首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main results of the SPIRIT experiment on imaging spectroscopy of the Sun in the soft X-ray and extreme vacuum UV range are presented. The results were obtained onboard the CORONAS-F satellite, which has been operating since July 2001. More than 40 thousand observation sessions were performed during the experiment. About a million solar images and spectra (more than 250 Gb of information) were obtained, including monotemperature images of the solar atmosphere in six spectral regions, corresponding to temperatures from 0.05 to 2 MK; full-Sun spectral images (spectroheliograms) in more than 150 lines (177–207 Å and 285–335 Å, T from ~0.05 to 20 MK); images of the full Sun in the monochrome Mg XII line (8.42 Å, T ~ 10 MK); images of the solar corona at a distance of up to five solar radii; continuous series (up to 20 days long) of observations with high time resolution (40–100 s); observations of the flare dynamics, including the preflare, initial, and main phases, with a resolution of 7 s, and data on the absorption of X-ray and XUV solar radiation in the upper atmosphere of the Earth. The study was performed for the maximum of the 11-year solar activity cycle and for its decrease phase.  相似文献   

2.
The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26?–?34 nm and 0.1?–?50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions – i.e., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26?–?34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1?–?7 nm band extracted from the SEM 0.1?–?50 nm channel.  相似文献   

3.
1–8 Å, 2–12 Å and 8–20 Å non-flare X-ray flux data and 9.1 cm spectroheliograms for 1237 days during the period July 1966 to June 1970 have been studied to derive physical models of λ < 20 Å X-ray emitting regions on the Sun under quiescent (non-flare) conditions. The preferred regions of emission below 20 Å which coincide with the coronal active regions characterised by enhanced 9.1 cm microwave emission are found to have temperature lying between 1.8 and 3 × 106 K, emission measure 1049–1050 and electron density 109-1010 per cc. The average area of an active region is 1020 cm2. A slow gradient of temperature and electron density is seen to exist around a region of peak activity, both temperature and electron density decreasing outwards. Based on the derived physical model of the emitting regions a new method is presented for calculating X-ray flux and spectral energy distribution in this wave length region using daily 9.1 cm solar spectroheliograms. The calculated values are in good agreement with the observed values.  相似文献   

4.
The correlation coefficients of the linear regression of six solar indices versus 10.7 cm radio flux F 10.7 were analysed in solar cycles 21, 22 and 23. We also analysed the interconnection between these indices and F 10.7 with help of approximation by polynomials of second order. The indices we have studied in this paper are: the relative sunspot numbers – SSN, 530.3 nm coronal line flux – F 530, the total solar irradiance – TSI, Mg II 280 nm core-to-wing ratio UV-index, the Flare Index – FI and the counts of flares. In most cases the regressions of these solar indices vs. F 10.7 are close to the linear regression except the moments of time near the minimums and maximums of the 11-year activity. For the linear regressions, we found that correlation coefficients K corr(t) for the solar indices vs. F 10.7 and SSN dropped to their minimum values twice during each 11-year cycle.  相似文献   

5.
The Global Ozone Monitoring Experiment (GOME) is the first of a series of European satellite instruments monitoring global ozone and other relevant trace constituents in the UV/visible spectral range. On 20 April 1995, the European Space Agency (ESA) launched the GOME from Kourou, French Guyana, aboard the second European Remote Sensing satellite (ERS-2). In order to obtain the geometric albedo from the backscattered terrestrial radiance measurements, a solar irradiance measurement sequence in the spectral range between 240 nm and 790 nm is carried out once every day. The GOME solar irradiance is recorded at a moderate spectral resolution (0.2–0.4 nm), thus providing an excellent opportunity to contribute to the long-term investigation of solar flux variation associated with the 11-year solar activity cycle from space, which started in 1978 with SBUV (Solar Backscatter UV Experiment) observations on Nimbus-7 and covers solar cycles 21 and 22. This paper briefly describes the GOME spectrometer and measurement mode which are relevant to the solar viewing. Preliminary results from the solar irradiance measurements between 1995 and 1997 and comparisons to SSBUV-8 (Shuttle SBUV) in January 1996 are presented. Solar activity indices used as proxies for solar flux variation are often used to find a correlation with observed variation in atmospheric quantities, for instance, total ozone. Initial results from the GOME Mgii (280 nm) and Caii K (393 nm) solar activity index calculation are presented and discussed. The coupling of solar irradiance variability to global change is a current source of scientific and public concern. This study shows that GOME/ERS-2 (1995–2001) and the next generation of European remote sensing instruments, SCIAMACHY and GOME/METOP, have the potential to provide continuity in the measurements of solar irradiance from space well into the next century.  相似文献   

