首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grains of native gold and tellurium were found in siliceous hydrothermally altered rocks in the high-temperature (170–540°C) fumarolic field of the La Fossa volcano (Island of Vulcano). In addition to Au and Te, Pb–Bi sulfides (cannizzarite) and Tl-bromide chloride were found as sublimates in the hottest fumarolic vents of the crater rim. The chemical composition of altered rocks associated with sublimate deposition indicate the presence of a significant concentration of Te (up to 75 ppm), while gold concentrations are very low (<9 ppb). Pb, Bi and Tl are strongly enriched in the hottest and less oxidized fumarolic vents, reaching concentrations of 2186, 146 and 282 ppm, respectively. These elements are transported (generally as chloride complexes) to the surface by volcanic gases, and several of these (Bi, Te, Tl) are originated from magma degassing. The silicic alteration is produced by the flow of fluids with pH<2. High acidity results from introduction of magmatic gases such as SO2, HCl and HF released by the shallow magmatic reservoir of La Fossa volcano. The silicic alteration found at Vulcano may represent an early stage of the `vuggy silica' facies which characterizes the high-sulfidation epithermal ore deposits, confirming the analogies existing between this type of ore deposit and magmatic-hydrothermal systems associated with island-arc volcanoes.  相似文献   

2.
Electric resistivity tomography (ERT), self-potential (SP), soil CO2 flux, and temperature are used to study the inner structure of La Fossa cone (Vulcano, Aeolian Islands). Nine profiles were performed across the cone with a measurement spacing of 20 m. The crater rims of La Fossa cone are underlined by sharp horizontal resistivity contrasts. SP, CO2 flux, and temperature anomalies underline these boundaries which we interpret as structural limits associated to preferential circulation of fluids. The Pietre Cotte crater and Gran Cratere crater enclose the main hydrothermal system, identified at the centre of the edifice on the base of low electrical resistivity values (<20 Ω m) and strong CO2 degassing, SP, and temperature anomalies. In the periphery, the hydrothermal activity is also visible along structural boundaries such as the Punte Nere, Forgia Vecchia, and Palizzi crater rims and at the base of the cone, on the southern side of the edifice, along a fault attributed to the NW main tectonic trend of the island. Inside the Punte Nere crater, the ERT sections show an electrical resistive body that we interpret as an intrusion or a dome. This magmatic body is reconstructed in 3D using the available ERT profiles. Its shape and position, with respect to the Pietre Cotte crater fault, allows replacing this structure in the chronology of the development of the volcano. It corresponds to a late phase of activity of the Punte Nere edifice. Considering the position of the SP, soil CO2 flux, and temperature maxima and the repartition of conductive zones related to hydrothermal circulation with respect to the main structural features, La Fossa cone could be considered as a relevant example of the strong influence of pre-existing structures on hydrothermal fluid circulation at the scale of a volcanic edifice.  相似文献   

3.
In January 1989 we observed submarine eruptions on the summit of Macdonald volcano during a French-German diving programme with the IFREMER submersible Cyana. Gas-streaming of large amounts of CH4, CO2 and SO2 from summit vents, inferred from water column anomalies and observed by submersible, was accompanied on the sea surface by steam bursts, turbulence, red-glowing gases, and black bubbles comprising volcanic ash, sulphur and sulphides. Chloride depletion of water sampled on the floor of an actively degassing summit crater suggests either boiling and phase separation or additions of magmatic water vapour. Submersible observations, in-situ sampling and shipboard geophysical and hydrographic measurements show that the hydrothermal system of this hotspot volcano is distinguished by the influence of magmatic gases released from its shallow summit.  相似文献   

4.
High-sulfidation (HS) epithermal systems have elements in common with passively degassing volcanoes associated with high T, acid fumarole fields or acid crater lakes. They are considered to form in two stages, the first of which involves advanced argillic alteration resulting from intense, strongly acidic fluid–rock interaction. The La Fossa hydrothermal system (Vulcano Island) represents a classic example of such an active HS system and can be considered as a modern analogue of this early stage of alteration, resulting in a core of intense silicic (90–95% pure SiO2) alteration surrounded by alunitic alteration zones.  相似文献   

