei paleo-channels have larger dimensions than the Ob examples and could be originated by additional water release during the melt of LGM Putoran ice masses.Asymmetrical submarine channel–levee complexes with channel depths of 60 m and more developed, in some places bordered by glacially dominated morphology, implying deflection by the LGM ice masses. A total of more than 12,000 km of acoustic profiles reveal no evidence for an ice-dammed lake of greater areal extent postulated by several workers. Furthermore, the existence of the channel–levee complexes is indicative of unhindered sediment flow to the north. Channels situated on the shelf above 120-m water depth exhibit no phases of ponding and or infill during sea-level lowstand. These findings denote the non-existence of an ice sheet on large areas of the Kara Sea shelf.  相似文献   

2.
Recent observations showing substantial diurnal changes in velocities of glaciers flowing into the ocean, measured at locations far inland of glacier grounding lines, add fuel to the ongoing debate concerning the ability of glaciers to transmit longitudinal-stress perturbations over large distances. Resolution of this debate has major implications for the prediction of glacier mass balance, because it determines how rapidly a glacier can respond dynamically to changes such as weakening or removal of an ice shelf. Current IPCC assessment of sea-level rise takes little account of such changes, on the assumption that dynamic responses would be too slow to have any appreciable effect on ice discharge fluxes. However, this assumption must be questioned in view of observations showing massive increases in glacier velocities following removal of parts of the Larsen Ice Shelf, Antarctica, and of others showing diurnal velocity changes apparently linked to the tides.Here, I use a simple force-perturbation model to calculate the response of glacier strain rates to tidal rise and fall, assuming associated longitudinal-force perturbations are transmitted swiftly far inland of the glacier grounding line. Results show reasonable agreement with observations from an Alaskan glacier, where the velocity changes extended only a short distance up-glacier. However, for larger Antarctic glaciers, big velocity changes extending far upstream cannot be explained by this mechanism, unless ice-shelf “back forces” change substantially with the tides.Additional insight will require continuous measurement of velocity and strain-rate profiles along flow lines of glaciers and ice shelves. An example is suggested, involving continuous GPS measurements at a series of locations along the centre line of Glaciar San Rafael, Chile, extending from near the calving front to perhaps 20 km inland. Tidal range here is about ± 0.8 m, which should be sufficient to cause a variation in ice-front velocity of ± 2 cm h− 1 about its average value of 75 cm h− 1, assuming local seawater depth of 150 m and glacier thickness of 200–400 m.  相似文献   

3.
A digital 3D-reconstruction of the Baltic Ice Lake's (BIL) configuration during the termination of the Younger Dryas cold phase (ca. 11 700 cal. yr BP) was compiled using a combined bathymetric–topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The bathymetric–topographic DTM, assembled from publicly available data sets, has a resolution of 500 × 500 m on Lambert Azimuthal Equal Area projection allowing area and volume calculations of the BIL to be made with an unprecedented accuracy. When the damming Scandinavian ice sheet margin eventually retreated north of Mount Billingen, the high point in terrain of Southern central Sweden bordering to lower terrain further to the north, the BIL was catastrophically drained resulting in a 25 m drop of the lake level. With our digital reconstruction, we estimate that approximately 7800 km3 of water drained during this event and that the ice dammed lake area was reduced by ca. 18%. Building on previous results suggesting drainage over 1 to 2 years, our lake volume calculations imply that the freshwater flux to the contemporaneous sea in the west was between about 0.12 and 0.25 Sv. The BIL reconstruction provides new detailed information on the paleogeography in the area of southern Scandinavia, both before and after the drainage event, with implications for interpretations of geological records concerning the post-glacial environmental development.  相似文献   