6.
Solar five-minute oscillations have been detected in the power spectra of two six-day time intervals from soft X-ray measurements of the Sun observed as a star using the Extreme Ultraviolet Spectrophotometer (ESP) onboard the Solar Dynamics Observatory (SDO)/Extreme Ultraviolet Variability Experiment (EVE). The frequencies of the largest amplitude peaks were found to match the known low-degree (?=0?–?3) modes of global acoustic oscillations within 3.7 μHz and can be explained by a leakage of the global modes into the corona. Due to the strong variability of the solar atmosphere between the photosphere and the corona, the frequencies and amplitudes of the coronal oscillations are likely to vary with time. We investigated the variations in the power spectra for individual days and their association with changes of solar activity, e.g. with the mean level of the EUV irradiance, and its short-term variations caused by evolving active regions. Our analysis of samples of one-day oscillation power spectra for a 49-day period of low and intermediate solar activity showed little correlation with the mean EUV irradiance and the short-term variability of the irradiance. We suggest that some other changes in the solar atmosphere, e.g., magnetic fields and/or inter-network configuration may affect the mode leakage to the corona.  相似文献   

7.
Onboard the International Space Station (ISS), two instruments are observing the solar spectral irradiance (SSI) at wavelengths from 16 to 2900 nm. Although the ISS platform orientation generally precludes pointing at the Sun more than 10?–?14 days per month, in November/December 2012 a continuous period of measurements was obtained by implementing an ISS ‘bridging’ maneuver. This enabled observations to be made of the solar spectral irradiance (SSI) during a complete solar rotation. We present these measurements, which quantify the impact of active regions on SSI, and compare them with data simultaneously gathered from other platforms, and with models of spectral irradiance variability. Our analysis demonstrates that the instruments onboard the ISS have the capability to measure SSI variations consistent with other instruments in space. A comparison among all available SSI measurements during November–December 2012 in absolute units with reconstructions using solar proxies and observed solar activity features is presented and discussed in terms of accuracy.  相似文献   

8.
We analyze the light curves of the recent solar eclipses measured by the Herzberg channel (200?–?220 nm) of the Large Yield RAdiometer (LYRA) onboard Project for OnBoard Autonomy (PROBA2). The measurements allow us to accurately retrieve the center-to-limb variations (CLV) of the solar brightness. The formation height of the radiation depends on the observing angle, so the examination of the CLV provide information about a broad range of heights in the solar atmosphere. We employ the 1D NLTE radiative transfer COde for Solar Irradiance (COSI) to model the measured light curves and corresponding CLV dependencies. The modeling is used to test and constrain the existing 1D models of the solar atmosphere, e.g. the temperature structure of the photosphere and the treatment of the pseudo-continuum opacities in the Herzberg continuum range. We show that COSI can accurately reproduce not only the irradiance from the entire solar disk, but also the measured CLV. Hence it can be used as a reliable tool for modeling the variability of the spectral solar irradiance.  相似文献   

9.
We derive an occurrence frequency for white-light flares (WLF) of 15.5 ± 4.5 yr?1 during a 2.6 year period following the maximum of solar cycle 21. This compares with a frequency 5–6 yr?1 derived by McIntosh and Donnelly (1972) during solar cycle 20. We find that the higher frequency of the more recently observed WLFs is due to the availability of patrol data at shorter wavelengths (λ ? 4000 Å), where the contrast of the flare emission is increased; the improved contrast has allowed less energetic (and hence more frequently occurring) events to be classified as WLFs. We find that sufficient conditions for the occurrence of a WLF are: active region magnetic class = delta; sunspot penumbra class = K, with spot group area ≥ 500 millionths of the solar hemisphere; 1–8 Å X-ray burst class ≥ X2.  相似文献   

10.
Peter Foukal 《Solar physics》2012,279(2):365-381
We compare total solar irradiance (TSI) and ultraviolet (F uv) irradiance variation reconstructed using Ca?K facular areas since 1915, with previous values based on less direct proxies. Our annual means for 1925??C?1945 reach values 30??C?50?% higher than those presently used in IPCC climate studies. A high facula/sunspot area ratio in spot cycles 16 and 17 seems to be responsible. New evidence from solar photometry increases the likelihood of greater seventeenth century solar dimming than expected from the disappearance of magnetic active regions alone. But the large additional brightening in the early twentieth century claimed from some recent models requires complete disappearance of the magnetic network. The network is clearly visible in Ca K spectroheliograms obtained since the 1890s, so these models cannot be correct. Changes in photospheric effective temperature invoked in other models would be powerfully damped by the thermal inertia of the convection zone. Thus, there is presently no support for twentieth century irradiance variation besides that arising from active regions. The mid-twentieth century irradiance peak arising from these active regions extends 20 years beyond the early 1940s peak in global temperature. This failure of correlation, together with the low amplitude of TSI variation and the relatively weak effect of Fuv driving on tropospheric temperature, limits the role of solar irradiance variation in twentieth century global warming.  相似文献   