5.
Discharge from subaereal and submarine gas vents of the Baia di Levante beach gases from the Vulcano Island were sampled for major and trace gas components in May and November 1995.Chemical compositions and equilibrium calculations suggest three different groups of CO2-rich gas emissions depending on their distance from the La Fossa crater: (1) gas vents close to the Faraglione area are characterised by high H2S contents, high calculated equilibrium temperatures based on inorganic species and relatively high proportion of alkene compounds; (2) gas vents close to Vulcanello are characterised by low calculated equilibrium temperatures and low amounts of alkenes; and (3) Pontile sample has the highest equilibrium CO2 pressure (up to 68 bars) which may account for the observed absence of benzene. The relative large variability of H2S in the Baia di Levante beach gas discharge may be attributed to either different interactions between iron sulphides and weakly acid waters or catalytic effect of elemental sulphur on the de-hydrogenation of cyclo-hexane. Thermodynamic calculations suggest that the main inorganic species and CH4 may have re-equilibrated at relatively shallow depth (10–200 m b.s.l. and 30–600 m b.s.l. for a lithostatic and hydrostatic pressure, respectively). The slow kinetics of reactions in the CnH2n/CnH2n+2 systems, with respect to that of CH4–CO–CO2, may explain the observed propene/propane ratios, which can only be reached at reaction temperatures of 300–350°C. This low speed of reactions can also explain the observed disequilibrium of C1–C4 alkanes.  相似文献   

6.
A geochemical model explaining the presence of fumaroles having different gas composition and temperature at the top of the crater and along the northeastern coast of Vulcano island is proposed. A pressurized biphase (liquid-vapor) reservoir at the depth of about 2 km is hypothesized. Energy and mass balance sheets controlP-T conditions in the system.P-T must vary along a boiling curve of brine as liquid is present. The CO2 content in the steam is governed by the thermodynamic properties of the fluids in the H2-NaCl-CO2 system. On the assumption that oxygen fugacity in the system is between the HM-FMQ oxygen buffers, observed SO2/H2S, CO2/CO, CO/CH4 ratios in the fumarolic gases at the Fossa crater appear in equilibrium with a temperature higher than that observed, such as may exist at depth. The more reduced gas phases present on the sea-side may result from re-equilibrium processes in shallower aquifers. The suggested model would help in monitoring changes in volcanic activity by analyzing fumarolic gases.  相似文献   

7.
The densely populated metropolitan area of Quito is located on the slopes of the active Guagua Pichincha volcano at only 10 km from the crater. Recently, the Italian Ministry of Foreign Affairs sponsored a project for the mitigation of volcanic hazard in this area. The geochemical study carried out as part of this project was aimed at constructing a geochemical model of the zone for use in volcanic surveillance.According to this geochemical model, a hydrothermal aquifer (T = 200–240°C), fed both by meteoric waters and by fluids released by a magma body, lies at shallow levels beneath Guagua Pichincha crater. The crater fumaroles are essentially fed by steam boiled off from the hydrothermal aquifer. The high flow rate fumaroles located in the dome area show significant SO2 contents, which suggest a relatively high contribution of magmatic fluids in the zone of the aquifer feeding them. The absence of SO2 in the fumarolic discharges near the southern crater wall indicates instead that the magmatic fluids dissolve entirely into the aquifer here. The hot springs located at the western end of the crater represent the lateral discharge of the hydrothermal aquifer.On the basis of this model, it is likely that an increment in the flux of both the magmatic fluids and the heat from a magma body produces an increase, albeit small, of the pressure-temperature conditions of the hydrothermal system and consequent changes in flow rate and fluid chemistry of the fumarolic vents. In particular, total sulphur and possibly hydrochloric acid may increase in all the vents and sulphur dioxide may appear in other fumarolic discharges. The varying thermodynamic conditions in the hydrothermal aquifer can be evaluated on the basis of the equilibria among carbon species and hydrogen. Only minor delayed changes are expected in the physical-chemical characteristics of the springs located at the western end of the crater.  相似文献   