4.
Seasonal snow covers the tundra surface for up to nine months of each year on the Alaskan North Slope. Variations in the snow thickness could strongly influence the thermal regime of the underlying soil and permafrost, and the surface energy balance. The impacts of increases and decreases in the tundra snow thickness on the thermal regime of snow surface, active layer, and permafrost, and on the conductive heat flow to the atmosphere were investigated numerically, by using an improved surface energy balance approach based one-dimensional heat transfer model. The baseline inputs for the numerical model are mean daily meteorological data and surface albedos collected at Barrow, Alaska from 1995 through 1999. Based on a study for the long-term mean daily maximum and minimum snow thickness distributions at Barrow in the snow season of 1948 through 1997, a snow thickness factor was defined and five simulation cases were run for the snow season of 1997–1998 by changing the snow thickness factor. The modeled results indicate that changes in snow thickness have significant impacts on ground thermal regimes and conductive heat flow to the atmosphere. Decreasing the snow thickness by 50% led to the maximum ground temperature decrease of 1.48 °C at 0.29 m depth, and 0.72 °C at 3.0 m depth; the magnitude of the mean conductive heat flow to the atmosphere for December increase of 4.3 Wm− 2. Increasing the snow thickness by 50% resulted in the maximum ground temperature increase of 1.44 °C at 0.29 m depth, and 0.66 °C at 3.0 m depth; the magnitude of the mean conductive heat flow to the atmosphere for December decrease of 1.57 W m− 2. On an annual basis, variation in the snow thickness by 50%, the ground temperature variations of more than 0.25 °C occurred as deep as 8.0 m below the ground surface. The modeled results also show that changes in snow thickness have a relatively small influence on the snow surface temperature.  相似文献   

5.
Permafrost warming in the Tien Shan Mountains, Central Asia   总被引:4,自引:0,他引:4  
The general features of alpine permafrost such as spatial distribution, temperatures, ice content, permafrost and active-layer thickness within the Tien Shan Mountains, Central Asia are described. The modern thermal state of permafrost reflects climatic processes during the twentieth century when the average rise in mean annual air temperature was 0.006–0.032 °C/yr for the different parts of the Tien Shan. Geothermal observations during the last 30 yr indicate an increase in permafrost temperatures from 0.3 °C up to 0.6 °C. At the same time, the average active-layer thickness increased by 23% in comparison to the early 1970s. The long-term records of air temperature and snow cover from the Tien Shan's high-mountain weather stations allow reconstruction of the thermal state of permafrost dynamics during the last century. The modeling estimation shows that the altitudinal lower boundary of permafrost distribution has shifted by about 150–200 m upward during the twentieth century. During the same period, the area of permafrost distribution within two river basins in the Northern Tien Shan decreased approximately by 18%. Both geothermal observations and modeling indicate more favorable conditions for permafrost occurrences and preservation in the coarse blocky material, where the ice-rich permafrost could still be stable even when the mean annual air temperatures exceeds 0 °C.  相似文献   

6.
The depositional and erosional history of the Lapis Tiburtinus endogenic travertine located circa 25 km to the east of Rome, Central Italy, near the Colli Albani quiescent volcano, is interpreted through three-dimensional stratigraphy and uranium-series geochronology. Analyses of large exposures located in active quarries and of cores obtained from 114 industrial wells reveal that the travertine deposit is about 20 km2 wide and 60 m thick on average. The travertine thickness is over 85 m toward its western N–S-elongated side, where thermal springs and large sinkholes occur aligned over a seismically-active N-striking fault. The travertine age was calculated using the U/Th isochron method. Results constrain the onset and conclusion of travertine deposition at about 115 and 30 ka, respectively. The three-dimensional study of the travertine shows that this deposit is characterized by a succession of depositional benches grown in an aggradational fashion. The benches are separated by five main erosional surfaces, which are associated with paleosols, conglomerates, and karstic features. This evidence shows that the travertine evolution was mostly controlled by water table fluctuations. Chronological correlations between travertine evolution and paleoclimate indicators suggest that the travertine deposition was partly modulated by climate conditions. Other influencing factors may have been fault-related deformation and volcanic events.  相似文献   

7.
Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59′05″S, 73°31′12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes (18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO42−) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a− 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a− 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a− 1 from fall 1998 to fall 1999 and 8.6 m a− 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.  相似文献   

8.
The dynamic climate in the Northern Hemisphere during the early Holocene could be expected to have impacted on the global carbon cycle. Ice core studies however, show little variability in atmospheric CO2. Resolving any possible centennial to decadal CO2 changes is limited by gas diffusion through the firn layer during bubble enclosure. Here we apply the inverse relationship between stomatal index (measured on sub-fossil leaves) and atmospheric CO2 to complement ice core records between 11,230 and 10,330 cal. yr BP. High-resolution sampling and radiocarbon dating of lake sediments from the Faroe Islands reconstruct a distinct CO2 decrease centred on ca. 11,050 cal. yr BP, a consistent and steady decline between ca. 10,900 and 10,600 cal. yr BP and an increased instability after ca. 10,550 cal. yr BP. The earliest decline lasting ca. 150 yr is probably associated with the Preboreal Oscillation, an abrupt climatic cooling affecting much of the Northern Hemisphere a few hundred years after the end of the Younger Dryas. In the absence of known global climatic instability, the decline to ca. 10,600 cal. yr BP is possibly due to expanding vegetation in the Northern Hemisphere. The increasing instability in CO2 after 10,600 cal. yr BP occurs during a period of increasing cooling of surface waters in the North Atlantic and some increased variability in proxy climate indicators in the region.The reconstructed CO2 changes also show a distinct similarity to indicators of changing solar activity. This may suggest that at least the Northern Hemisphere was particularly sensitive to changes in solar activity during this time and that atmospheric CO2 concentrations fluctuated via rapid responses in climate.  相似文献   