11.
G. Feulner 《Solar physics》2013,282(2):615-627
The Mauna Loa Observatory record of direct-beam solar irradiance measurements for the years 1958?–?2010 is analysed to investigate the variation of clear-sky terrestrial insolation with solar activity over more than four solar cycles. The raw irradiance data exhibit a marked seasonal cycle, extended periods of lower irradiance due to emissions of volcanic aerosols, and a long-term decrease in atmospheric transmission independent of solar activity. After correcting for these effects, it is found that clear-sky terrestrial irradiance typically varies by ≈?0.2±0.1 % over the course of the solar cycle, a change of the same order of magnitude as the variations of the total solar irradiance above the atmosphere. An investigation of changes in the clear-sky atmospheric transmission fails to find a significant trend with sunspot number. Hence there is no evidence for a yet unknown effect amplifying variations of clear-sky irradiance with solar activity.  相似文献   

12.
Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth’s atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth’s atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.  相似文献   

13.
The solar soft X-ray (XUV) radiation is important for upper atmosphere studies as it is one of the primary energy inputs and is highly variable. The XUV Photometer System (XPS) aboard the Solar Radiation and Climate Experiment (SORCE) has been measuring the solar XUV irradiance since March 2003 with a time cadence of 10 s and with about 70% duty cycle. The XPS measurements are between 0.1 and 34 nm and additionally the bright hydrogen emission at 121.6 nm. The XUV radiation varies by a factor of ∼2 with a period of ∼27 days that is due to the modulation of the active regions on the rotating Sun. The SORCE mission has observed over 20 solar rotations during the declining phase of solar cycle 23. The solar XUV irradiance also varies by more than a factor of 10 during the large X-class flares observed during the May–June 2003, October–November 2003, and July 2004 solar storm periods. There were 7 large X-class flares during the May–June 2003 storm period, 11 X-class flares during the October–November 2003 storm period, and 6 X-class flares during the July 2004 storm period. The X28 flare on 4 November 2003 is the largest flare since GOES began its solar X-ray measurements in 1976. The XUV variations during the X-class flares are as large as the expected solar cycle variations.  相似文献   

14.
The observations of the solar radio emission on September 11, 2001, with the RATAN-600 radio telescope (southern sector) at four centimeter wavelengths (1.92, 2.24, 2.74, and 3.21 cm) revealed synchronous brightenings in solar radio sources. These were identified on the solar photosphere with active regions that were spaced up to ~106 km apart (AR 9608 and AR 9616). We discuss manifestations of the possible mechanisms of synchronous brightenings in solar sources in a narrow microwave spectral band. The significant linear correlation (ρc = 0.84–0.92) between the relative fluxes of AR 9610 and AR 9608 at 1.92 and 2.24 cm and the significant linear correlation (ρc = 0.65–0.84) between the relative fluxes of AR 9606 and AR 9608 at 3.21 cm in a two-hour interval of observations are indicative of the interconnection between these active regions not only during flares and bursts, but also in the periods of their absence. This confirms the existence of a large-scale temporal component in the dynamics of the radio flux variations for these active regions. We found a difference between the temporal variations of the radio emission from the halo and the solar radio sources under consideration. The times of increase in the total solar soft X-ray (0.5–4.0 Å, 1.0–8.0 Å; GOES 8, GOES 10) flux are shown to coincide with the times of increase in the fluxes from the solar radio sources at short centimeter wavelengths.  相似文献   

15.
The solar extreme ultraviolet (EUV) irradiance, the dominant global energy source for Earth's atmosphere above 100 km, is not known accurately enough for many studies of the upper atmosphere. During the absence of direct solar EUV irradiance measurements from satellites, the solar EUV irradiance is often estimated at the 30–50% uncertainty level using both proxies of the solar irradiance and earlier solar EUV irradiance measurements, primarily from the Air Force Geophysics Laboratory (now Phillips Laboratory) rockets and Atmospheric Explorer (AE) instruments. Our sounding rocket measurements during solar cycle 22 include solar EUV irradiances below 120 nm with 0.2 nm spectral resolution, far ultraviolet (FUV) airglow spectra below 160 nm, and solar soft X-ray (XUV) images at 17.5 nm. Compared to the earlier observations, these rocket experiments provide a more accurate absolute measurement of the solar EUV irradiance, because these instruments are calibrated at the National Institute of Standards and Technology (NIST) with a radiometric uncertainty of about 8%. These more accurate sounding-rocket measurements suggest revisions of the previous reference AE–E spectra by as much as a factor of 2 at some wavelengths. Our sounding-rocket flights during the past several years (1988–1994) also provide information about solar EUV variability during solar cycle 22.  相似文献   

