首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leblanc and de la Noë used the set of data published by Mercier and Rosenberg (1974) on the type III burst at 169 MHz. They conclude that type III bursts are associated with low density coronal structures and occur in low density regions.We show that their methods cannot lead to firm conclusions; we point out some inconsistencies in their results.  相似文献   

2.
Metric type III solar radio burst positions are compared spatially and temporally to underlying active region geometry. The positions of these radio bursts have an asymmetric location distribution relative to simple bipolar regions. The type III bursts show a tendency to occur nearer the leading active region - an association shown before from type III burst and magnetic field polarity measurements. The type III bursts also generally occur to the left of the outward to inward directed magnetic field. The asymmetry relative to the outward directed magnetic field has a sense that is consistent with a mechanism of type III burst production that involves a pre-existing coronal current system situated between expanding closed and open magnetic field lines.  相似文献   

3.
We investigate the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. We show that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21% of all type II bursts show herringbone, about 60% of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. We also show that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. We argue that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.  相似文献   

4.
This paper pursues former studies of the coronal structures that are associated with radio type III bursts by taking advantage of the new capabilities of STEREO/SECCHI. The data analysis has been performed for 02 and 03 June 2007. During these two days several type III bursts, which were detected in the corona and in the interplanetary medium, occurred during the observing time of the Nançay radioheliograph. Electron beams accelerated in the same active region and producing type III emissions almost at the same time, can propagate in different well defined coronal structures below 15 R. Then, these structures become imbedded in the same plasma sheet which can be tracked up to 0.25 AU. Inhomogeneities travel along these structures; their velocities measured between 15 and 35 R are typical of those of a slow solar wind. Comparison with PFSS magnetic field extrapolation shows that its connection with the IP magnetic field is different from what is suggested by the present observations. These results are consistent with those obtained in the IP medium formerly by Buttighoffer (Astron. Astrophys. 335, 295, 1998) who identified by in situ measurements at 1 AU and beyond, the sites where Langmuir waves, associated with local type III emissions, are excited.  相似文献   

5.
The low frequency array (LOFAR) radiotelescope will be a powerful instrument for answering fundamental, unresolved scientific questions concerning solar system radio phenomena and related emissions from nearby stellar systems. This paper reviews the phenomena, emission mechanisms, open scientific questions, and LOFAR's capabilities. LOFAR will detect metric solar radio bursts in the corona and interplanetary medium, out to distances of order 10 solar radii, as well as Jovian radio emissions. Arguments are given that LOFAR may be sufficiently sensitive to detect stellar analoges of solar type II and III bursts, and may detect cyclotron-maser emissions from extra-solar planets. LOFAR may also aid space weather research, by passively detecting coronal mass ejections (CMEs) via scintillation and Faraday rotation effects, or by detecting radar signals bounced off CMEs and coronal density structures if a suitable solar radar is developed.  相似文献   

6.
The phenomena observed at the Sun have a variety of unique radio signatures that can be used to diagnose the processes in the solar atmosphere. The insights provided by radio observations are further enhanced when they are combined with observations from space-based telescopes. This Topical collection demonstrates the power of combination methodology at work and provides new results on i) type I solar radio bursts and thermal emission to study active regions; ii) type II and IV bursts to better understand the structure of coronal mass ejections; and iii) non-thermal gyro-synchrotron and/or type III bursts to improve the characterisation of particle acceleration in solar flares. The ongoing improvements in time, frequency, and spatial resolutions of ground-based telescopes reveal new levels in the complexity of solar phenomena and pose new questions.  相似文献   

7.
The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper, we establish unambiguous SA event criteria for the purpose of statistically comparing SA events with conventional kilometric type III bursts. We apply these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval and find that more than 70% of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event in our sample is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity. Compared with conventional kilometric type III bursts, the characteristics of these SA events are longer duration, higher maximum intensity, and a larger number of components. Differences in these characteristics for the two classes of events are not sufficient to distinguish all SA events from conventional type III bursts. The consistent lack of reported metric type III activity during the latter part of the candidate events suggests that some of the electrons are accelerated high in the corona, at or near the altitude of the shock.  相似文献   