9.
Sediment samples were collected from a borehole in the northern South China Sea with the depositional age back to 400 ka BP, for grain size and geochemical analyses to constrain the sediment provenance and paleoenvironmental variability. Geochemical indices of Th/Sc, Ti/Nb and Th/Nb ratios suggest that the Zhujiang (Pearl River) was the main provenance of the inner shelf sediments of Hong Kong deposited during interglacial periods, whereas the locally-derived granitoids contributed significantly to the exposed inner shelf through the incision of local streams during glacial periods. Furthermore, the influence of the Zhujiang-derived sediments on the inner shelf of Hong Kong varied spatially and temporally with different sea-level changes during the past 400 kyr. Chemical weathering indices suggest hot and wet climate conditions were dominant in South China during interglacial periods of marine isotope stages (MIS) 7, 9 and 11 whereas a dry and cold paleoclimate prevailed during glacial periods of MIS 6 which accounts for weak chemical weathering and coarse-grained deposition on the inner shelf. The Holocene and last interglacial period did not see more intense chemical weathering in the Zhujiang drainage basin than other interglacial periods. Although the high resolution paleoenvironmental changes can not be easily reconstructed due to ubiquitous unconformity in the sedimentary strata and weak age controls compared to the deep sea sedimentation, the present study sheds new lights on the understanding of the transport process of the Zhujiang sediment in the deep ocean and provides a teleconnection of East Asian palaeomonsoon activity between South China, the inland and open sea areas.  相似文献   

10.
Because the Khumbu Himal of the Nepal Himalayas lacks long-term climate records from weather stations, mountain permafrost degradation serves as an important indicator of climate warming. In 1973, the permafrost lower limit was estimated to be 5200–5300 m above sea level (ASL) on southern-aspect slopes in this region. Using ground-temperature measurements, we examined the mountain permafrost lower limit on slopes with the same aspect in 2004. The results indicate that the permafrost lower limit was 5400–5500 m ASL in 2004. The permafrost lower limit was estimated to be 5400 to 5500 m on slopes with a southern aspect in the Khumbu Himal in 1991 using seismic reflection soundings. Thus, it is possible that the permafrost lower limit has risen 100–300 m between 1973 and 1991, followed by a stable limit of 5400 to 5500 m over the last decade. An increase in mean annual air temperature of approximately 0.2 to 0.4 °C from the 1970s to the 1990s has indicated a rise in the permafrost lower limit of 40 to 80 m at the Tibetan Plateau. The rise in the mountain permafrost lower limit in the Khumbu Himal exceeds that of the Tibetan Plateau, suggesting the possibility of greater climate warming in the Khumbu Himal.  相似文献   

11.
Uranium series dating has been carried out on secondary uranyl silicate minerals formed during sub-glacial and post-glacial weathering of Proterozoic uraninite ores in south west Finland. The samples were obtained from two sites adjacent to the Salpauselkä III ice marginal formation and cover a range of depths, from the surface to more than 60 m. Measured ages fall into three distinct groups, 70–100 ka, 28–36 ka and < 2500 yr. The youngest set is associated with surface exposures and the crystals display clear evidence of re-working. The most likely trigger for uranium release at depths below the surface weathering zone is intrusion of oxidising glacial melt water. The latter is often characterised by very high discharge rates along channels, which close once the overpressure generated at the ice margin is released. There is excellent correspondence between the two Finnish sites and published data for similar deposits over a large area of southern and central Sweden. None of the seventy samples analysed gave a U–Th age between 40 and 70 ka; a second hiatus is apparent at 20 ka, coinciding with the Last Glacial Maximum. Thus, the process responsible for uranyl silicate formation was halted for significant periods, owing to a change in geochemical conditions or the hydrogeological regime. These data support the presence of interstadial conditions during the Early and Middle Weichselian since in the absence of major climatic perturbations the uranium phases at depth are stable. When viewed in conjunction with proxy data from mammoth remains it would appear that the region was ice-free prior to the Last Glacial Maximum.  相似文献   