8.
Accurate and precisely located self-potential (SP), temperature (T) and CO2 measurements were carried out in the summit area of Stromboli along 72 straight profiles. SP data were acquired every metre and T data every 2.5 m. CO2 concentrations were acquired with the same density as T, but only along seven profiles. The high density of data and the diversity of the measured parameters allows us to study structures and phenomena at a scale rarely investigated. The shallow summit hydrothermal activity (Pizzo–Fossa area) is indicated by large positive SP, T and CO2 anomalies. These anomalies are focused on crater faults, suggesting that the fracture zones are more permeable than surrounding rocks at Stromboli. The analysis of the distribution of these linear anomalies, coupled with the examination of the geologic, photographic and topographic data, has led us to propose a new structural interpretation of the summit of Stromboli. This newly defined structural framework comprises (1) a large Pizzo circular crater, about 350 m in diameter; (2) a complex of two concealed craters nested within the Pizzo crater (the Large and the Small Fossa craters), thought to have formed during the eruption of the Pizzo pyroclastites unit; the Small Fossa crater is filled with highly impermeable material that totally impedes the upward flow of hydrothermal fluids; and (3) The present complex of active craters. On the floor of the Fossa, short wavelength SP lows are organized in drainage-like networks diverging from the main thermal anomalies and converging toward the topographic low in the Fossa area, inside the Small Fossa crater. They are interpreted as the subsurface downhill flow of water condensed above the thermal anomalies. We suspect that water accumulates below the Small Fossa crater as a perched water body, representing a high threat of strong phreatic and phreatomagmatic paroxysms. T and CO2 anomalies are highly correlated. The two types of anomalies have very similar shapes, but the sensitivity of CO2 measurements seems higher for lowest hydrothermal flux. Above T anomalies, a pronounced high frequency SP signal is observed. Isotopic analyses of the fluids show similar compositions between the gases rising through the faults of the Pizzo and Large Fossa craters. This suggests a common origin for gases emerging along different structural paths within the summit of Stromboli. A site was found along the Large Fossa crater fault where high gas flux and low air contamination made gas monitoring possible near the active vents using the alkaline bottle sampling technique.  相似文献   

9.
Gas samples from some fumaroles at ‘La Fossa' crater and Baia di Levante on Vulcano Island and from a diffuse soil gas emission were analysed during 1995–1996, along with water samples from thermal wells in the area of Vulcano Porto. During 1996, we observed a significant increase both in the gas/steam ratio and in the CO2 concentration, as well as strong variations in δ13CCO2, δDH2O and δ18OH2O of fumarolic gases. These variations are probably related to an increased inflow of deep fluids of magmatic origin. The temperatures of fumaroles did not show remarkable variations except for fumarole F11. In this case, temperature increased by about 80°C from February to August 1996. During the same period, remarkable variations in temperature, phreatic level and chemical and isotopic composition of water were also recorded in one of the geothermal wells in the Vulcano Porto area (Camping Sicilia; T60°C). The observed variations in this well are probably related to a pressure build-up, occurring at least in the surficial part of the system, because of increased gas flux and/or decreased permeability of the fumarolic degassing system. Chemical and isotopic composition of the water showed that during this evolutionary phase, the content of fumarolic condensate in this well was about 80 to 90%. Based on the observation of physical and chemical variables of the Camping Sicilia fluids, during this phase of activity, it is concluded that this area is affected by a phreatic eruption hazard if a volcanic episode with high energy discharge in a limited time span occurs. It follows that this well may be considered as a preferential point for volcanic activity monitoring, both in the case of normal routine surveillance and in the case of inaccessibility to the crater area.  相似文献   

10.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara  相似文献   

11.
We investigated the relationship between volcano-seismic events, recorded at La Fossa crater of Vulcano (Aeolian Islands, Italy) during 2004-2006, and the dynamics of the hydrothermal system. During the period of study, three episodes of increasing numbers of volcano-seismic events took place at the same time as geothermal and geochemical anomalies were observed. These geothermal and geochemical anomalies have been interpreted as resulting from an increasing deep magmatic component of the hydrothermal fluids. Three classes of seismic events (long period, high frequency and monochromatic events), characterised by different spectral content and various similarity of the waveforms, have been recognised. These events, clustered mainly below La Fossa crater area at depths of 0.5–1.1 km b.s.l., were space-distributed according to the classes. Based on their features, we can infer that such events at Vulcano are related to two different source mechanisms: (1) fracturing processes of rocks and (2) resonance of cracks (or conduits) filled with hydrothermal fluid. In the light of these source mechanisms, the increase in the number of events, at the same time as geochemical and geothermal anomalies were observed, was interpreted as the result of an increasing magmatic component of the hydrothermal fluids, implying an increase of their flux. Indeed, such variation caused an increase of both the pore pressure within the rocks of the volcanic system and the amount of ascending fluids. Increased pore pressures gave rise to fracturing processes, while the increased fluid flux favoured resonance and vibration processes in cracks and conduits. Finally, a gradual temporal variation of the waveform of the hybrid events (one of the subclasses of long period events) was observed, likely caused by heating and drying of the hydrothermal system.  相似文献   