8.
Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.  相似文献   

9.
The numerical integration of hydrodynamics equations with an allowance for thermal conductivity was made using the temperature distribution in the corona situated above the active regions obtained from the damping time of solar radio bursts of Types III and V. It is essential that for the integration path serve the magnetic field lines along which exciters of bursts are moving and accelerated coronal plasma can move freely too.The main result is the discovery of such regions, where the high temperature gradient precludes the possibility of a continuous flow of coronal plasma. These regions, where intense heating and rapid acceleration of the coronal plasma take place, were situated at distances of about 2 R from the Sun's center. They probably possess the character of weak detonation waves. The waves of cooling can also be present in these regions of discontinuity of the flow. The observations of bursts of Type V at distances up to 6.3 R gives some evidence that discontinuities of flow of the solar wind of the same nature can possibly arise also in the more remote parts of the solar corona.It is important that the similar jumps of velocity and other parameters of coronal plasma were also discovered earlier in a quite independent way as a result of the interpretation of the solar radio echo data. It can be anticipated that the nonthermal heating of coronal plasma, which was postulated to remove discrepancies between the existing models and observations of solar wind, was localized mainly in these regions thus playing an important role in the formation of the fundamental properties of the interplanetary medium.The obtained results are of preliminary character since there are no reliable and homogeneous data on bursts of Types III and V especially at 20-10 MHz, where the work is difficult due to the man-made interference and also at still lower frequencies, observed by the cosmic probes. We can hope that the filling of this gap allows us to construct a realistic model of outflow of coronal plasma from active regions, which can be successfully compared with the results of direct measurement of parameters of solar wind.  相似文献   

10.
In this paper, the 3B flare of February 4, 1986 is studied comprehensively. The escape electrons accelerated to 10–100 keV at the top of coronal loop are confirmed by III type bursts. The energetic electron beams moved downward trigger the eruptions in the low layer of solar atmosphere. The radio and soft X-ray bursts are interpreted, respectively, by the maser mechanism and evaporation effect. Finally, the important role of energetic electron beams in solar flares is pointed out.  相似文献   

11.
Solar energetic particles (SEPs) detected in space are statistically associated with flares and coronal mass ejections (CMEs). But it is not clear how these processes actually contribute to the acceleration and transport of the particles. The present work addresses the question why flares accompanied by intense soft X-ray bursts may not produce SEPs detected by observations with the GOES spacecraft. We consider all X-class X-ray bursts between 1996 and 2006 from the western solar hemisphere. 21 out of 69 have no signature in GOES proton intensities above 10 MeV, despite being significant accelerators of electrons, as shown by their radio emission at cm wavelengths. The majority (11/20) has no type III radio bursts from electron beams escaping towards interplanetary space during the impulsive flare phase. Together with other radio properties, this indicates that the electrons accelerated during the impulsive flare phase remain confined in the low corona. This occurs in flares with and without a CME. Although GOES saw no protons above 10 MeV at geosynchronous orbit, energetic particles were detected in some (4/11) confined events at Lagrangian point L1 aboard ACE or SoHO. These events have, besides the confined microwave emission, dm-m wave type II and type IV bursts indicating an independent accelerator in the corona. Three of them are accompanied by CMEs. We conclude that the principal reason why major solar flares in the western hemisphere are not associated with SEPs is the confinement of particles accelerated in the impulsive phase. A coronal shock wave or the restructuring of the magnetically stressed corona, indicated by the type II and IV bursts, can explain the detection of SEPs when flare-accelerated particles do not reach open magnetic field lines. But the mere presence of these radio signatures, especially of a metric type II burst, is not a sufficient condition for a major SEP event.  相似文献   