12.
Late Glacial to Holocene ice retreat was investigated along a 120 km long fjord system, reaching from Gran Campo Nevado (GCN) to Seno Skyring in the southernmost Andes (53°S). The aim was to improve the knowledge on regional and global control on glacier recession with special emphasis on latitudinal shifting of the westerlies. The timing of ice retreat was derived from peat and sediment cores, using mineralogical and chemical characteristics, and pollen as proxies. Stratigraphy was based on 14C-AMS ages and tephrochronology. The ice retreat of the Seno Skyring Glacier lobe is marked by an ice rafted debris layer which was formed around 18,300 to 17,500 cal. yr B.P. Subsequently, fast glacier retreat occurred until around 15,000 to 14,000 cal. yr B.P. during which around 84% of Skyring Glacier were lost. This fast recession was probably also triggered by an increase of the Equilibrium Line Altitude (ELA) from 200 to 300 m. Subsequently, the ice surface was lowered below the ELA in an area that previously made up more than 50% of the accumulation area. Much slower retreat and glacier fluctuations of limited extent in the fjord channel system northeast of GCN occurred between around 14,000 to 11,000 cal. yr B.P. during both the Antarctic Cold Reversal and the Younger Dryas. This slow down of retreat indicates a decline in the general warming trend and/or increased precipitation, due to a southward migration of the westerlies. After around 11,000 cal. yr B.P. pollen distribution shows evolved Magellanic Rainforest and similar climate as at present, which lasted throughout most of the Holocene. Only Late Neoglacial moraine systems were formed in the period 1220–1460 AD, and subsequently in the 1620s AD, and between 1870 and 1910 AD. The results indicate that the Gran Campo Nevado ice cap has reacted more sensitive and partly distinct to climate change, compared to the Patagonian Ice Field.  相似文献   

13.
Airborne laser altimetry survey of Glaciar Tyndall, Patagonia   总被引:1,自引:1,他引:0  
The first airborne laser altimetry measurements of a glacier in South America are presented. Data were collected in November of 2001 over Glaciar Tyndall, Torres del Paine National Park, Chilean Patagonia, onboard a Twin Otter airplane of the Chilean Air Force. A laser scanner with a rotating polygon-mirror system together with an Inertial Navigation System (INS) were fixed to the floor of the aircraft, and used in combination with two dual-frequency GPS receivers. Together, the laser–INS–GPS system had a nominal accuracy of 30 cm after data processing. On November 23rd, a total of 235 km were flown over the ablation area of Glaciar Tyndall, with 5 longitudinal tracks with a mean swath width of 300 m, which results in a point spacing of approximately 2 m both along and across track. A digital elevation model (DEM) generated using the laser altimetry data was compared with a DEM produced from a 1975 map (1:50,000 scale — Instituto Geográfico Militar (IGM), Chile). A mean thinning of − 3.1 ± 1.0 m a− 1 was calculated for the ablation area of Glaciar Tyndall, with a maximum value of − 7.7 ± 1.0 m a− 1 at the calving front at 50 m a.s.l. and minimum values of between − 1.0 and − 2.0 ± 1.0 m a− 1 at altitudes close to the equilibrium line altitude (900 m a.s.l.). The thinning rates derived from the airborne survey were similar to the results obtained by means of ground survey carried out at  600 m of altitude on Glaciar Tyndall between 1975 and 2002, yielding a mean thinning of − 3.2 m a− 1 [Raymond, C., Neumann, T.A., Rignot, E., Echelmeyer, K.A., Rivera, A., Casassa, G., 2005. Retreat of Tyndall Glacier, Patagonia, over the last half century. Journal of Glaciology 173 (51), 239–247.]. A good agreement was also found between ice elevation changes measured with laser data and previous results obtained with Shuttle Radar Topography Mission (SRTM) data. We conclude that airborne laser altimetry is an effective means for accurately detecting glacier elevation changes in Patagonia, where an ice thinning acceleration trend has been observed during recent years, presumably in response to warming and possibly also drier conditions.  相似文献   

