首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文简要介绍了在活动星系核 (Seyfert星系 )统一模型研究领域的研究结果。最近的研究结果表明Seyfert1和 2型星系的差别不仅仅是视线方向上的不同 ,星系的环境、演化、星系核的活动等在活动星系核的统一模型中都起着非常重要的作用。最新的观测和理论研究发现Seyfert 2型星系中宽线区存在和星系核的活动密切相关。在一些核活动较低的Seyfert 2型星系中 ,宽线区很可能不存在 ,即可能存在所谓的“真正”的Seyfert 2型星系。  相似文献   

2.
星暴和活动星系核之间的联系是活动星系研究领域最重要、最活跃的研究课题之一。Seyfert星系由于距离较近、数目较多和相对低的核活动,已成为研究星暴和活动星系核之间联系的理想天体。综述了活动星系核中存在星暴的观测证据和Seyflert2型星系核区星暴活动的最新研究结果,着重讨论了存在两类Seyflert2型星系(一类是被遮挡的Seyfert1型星系,另一类是“真正”的Seyfert2型星系即不存在宽线区的Seyfert2型星系)的可能性.通过比较具有和不具有偏振宽线的Seyflert2型星系在红外、射电、光学和X射线光谱性质的差别,发现具有偏振宽线的Seyfert2型星系在本质上和Seyflert1型星系是同一类天体,差别只在于观测者视线方向的不同;而不具有偏振宽线的Seyfert2型星系是一些星系核活动较弱而星暴活动占主导的天体,这些星系从射电、红外、光学到硬X射线,都具有和星暴星系相似的性质。由于这些星系中核的吸积率将比Seyflert1型星系低近两个量级,因而它们很有可能是一些没有宽发射线区的Seyfert2型星系,即所谓的“真正”Seyflert2型星系。  相似文献   

3.
本文对CfA样本中的属群星系进行了最近邻间距分析,发现在最近邻距离小于20kpc的星系中存在明显的Seyfert核超(即其中Seyfert星系所占比率高出平均值约3倍)。这表明近距星系的存在可能是产生Seyfert核活动的有利环境。  相似文献   

4.
研究表明活动星系核的高能γ射线辐射和低频射电辐射有着某些内在的联系。EGRET已检测到66 颗可信度很高的活动星系核。而这些高能的活动星系核有部分缺少足够的射电图象观测。为研究这些河外剧变源的射电辐射性质及致密结构,并研究活动量系核射电喷流弯曲与高能辐射的内在联系。我们利用国际欧洲VLBI网,英国的MERLIN 和美国的VLA对近20 颗γ射线活动星系核进行了观测。本文给出部分高能γ射线活动星系核在8 .5GHz的VLA 观测图象。  相似文献   

5.
基于被ROSAT全天区巡天观测和射电 4.85GHz巡天观测同时探测到的活动星系核的大样本 ,研究了X射线选的射电噪活动星系核的多波段性质 .通过分析该样本中的活动星系核的宽波段能量分布 ,确认了来自射电、光学和X射线波段的辐射光度之间的显著相关性 .这种相关性对于类星体、赛弗特、蝎虎座天体和射电星系是有区别的 .同时 ,探讨了从光学到X射线波段之间的谱指数与红移以及 50 0 0 和 4.85GHz处的单色光度的相关性  相似文献   

6.
介绍了近年来河外H2O超脉泽的主要观测结果。H2O超脉泽通常起源于活动星系核中央的拱核盘。它们主要寄生在 Serfert 2星系或低电离核区。至今为止,已有20个星系探测到H2O超脉泽。脉泽辐射的各向同性光度为10~6000L⊙。所有超脉泽星系显示出核的活动,显然,脉泽是由核活动所产生的射电和X射线光子或激波来抽运的。H2O超脉泽倾向存在于高倾斜度的星系,这使得沿视线上的分子柱密度增高,产生足够大的放大光深。最有可能产生H2O超脉泽辐射的星系应有一个包含着射电源的侧向的分子盘以及一个适当的抽运机制。  相似文献   