16.
In this work we investigate p‐mode power variation with solar atmosphere. To this aim, we use THÉMIS observations of the Na D1 (λ 5896 Å) and K (λ 7699 Å) spectral lines. While the formation heights of the K spectral line are essentially located in the photospheric layer, the formation heights of the Na D1 line span a much wider region: from photosphere up to chromosphere. Hence, we had the opportunity to infer p‐mode power variation up to the chromospheric layer. By analyzing power spectra obtained by temporal series at different points of the Na D1 and K spectral lines, we confirm and quantify the increase in p‐mode power towards higher atmospheric layers. Furthermore, the large span in formation heights of the Na D1 line induces a larger enhancement of p‐mode power with solar atmosphere compared to the K spectral line. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
With increasing solar activity since 2010, many flares from the backside of the Sun have been observed by the Extreme Ultraviolet Imager (EUVI) on either of the twin STEREO spacecraft. Our objective is to estimate their X-ray peak fluxes from EUVI data by finding a relation of the EUVI with GOES X-ray fluxes. Because of the presence of the Fe xxiv line at 192 Å, the response of the EUVI 195 Å channel has a secondary broad peak around 15 MK, and its fluxes closely trace X-ray fluxes during the rise phase of flares. If the flare plasma is isothermal, the EUVI flux should be directly proportional to the GOES flux. In reality, the multithermal nature of the flare and other factors complicate the estimation of the X-ray fluxes from EUVI observations. We discuss the uncertainties, by comparing GOES fluxes with the high cadence EUV data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We conclude that the EUVI 195 Å data can provide estimates of the X-ray peak fluxes of intense flares (e.g., above M4 in the GOES scale) to small uncertainties. Lastly we show examples of intense flares from regions far behind the limb, some of which show eruptive signatures in AIA images.  相似文献   

18.
The purpose of this paper is to present the correlation of seasonal variation of 5893 Å line intensity with relative sunspot numbers, solar flare numbers and the variable component of 10.7 cm solar flux. A study has been made and the following important results have been obtained.
  1. The intensity of 5893 Å line at Calcutta shows periodic variation with different solar parameters during descending part of secondary peak of 21st solar cycle (1984–1985).
  2. 5893 Å line intensity of Mt. Abu also shows periodic variation with solar parameters during the period 1965–1968 when there was a peak phase of 20th solar cycle.
  3. A possible explanation for such type of variation is also presented.
  相似文献   

19.
Spectroheliograms and disk-integrated flux monitoring in the strong resonance line of Ca ii (K line) provide the longest record of chromospheric magnetic plages. We compare recent reductions of the Ca ii K spectroheliograms obtained since 1907 at the Kodaikanal, Mt. Wilson, and US National Solar Observatories. Certain differences between the individual plage indices appear to be caused mainly by differences in the spectral passbands used. Our main finding is that the indices show remarkably consistent behavior on the multidecadal time scales of greatest interest to global warming studies. The reconstruction of solar ultraviolet flux variation from these indices differs significantly from the 20th-century global temperature record. This difference is consistent with other findings that, although solar UV irradiance variation may affect climate through influence on precipitation and storm tracks, its significance in global temperature remains elusive.  相似文献   

20.
S. D. Bouwer 《Solar physics》1992,142(2):365-389
Using a dynamic power spectral analysis technique, the time-varying nature of solar periodicities is investigated for background X-ray flux, 10.7 cm flux, several indices to UV chromospheric flux, total solar irradiance, projected sunspot areas, and a sunspot blocking function. Many prior studies by a host of authors have differed over a wide range on solar periodicities. This investigation was designed to help resolve the differences by examining how periodicities change over time, and how the power spectra of solar data depend on the layer of the solar atmosphere. Using contour diagrams that show the percent of total power over time for periods ranging from 8 to 400 days, the transitory nature of solar periodicities is demonstrated, including periods at 12–14, 26–28, 51–52, and approximately 154 days. Results indicate that indices related to strong magnetic fields show the greatest variation in the number of periodicities, seldom persist for more than three solar rotations, and are highly variable in their frequency and amplitude. Periodicities found in the chromospheric indices are fewer, persist for up to 8–12 solar rotations, and are more stable in their frequency and amplitude. An additional result, found in all indices to varying degrees and related to the combined effects of solar rotation and active region evolution, is the fashion in which periodicities vary from about 20 to 36 days. I conclude that the solar data examined here are both quasi-periodic and quasistationary, with chromospheric indices showing the longest intervals of stationarity, and data representing strong magnetic fields showing the least stationarity. These results may have important implications to the results of linear statistical analysis techniques that assume stationarity, and in the interpretation of time series studies of solar variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号