12.
C. Mercier 《Solar physics》1973,33(1):177-186
It is shown that coronal structures in which are excited type III bursts (observed with the Nançay radioheliograph) have a good correlation with existence of plage filaments.By accepting that type III bursts reveal the presence of coronal magnetic neutral sheets, an interpretation of results is proposed and discussed in relation with theories of formation of filaments from coronal neutral sheets. It is suggested that the delay of one day observed in several cases between the type III burst occurrence and the filament appearance may be of the order of the filament condensation time from the neutral sheet.  相似文献   

13.
The evolution of an X2.7 solar flare, that occurred in a complex β γ δ magnetic configuration region on 3 November 2003 is discussed by utilizing a multi-wavelength data set. The very first signature of pre-flare coronal activity is observed in radio wavelengths as a type III burst that occurred several minutes prior to the flare signature in Hα. This type III burst is followed by the appearance of a loop-top source in hard X-ray (HXR) images obtained from RHESSI. During the main phase of the event, Hα images observed from ARIES solar tower telescope, Nainital, reveal well-defined footpoint (FP) and loop-top (LT) sources. As the flare evolves, the LT source moves upward and the separation between the two FP sources increases. The co-alignment of Hα with HXR images shows spatial correlation between Hα and HXR footpoints, whereas the rising LT source in HXR is always located above the LT source seen in Hα. The evolution of LT and FP sources is consistent with the reconnection models of solar flares. The EUV images at 195 Å taken by SOHO/EIT reveal intense emission on the disk at the flaring region during the impulsive phase. Further, slow-drifting type IV bursts, observed at low coronal heights at two time intervals along the flare period, indicate rising plasmoids or loop systems. The intense type II radio burst at a time in between these type IV bursts, but at a relatively greater height, indicates the onset of CME and its associated coronal shock wave. The study supports the standard CSHKP model of flares, which is consistent with nearly all eruptive flare models. More importantly, the results also contain evidence for breakout reconnection before the flare phase.  相似文献   

14.
We study solar radio type II bursts combining with Wind/WAVES type II bursts and coronal mass ejections (CMEs). The aim of the present work is to investigate the effectiveness of shocks to cause type II bursts in the solar corona and the interplanetary space. We consider the following findings. The distribution of the cessation heights of type II emission is confined to a rather narrow range of height than the distribution of the heights of start frequencies. This is suggestive of the presence of a gradient for the Alfvén speed from the heliocentric height of ∼1.4 solar radii. The range of the kinetic energy of CMEs associated with coronal type II emission taken together with the suggested computation method and the Alfvén speed gradient, indicates the limit to the height up to which type II emission could be expected. This height is ∼2 solar radii from the center of the Sun. Further, the large time gap between the cessation time and heights of coronal type II emission and the commencement time and heights of most of the IP type II bursts do not account for the difference between the two heights and the average shock speed. Also, there is clear difference in the magnitude of the kinetic energies and the distinct characteristics of the CMEs associated with coronal and IP type II bursts. Hence, we suggest that in most instances the coronal type II bursts and IP type II bursts occur due to distinct shocks. We also address the question of the origin of type II bursts and discuss the possible explanation of observed results.  相似文献   

15.
Using the observed data for metric and hectometric type III radio bursts, the dependence of burst characteristics on the solar longitude has been examined over a wide frequency range. It is found that there exists an east-west asymmetry for the extension of metric type III bursts into hectometric wavelength range. In particular, hectometric bursts are rarely observed for solar flares associated with metric bursts eastward solar longitude 60°E. Furthermore, for eastern longitudes, the low frequency radio observations show a large dispersion in drift time interval.  相似文献   