14.
Climatic changes of the 20th century have altered the water cycle in the Andean basins of central Argentina. The most visible change is seen in the mountain glaciers, with loss of part of their mass due to decreasing thickness and a substantial recession in the last 100 years. This paper briefly describes the results of glacier mass balance research since 1979 in the Piloto Glacier at the Cajón del Rubio, in the headwaters of Las Cuevas River, presenting new results for the period 1997–2003. Very large interannual variability of net annual specific balance is evident, due largely to variations in winter snow accumulation, with a maximum net annual value of + 151 cm w.e. and a minimum value of - 230 cm w.e. Wet El Niño years are normally associated with positive net annual balances, while dry La Niña years generally result in negative balances. Within the 24-year period, 67% of the years show negative net annual specific balances, with a cumulative mass balance loss of - 10.50 m water equivalent (w.e.). Except for exceptions normally related to El Niño events, a general decreasing trend of winter snow accumulation is evident in the record, particularly after 1992, which has a strong effect in the overall negative mass balance values. The glacier contribution to Las Cuevas River runoff is analysed based on the Punta de Vacas River gauge station for a hypothetical year without snow precipitation (YWSP), when the snowmelt component is zero. Extremely dry years similar to a YWSP have occurred in 1968–1969, 1969–1970 and 1996–1997. The Punta de Vacas gauge station is located 62 km downstream from Piloto Glacier, and the basin contains 3.0% of uncovered glacier ice and 3.7% of debris-covered ice. The total glacier contribution to Las Cuevas River discharge is calculated as 82 ± 8% during extremely dry years. If glacier wastage continues at the present trend as observed during the last 2 decades, it will severely affect the water resources in the arid central Andes of Argentina.  相似文献   

15.
The relationship between the Ricker Hills Tillite (RHT), which represents the northernmost outcrop of lithified continental glacial deposits in Victoria Land, is discussed with respect to the glacial landscape assemblage of the Ricker Hills, a nunatak at the internal border of the Transantarctic Mountains. A warm-based ice sheet deposited the tillite and induced syn- to post-depositional glacial deformation under wet conditions both of the tillite and of the bedrock. The thickness of the ice sheet on the nunatak is estimated to have been 600 m, at most. The area had been deeply eroded before deposition of the RHT as documented by the low elevation of tillite outcrops located in overdeepened depressions of the nunatak. Micropaleontological analysis evidences only the presence of Permian to Jurassic palynomorphs. X-ray diffraction and SEM–EDS analyses of clay minerals in the RHT indicate continental chemical weathering under wet conditions after the RHT deposition. As documented by clay mineral assemblage variation in CRP drillholes, the progressive cooling of the Antarctic continent allowed chemical weathering in “warm” conditions until the Late Oligocene period in southern Victoria Land, leading to a chronological constrain for RHT deposition. Conservatively estimating the sea level to have been between the tillite outcrops and the erosional trimline limiting horns in the Ricker Hills, at the time of RHT deposition, we suggest that the maximum uplift of the area would not have exceeded 900–1500 m since at least Late Oligocene.  相似文献   

16.
An estimate of the glacier ice volume in the Swiss Alps   总被引:1,自引:0,他引:1  
Changes in glacier volume are important for questions linked to sea-level rise, water resource management, and tourism industry. With the ongoing climate warming, the retreat of mountain glaciers is a major concern. Predictions of glacier changes, necessarily need the present ice volume as initial condition, and for transient modelling, the ice thickness distribution has to be known. In this paper, a method based on mass conservation and principles of ice flow dynamics is applied to 62 glaciers located in the Swiss Alps for estimating their ice thickness distribution. All available direct ice thickness measurements are integrated. The ice volumes are referenced to the year 1999 by means of a mass balance time series. The results are used to calibrate a volume–area scaling relation, and the coefficients obtained show good agreement with values reported in the literature. We estimate the total ice volume present in the Swiss Alps in the year 1999 to be 74 ± 9 km3. About 12% of this volume was lost between 1999 and 2008, whereas the extraordinarily warm summer 2003 caused a volume loss of about 3.5%.  相似文献   