12.
Soil-temperature measurements can provide information on the distribution of degassing fissures, their relationship to the internal structure of the volcano, and the temporal evolution of the system. At Vulcano Island (Italy), heat flux from a <3 km-deep magma body drives a hydrothermal system which extends across the main Fossa crater. This heat flux is also associated with variable magmatic gas flow. A high-density map of soil-temperatures was made in 1996 at a constant depth of 30 cm on the central and southern inner flanks of the Fossa crater. These measurements extended over an area covering about 0.04 km2, across which the heat flux is predominantly associated with a shallow boiling aquifer. The map shows that hot zones relate to structures of higher permeability, mainly associated with a fissure system dating from the last eruptive cycle (1888–1890). From 1996 to January 2005, we studied the evolution of the heat flux for the high temperature part of the map, both by repeating our measurements as part of 14 visits, during which temperatures were measured at a constant depth, and using data from permanent stations which allowed soil-temperatures to be continuously measured for selected vertical profiles. These data allowed us to calculate the heat flux, and its variation, with good precision for values lower than about 100 W m−2, which is generally the case in the study area. Above 100 W m−2, although the heat flux value is underestimated, its variations are recorded with an error less than 10%. During the period 1996–2004, two increases in the thermal flux were recorded. The first one was related to the seismic crisis of November 1998 which opened existing or new fissures. The second, in November 2004, was probably due to magma migration, and was associated with minor seismic activity.  相似文献   

13.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

14.
 Numerous measurements of CO2 degassing from the soil, carried out with the accumulation chamber method, indicate that in the period April–July 1995 the upper part of the Fossa cone released a total output of 200 t d–1 of CO2, which corresponds to approximately 1000 t d–1 of steam. These large amounts of fluids are of the same order of magnitude as those released by the high temperature fumarolic field located inside the crater. The spatial distribution of soil gas fluxes shows that the main structures releasing CO2 are the inner slopes of the crater and a NW–SE line, located NE of the crater rim, which correspond to the main direction of Vulcano Island active faults. The comparison of the φCO2 maps with the soil temperature distribution, derived from both direct measurements and airborne infrared images, indicates the occurrence of extensive condensation of fumarolic steam within the upper part of the Fossa cone, whose total amount is comparable to the rainfall budget. Part of the condensate which originates from this process contributes to the recharge of the phreatic aquifer of Porto Plain, modifying the chemical and isotopic composition of the groundwater. Received: 1 September 1995 / Accepted: 8 January 1996  相似文献   

15.
Uzon caldera, located in the eastern volcanic belt of the Kamchatka peninsula, is a complicated structure of Middle Pleistocene age. The composition of the co-existing solid and fluid phases, temperature and pH were determined with the aim of establishing the distribution of sulphur species, As, Sb and the main ore-forming metals. In the solid samples, the following sulphur-bearing minerals were identified: pyrite, realgar, orpiment, alacranite (As8S9), uzonite (As4S5), amorphous As-sulphide, stibnite, cinnabar and native sulphur. The following sulphur-bearing species H2S, H2S2+S52−(aq)(aqueous polysulphanes), S0(aq), SO32−(aq), S2O32−, SO42− and total concentration of sulphur were determined in solutions. Eh, pH and H2S concentration were measured potentiometrically in situ. Zero-valent sulphur (S0(aq)+H2S2+S52−(aq)) predominates in Uzon solutions. The pair H2S–Scolloidal is Eh-determining in Uzon solutions up to 75–85°C. A quantitative thermodynamic model of the mineral deposition process at Uzon was constructed using the collected data. It was obtained that the composition of the hydrothermal solution and the precipitation of Sb–As–Hg species can be described using two only main factors: the initial composition of fluid and the temperature variation.  相似文献   

16.
This work reports a study on the rare-earth element (REE) behaviour in the high-sulfidation-type superficial alteration and in the phyllic and propylitic alteration in the subsurface of the island of Vulcano. The results of this study demonstrate notable differences in the REE behaviour in the different alteration facies. In silicic alteration, all REE are equally strongly depleted; in advanced argillic alteration, LREE are quite immobile whereas HREE are strongly depleted; in intermediate argillic, phyllic and propylitic alteration, REE patterns are almost unchanged compared with their fresh rock equivalents. These features indicate that the behaviour of REE in hydrothermal alteration facies at La Fossa is mainly controlled by pH, availability of complexing ions in the fluid (mainly SO42− and, in the silicic facies, F) and the presence of secondary minerals able to host REE in their structures. The origin of the acid fluids is related to the hypogenic introduction of prevalently magmatic acid gases produced by the degassing of the shallow magmatic system of La Fossa volcano. In the active high-temperature fumarolic field of La Fossa, REE behaviour illustrates the transition from a dry vapor system, corresponding to the high-temperature fumaroles, to a wet condensing system in the surrounding area. The results of this research, carried out on an active high-sulfidation system, provide a useful tool for the study of high-sulfidation epithermal ore deposits and particularly help to understand the alteration processes during the main stage of hypogene wall rock alteration.  相似文献   