16.
Ya. G. Tsybko 《Solar physics》1984,92(1-2):299-315
Type-IIIb, IIId, and III solar decametric radio bursts, being distinguished by the typical negative drift rate of their dynamic spectra, are compared. Observational data were obtained with a UTR-2 antenna during the period 1973–1982. During the analysis of the bursts of all these spectral varieties, the frequency drift time (drift delay) was measured in the ranges 25 to 12.5 MHz, 25 to 20 MHz, and 12.5 to 10 MHz. Durations of type-III bursts were determined at the harmonically-related frequencies of 25 and 12.5 MHz; radio source locations were also used.It is shown that these decametric bursts are distinctly divided into two groups: (1)type-IIIb chains of simple stria bursts and also normal type-III storm bursts observed at central regions constitute a group of events with a fast drifting spectrum; (2) type-III bursts from type-IIIb-III pairs and the limb variant of normal III bursts, as well as peculiar type-IIId chains of diffuse striae and related chains with an echo component, constitute a second group of events with comparatively slow drift rates.The first group of the phenomena is associated with the fundamental F frequency and the second one, with the harmonic H of the coronal plasma frequency. The results of the present investigation agree well with earlier conclusions on the harmonic origin of decametric chains and type-III bursts. Measurements of drift delays in narrow frequency ranges, an octave apart, as well as type-III burst durations at harmonically-related frequencies confirm the existence of both F and H components in the solar radiation. The essential result of 10 years of decametric observations is that the frequency drift rates and durations are rather stable parameters for the various type-III bursts and stria-burst chains. The stability characterizes some unspecified conditions of burst generation in the middle corona.  相似文献   

17.
Magnetic field structures of Hα flares associated with meter-wave type III bursts during periods of low solar activity in 1975 – 1977 and 1985 – 1987 were investigated. In a statistical analysis it was confirmed that the association rate depends less on flare importance than on brightness. For subflares (95% of the sample), the location of the Hα flare in the bipolar pattern turned out to be crucial for the association rate. It is almost one order of magnitude larger for flares occurring at the border of the active regions, compared to flares located inside the general bipolar pattern. For selected typical examples of flares, extrapolations of the measured magnetic fields were performed. By matching Hα filtergrams and calculated 3-D structures it was found that the positions at the border where the flares associated with type III bursts occurred were close to open field lines extending into the corona. In most investigated cases intrusions of parasitic polarity were found in the vicinity of the flare locations. The extrapolations showed that subflares located inside the bipolar pattern but have not been associated with type III bursts were covered by dense arcades of magnetic loops.  相似文献   

18.
The observational evidence is reviewed for the occurrence of type III solar radio bursts in pairs with frequency ratio two to one. We show that the observations can be explained under the hypothesis that there is a tendency for a type III burst to be followed by a second burst within approximately one second. This explanation leads to fewer difficulties than the hypothesis that type III bursts occur in pairs, one member being emitted at the fundamental of the local coronal plasma frequency, the other at its second harmonic. We conclude that in general, type III bursts are emitted at the second harmonic of the plasma frequency and that type III theories should account for this and only under very special circumstances (which are rare) for the emission at the fundamental and the second harmonic.  相似文献   

19.
Some statements recently published on the coronal structure related to type III bursts are discussed. The indirect approach based upon computed coronal magnetic field, as proposed by Kuiper (1973), is examined; it is concluded that some doubt exists about the suitability of this method. The problem of the relationship between the existence of filaments inside an active center and type III bursts production is analysed: considering the respective locations of flaring sites and filaments as well as their place inside the magnetic network of the active center, one cannot deduce any evidence of type III inhibition by filaments. There is no direct conclusive evidence of the association of type III's with known coronal structures. Some observations suggest that at least in some cases, the coronal streamers are involved.  相似文献   

20.
R. T. Stewart 《Solar physics》1984,92(1-2):343-350
The homology of seven successive type II solar radio bursts, which occurred at the times of flares from an active region near the solar west limb on 1980, July 27–29, is described, together with evidence for coronal mass outflows accompanying these bursts. It is argued that homologous type II bursts imply that the corona is restructured in a similar manner by successive coronal transients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号