17.
Hielo Patagónico Sur (HPS), an icefield in Southern Patagonia, is the largest temperate ice mass in the southern hemisphere. Despite continued research efforts during the last decade many glaciological variables, especially mass balance, are still poorly known. This is partly because access to the icefield is difficult due to remoteness and persistent harsh weather conditions. Therefore, remote sensing appears to be a more suitable tool for the acquisition of data. In this work we present a remote sensing study of snow zonation on HPS using Landsat 5 Thematic Mapper data acquired on 12 March 2001. By using image processing and classification techniques, proved to be useful in other glaciated regions, we map for the first time the extent and occurrence of major snow zones on the whole HPS. We separate between two classes of ice and three classes of snow. Ice facies are classified as bare or debris (i.e. dirt) covered ice, covering 2454 km2 and 777 km2 respectively, or 18.4% and 5.8% of the icefield on the day of image acquisition. Snow types are classified according to spectral differences in the images, following the glacier facies concept. Two of the three snow cover types are interpreted to represent differences in snow grain size within a fairly homogeneous snow pack whereas the third one is interpreted to represent the slush zone. A first order altitudinal control on the distribution of these snow facies is evident. In addition, our results show that snow accumulation on HPS is markedly controlled by the interaction of strong west–northwest snow-bearing winds and the rough mountainous terrain. In order of decreasing altitude we find that the two snow facies and the slush facies occupy 3819 km2, 3292 km2 and 2295 km2 respectively, or 28.6%, 24.6% and 17.2% of the icefield, on the day of image acquisition. Estimates of equilibrium line altitude using our results yield values of 800–900 m above sea level for the western side and 1500–1600 m above sea level for the eastern side, with an accumulation area ratio of 0.74.  相似文献   

18.
Most of the East European Craton lacks surface relief; however, the amplitude of topography at the top of the basement exceeds 20 km, the amplitude of topography undulations at the crustal base reaches almost 30 km with an amazing amplitude of ca. 50 km in variation in the thickness of the crystalline crust, and the amplitude of topography variations at the lithosphere–asthenosphere boundary exceeds 200 km. This paper examines the relative contributions of the crust, the subcrustal lithosphere, and the dynamic support of the sublithospheric mantle to maintain surface topography, using regional seismic data on the structure of the crystalline crust and the sedimentary cover, and thermal and large-scale P- and S-wave seismic tomography data on the structure of the lithospheric mantle. For the Precambrian lithosphere, an analysis of Vp/Vs ratio at 100, 150, 200, and 250 km depths does not show any age-dependence, suggesting that while Vp/Vs ratio can be effectively used to outline the cratonic margins, it is not sensitive to compositional variations within the cratonic lithosphere.Statistical analysis of age-dependence of velocity, density, and thermal structure of the continental crust and subcrustal lithosphere in the study area (0–62E, 45–72N) allows to link lithospheric structure with the tectonic evolution of the region since the Archean. Crustal thickness decreases systematically with age from 42–44 km in regions older than 1.6 Ga to 37–40 km in the Paleozoic–Mesoproterozoic structures, and to ca. 31 km in the Meso-Cenozoic regions. However, the isostatic contribution of the crust to the surface topography of the East European Craton is almost independent of age (ca. 4.5 km) due to an interplay of age-dependent crustal and sedimentary thicknesses and lithospheric temperatures.On the contrary, the contribution of the subcrustal lithosphere to the surface topography strongly depends on the age, being slightly positive (+ 0.3 + 0.7 km) for the regions older than 1.6 Ga and negative (− 0.5–1 km) for younger structures. This leads to age-dependent variations in the residual topography, i.e. the topography which cannot be explained by the assumed thermal and density structure of the lithosphere, and which can (at least partly) originate from the dynamic component caused by the mantle flow. Positive dynamic topography at the cratonic margins, which exceeds 2 km in the Norwegian Caledonides and in the Urals, clearly links their on-going uplift with deep mantle processes. Negative residual topography beneath the Archean-Paleoproterozoic cratons (− 1–2 km) indicates either a smaller density deficit (ca. 0.9%) in their subcrustal lithosphere than predicted by global petrologic data on mantle-derived xenoliths or the presence of a strong convective downwelling in the mantle. Such mantle downflows can effectively divert heat from the lithospheric base, leading to a long-term survival of the Archean-Paleoproterozoic lithosphere.  相似文献   

19.
Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of −10 to 50 mm in the vertical and predicted horizontal displacements of 0–10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north–northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes (ML≥2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate.During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes (Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake (Ms=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass change during the 1899–1979 time period to calculate the change in the fault stability margin (FSM) prior to the 1979 St. Elias earthquake. Our results suggest that a cumulative decrease in the fault stability margin at seismogenic depths, due to ice wastage over 80 years, was large, up to 2 MPa. Ice wastage would promote thrust faulting in events such as the 1979 earthquake and subsequent aftershocks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号