7.
卢炬甫  方陶陶 《天文学报》1994,35(2):143-148
本文提出,原则上所有活动星系核都能产生喷流,但是星系核心区域介质的渗入可能使得一部分喷流被减速以至于消失。这为喷流只见于一部分活动星系的事实提供了一种可能解释,也可能是建立活动星系核结构统一的模型的一个有意义的步骤。  相似文献   

8.
基于被ROSAT全天区巡天观测和射电4.85GHz巡天观测同时探测到的活动星系核的大样本,研究了X射线选的射电噪活动星系核的多波段性质.通过分析该样本中的活动星系核的宽波段能量分布,确认了来自射电、光学和X射线波段的辐射光度之间的显著相关性.这种相关性对于类星体、赛弗特、蝎虎座天体和射电星系是有区别的.同时,探讨了从光学到X射线波段之间的谱指数与红移以及5000A和4.85GHz处的单色光度的相关性.  相似文献   

9.
本文收集了射电源表1Jy,S4 ,S5 中的活动星系核的宽发射线数据,发现射电活动星系核的宽发射线与5GHz 射电辐射强相关。BLLac 天体具有较弱的宽发射线辐射,但具有与其它活动星系核类似的统计行为。结果表明射电活动星系核中的喷流与吸积过程存在本质联系。  相似文献   

10.
在早期的文章中,基于耀变体(Blazar)的知识,我们预言了在射电噪活动星系核(AGN)中心10kpc范围内X射线喷流的存在。钱得拉(Chandra)卫星最近对低功率射电星系的X射线观测与我们的预言相一致。在本文中我们研究了kpc尺度喷流中的电子加速,并建议通过对强的FRⅡ射电星系中所预言的X射线喷流的钱得拉卫星的X射线的观测,来研究红的耀变体中的康普顿冷却以及在内部致密喷流和大尺度延伸喷流间环境的不同。以上的研究可以进一步检验我们的关于射电噪活动星系核中kpc尺度X射线喷流的模型。  相似文献   

11.
The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current understanding of the Suns immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.  相似文献   

12.
The tenth part of the catalogue of Shakhbazian groups contains the positions and references of all the galaxies of the following 35 groups (north of δ > +2°30'): Shkh 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377. For the estimation of the coordinates the Digitized Sky Survey was used.  相似文献   

13.
In this paper, we analyze the results of ground-based and space-born photometric observations of the major satellites of Uranus—Miranda, Ariel, Umbriel, Titania, and Oberon. All sets of photometric observations of the satellites available in the literature were examined for uniformity and systematic differences and summarized to a unified set by wavelength ranging from 0.25 to 2.4 μm. This set covers the interval of phase angles from 0.034° to 35°. The compound phase curves of brightness of the satellites in the spectral bands at 0.25, 0.41, 0.48, 0.56, 0.75, 0.91, 1.4, and 1.8 μm, which include a pronounced opposition surge and linear part, were constructed. For each satellite, the geometric albedo was found in different spectral bands taking into account the brightness opposition effect, and its spectral dependence was studied. It has been shown that the reflectance of the satellites linearly depends on the wavelength at different phase angles, but has different spectral gradients. The parameters of the phase functions of brightness, including the amplitude and the angular width of the brightness opposition surge, the phase coefficient, and the phase angle at which the nonlinear increase in brightness starts, were determined and their dependences on wavelength and geometric albedo were analyzed. Our investigations show that, in their optical properties, the satellites Miranda and Ariel, Titania and Oberon, and Umbriel present three types of surfaces. The observed parameters of the brightness opposition effect for the Uranian satellites, some ice satellites of Jupiter and Saturn, and the E-and S-type asteroids are analyzed and compared within the framework of the coherent backscattering and mutual shadowing mechanisms.  相似文献   

14.
The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current understanding of the Suns’ immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.  相似文献   