17.
The 1995–1996 eruption of Mt. Ruapehu has provided a number of insights into the geochemical processes operating within the magmatic-hydrothermal system of this volcano. Both pre-eruption degassing of the rising magma and its eventual intrusion into the convective zone of the hydrothermal system beneath the lake were clearly reflected in lake water compositions. The eruptions of September–October 1995 expelled the lake, and provided the first-ever opportunity to characterise gas discharges from this volcano. The fumarolic discharges revealed compositions typical of andesite volcanoes and strong interaction with the enclosing meteoric and hydrothermal system fluids. Some 1.1 MT of SO2 gas was released from the volcano between September 1995 and December 1996, whereas ca. twice this amount (2.2 MT equivalent SO2) was erupted as soluble (i.e. leachable) oxyanions of sulphur. Significantly more sulphur was released from the volcano over this period than can be accounted for from the magma volume actually erupted. The evidence suggests that a sizable component of the evolved sulphur was remobilised from the long-lived hydrothermal system within the volcano during the 1995–1996 activity.  相似文献   

18.
Physical, chemical and isotopic parameters were measured in fumaroles at the Vulcano crater and in drowned fumaroles near the beach. The data were used to define boundary conditions for possible conceptual models of the system.Crater fumaroles: time variations of CO2 and SO2 concentrations indicate mixing of saline gas-rich water with local fresh water. Cl/Br ratios of 300– 400 favour sea-water as a major source for Cl, Brand part of the water in the fumaroles. Cl concentrations and D values revealed, independently, amixing of 0.75 sea-water with 0.25 local freshwaterin furmarole F-5 during September 1982.Patterns of parameter correlation and mass balances reveal that CO2, S, NH3 and B originate from sources other than sea water. The CO2 value of 13C = – 2%o favours, at least partial, origin from decomposition of sedimentary rocks rather than mantle-derived material. Radiogenic4He(1.3 × lO–3 ccSTP/g water) and radiogenic40Ar(10.6 × 10–4 ccSTP/g water) are observed, (4He/40Ar)radiogenic = 1.2, well in the range of values observed in geothermal systems.Drowned fumaroles: strongly bubbling gas at a pond and at the beachappears to have the same origin and initial compositionas the crater fumaroles (2 km away). The fumarolic gas is modified by depletion of the reactive gases, caused by dissolution in shallow-water. Atmospheric Ne, Ar, Kr and Xe are addeden route, some radiogenic He and Ar are maintained. The Vulcano system seems to be strongly influenced by the contribution of sea-water and decomposition of sedimentary rocks. Evidence of magmatic contributions is mainly derived from heat.  相似文献   

19.
Relatively homogeneous trachytes have been erupted for approximately 3800 years at la Fossa di Vulcano. From the Punte Nere eruptive cycle up to the Palizzi cycle the products varied little, while after the Palizzi cycle (1600 + 1000 a B.P.) to the latest eruption, 1888–1890 AD, a spectrum of compositions, with rhyolite dominating, characterized the erupted products.A stratigraphic sequence, starting with the Palizzi lava flow, has been studied, focussing the attention on lavas and volcanic bombs, to define the role that magma mixing processes have played in the recent history of La Fossa di Vulcano. Textural and chemical analyses of whole rocks, glass, groundmass, and mineral phases indicate that only the breadcrust bombs, erupted during the 1888–1890, show evidence of mixing between trachytic and rhyolitic end-members. Interestingly, in the deposits of the same eruption, trachytic bombs also occur.The lava flows erupted before 1888–1890 display general features suggesting that they entrained crystals and lava fragments during magma ascent. During the 1888–1890 eruption the trachytic bombs were erupted before the breadcrust bombs, which have a more evolved and hybrid composition. These characteristics, together with the change of the nature of the products after the Palizzi cycle, require a complex volcanological model for the recent history of la Fossa di Vulcano.  相似文献   

20.
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号