15.
We analyze the conditions for the formation and time evolution of peripheral comet structures of solar-type planetary systems. In the Solar system, these include the Kuiper belt, the Oort cloud, the comet spear, and the Galactic comet ring that marks the Galactic orbit of the Sun. We consider the role of the viscosity of a protoplanetary gas–dust disk, major planets, field stars, globular clusters, giant molecular clouds, and the Galactic gravitational field in the formation of these peripheral structures marked by comets and asteroids. We give a list of the closest past and future passages of neighboring stars through the solar Oort cloud that perturb the motion of its comets and, thus, contribute to the enhancement of its cometary activity, on the one hand, and to the replenishment of the solar comet spear with new members, on the other hand.  相似文献   

16.
A list of volatile nitriles, not yet detected in the atmosphere of Titan, but likely to be present in this environment, has been selected: acetonitrile, propionitrile, acrylonitrile, crotononitrile, allyl cyanide, methacrylonitrile, and cyanopropyne. The spectra of these compounds in the gas phase have been systematically studied, in the mid- and far-infrared ranges. For each selected nitrile, the most intense vibration bands have been determined. Their strengths have been characterized by estimating the monochromatic absorption coefficient at the maximum(s) of the bands, and the integrated absorbance over the entire band. Then, in order to estimate the detectability of the selected compounds by infrared spectroscopy in the atmosphere of Titan, the data obtained have been extrapolated to the case of Titan.  相似文献   

17.
吴光节  陈道汉 《天文学报》2001,42(3):225-239
阐述地外生命搜索的意义,手段和现状,地外生命搜索的SETI计划及其发展,并着重介绍太阳系外的行星系统的发现,它的目的,成果以及未来。太阳系外的行星系统的发展是当代天文学最时髦的,也将是未来21世纪成果最丰富的研究领域之一,从1992年第一个确认了脉冲星PSR 1257+12的行星系统以来,1995年确认主序星51Peg有一颗行星,至2001年5月,已经发现了60个太阳系外的行星系统,太阳系外的行星系统的发现与地外生命搜索研究是密不可分的,新的发现也提出了很多新的谜,这项研究近10年来发展很快,它的研究也促进了航天学,宇宙化学,天文生物学乃至哲学等其他学科的发展。  相似文献   

18.
The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediatemass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly,in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently,the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.  相似文献   

19.
Results are reported from studies of a subsample of white dwarfs in the second part of the FBS survey. Of the 217 WD identified in the FBS, most are DA dwarfs, but the subclasses DO, DOB, DB, DAB, DAZ, DZ, and DC are also encountered. Multiwavelength studies are conducted on the sample from the FBS survey: of the 217 white dwarfs, 178 coincide with 2MASS sources, GALEX (ultraviolet) data exist for 155, 23 are ROSAT x-ray sources, and SDSS data with stellar magnitudes in five photometric bands, u, g, r, i, and z, are available for 120. The WD sample from the FBS survey is compared with similar surveys (PG and SDSS). Average B and R magnitudes, as well as an average value of the length of the low dispersion spectra of white dwarfs from the DFBS are also given.  相似文献   

20.
The propagation of extremely low frequency (ELF) electromagnetic waves and resonance phenomena in the Earth atmosphere has been extensively studied, in relation with ionospheric dynamics, and thunderstorm and lightning activities. A similar investigation can be performed for any other planet and satellite environment, provided this body is wrapped into an ionosphere. There are, however, important differences between Earth and other bodies, regarding the surface conductivity, the atmospheric electron density, the ionospheric cavity geometry, and the sources of electromagnetic energy. In a first approximation, the size of the cavity defines the range of the resonance frequency; the electron density profile, up to the upper atmospheric boundary, controls the wave attenuation; the nature of the electromagnetic sources influences the field distribution in the cavity; and the body surface conductivity, which gives the reflection and transmission coefficients, indicates to what extent the subsurface can be explored. The knowledge of the frequencies and attenuation rates of the principal eigenmodes provides unique information about the electric properties of the cavity. Instruments capable of monitoring the electromagnetic environment in the ELF range are, therefore, valuable payload elements on balloons, descent probes and landers. We develop models for selected inner planets, gaseous giants and their satellites, and review the propagation process of ELF electromagnetic waves in their atmospheric cavities, with a particular emphasis on the application of the Schumann resonance observation to subsurface studies. The instrumentation suitable for monitoring the electromagnetic environment in geophysical cavities is briefly addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号