首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Summary  Turbulent fluxes of CO2 were continuously measured by eddy correlation for three months in 1997 over a gramineous fen in a high-arctic environment at Zackenberg (74°28′12″N, 20°34′23″W) in NE-Greenland. The measurements started on 1 June, when there was still a 1–2 m cover of dry snow, and ended 26 August at a time that corresponds to late autumn at this high-arctic site. During the 20-day period with snow cover, fluxes of CO2 to the atmosphere were small, typically 0.005 mg CO2 m−2 s−1 (0.41 g CO2 m−2 d−1), wheres during the thawed period, the fluxes displayed a clear diurnal variation. During the snow-free period, before the onset of vegetation growth, fluxes of CO2 to the atmosphere were typically 0.1 mg CO2 m−2 s−1 in the afternoon, and daily sums reached values up to almost 9 g CO2 m−2 d−1. After 4 July, downward fluxes of CO2 increased, and on sunny days in the middle of the growing season, the net ecosystem exchange rates attained typical values of about −0.23 mg m−2 s−1 at midday and max values of daily sums of −12 g CO2 m−2 d−1. Throughout the measured period the fen ecosystem acted as a net-sink of 130 g CO2 m−2. Modelling the ecosystem respiration during the season corresponded well with eddy correlation and chamber measurements. On the basis of the eddy correlation data and the predicted respiration effluxes, an estimate of the annual CO2 balance the calender year 1997 was calculated to be a net-sink of 20 g CO2 m−2 yr−1. Received October 6, 1999 Revised May 2, 2000  相似文献   

2.
Summary  Net ecosystem CO2 exchange was measured over a mountain birch forest in northern Finland throughout the growing season. The maximal net CO2 uptake rate of about − 0.5 mg(CO2) m−2 s−1 was observed at the end of July. The highest nocturnal respiration rates in early August were 0.2 mg(CO2) m−2 s−1. The daily CO2 balances during the time of maximal photosynthesis were about −15 g(CO2) m−2 d−1. The mountain birch forest acted as a net sink of CO2 from 30 June to 28 August. During that period the net CO2 balance was −448 g(CO2)m−2. The interannual representativeness of the observed balances was studied using a simplified daily balance model, with daily mean global radiation and air temperature as the input parameters. The year-to-year variation in the phenological development was parameterised as a function of the cumulative effective temperature sum. The daily balance model was used for estimating the variability in the seasonal CO2 balances due to the timing of spring and meteorological factors. The sink term of CO2 in 1996 was lower than the 15-year mean, mainly due to the relatively late emergence of the leaves. Received October 11, 1999 Revised April 25, 2000  相似文献   

3.
Summary  Measurements of landscape-scale methane emission were made over an aapa mire near Kaamanen in Finnish Lapland (69° 8′ N, 27° 16′ E, 155 m ASL). Emissions were measured during the spring thaw, in summer and in autumn. No effect of water table position on CH4 emission was found as the water table remained at or above the surface of the peat. Methane emission fluxes increased with surface temperature from which an activation energy of −99 kJ mol−1 was obtained. Annual emission from the site, modelled from temperature regression and short-term flux measurements made in three separate years, was calculated to be 5.5 ± 0.4 g CH4 m−2 y−1 of which 0.6 ± 0.1 g CH4 m−2 y−1 (11%) was released during the spring thaw which lasted 20 to 30 days. The effect of global warming on the CH4 budget of the site was estimated using the central scenario of the SILMU (Finnish Research Programme on Climate Change) model which predicts annual mean temperature increases of 1.2, 2.4 and 4.4 °C in 2020, 2050 and 2100, respectively. Maximum enhancements in CH4 emission due to warming were calculated to be 18, 40 and 84% for 2020, 2050 and 2100, respectively. Actual increases may be smaller because prediction of changes in water table are highly uncertain. Received September 17, 1999 Revised October 16, 2000  相似文献   

4.
Vertical turbulent fluxes of water vapour, carbon dioxide, and sensible heat were measured from 16 August to the 28 September 2006 near the city centre of Münster in north-west Germany. In comparison to results of measurements above homogeneous ecosystem sites, the CO2 fluxes above the urban investigation area showed more peaks and higher variances during the course of a day, probably caused by traffic and other varying, anthropogenic sources. The main goal of this study is the introduction and establishment of a new gap filling procedure using radial basis function (RBF) neural networks, which is also applicable under complex environmental conditions. We applied adapted RBF neural networks within a combined modular expert system of neural networks as an innovative approach to fill data gaps in micrometeorological flux time series. We found that RBF networks are superior to multi-layer perceptron (MLP) neural networks in the reproduction of the highly variable turbulent fluxes. In addition, we enhanced the methodology in the field of quality assessment for eddy covariance data. An RBF neural network mapping system was used to identify conditions of a turbulence regime that allows reliable quantification of turbulent fluxes through finding an acceptable minimum of the friction velocity. For the data analysed in this study, the minimum acceptable friction velocity was found to be 0.15 m s−1. The obtained CO2 fluxes, measured on a tower at 65 m a.g.l., reached average values of 12 μmol m−2 s−1 and fell to nighttime minimum values of 3 μmol m −2 s−1. Mean daily CO2 emissions of 21 g CO2 m−2d −1 were obtained during our 6-week experiment. Hence, the city centre of Münster appeared to be a significant source of CO2. The half-hourly average values of water vapour fluxes ranged between 0.062 and 0.989 mmol m−2 s−1and showed lower variances than the simultaneously measured fluxes of CO2.  相似文献   

5.
Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.  相似文献   

6.
锡林浩特草原CO2通量特征及其影响因素分析   总被引:1,自引:0,他引:1  
利用锡林浩特国家气候观象台开路涡度相关系统、辐射土壤观测系统,测得的长期连续通量观测数据,对锡林浩特草原2009—2011年期间的CO2通量观测特征进行了分析。结果表明:CO2通量存在明显的年际、季节和日变化特征。3 a中NEE年际变率达到200 g·m-2,季节变率最大达到460 g·m-2,日变化幅度生长季最大达到0.25 mg·m-2·s-1。通过不同时间尺度碳通量与温度、水分、辐射等环境因子的分析,认为CO2通量日变化主要受温度和光合有效辐射影响,而季节变化和年变化主要受降水和土壤含水量的影响。降水强度及时间分布是制约牧草CO2吸收的关键因素,大于15%的土壤含水量有利于促进牧草生长。  相似文献   

7.
The results of one year’s monitoring in Srednja Bijambarska Cave (Bosnia and Herzegovina) are presented and discussed. Temporal variations of the carbon dioxide (CO2) concentration are controlled by the switching between two ventilation regimes driven by outside temperature changes. A regression model with a simple perfectly mixed volume applied to a cave sector (“Music hall”) resulted in an estimate of ventilation rates between 0.02 h−1 and 0.54 h−1. Carbon dioxide input per plan surface unit is estimated by the model at around 50 × 10−6 mh−1 during the winter season and up to more than 1000 × 10−6 mh−1 during the first temperature falls at the end of summer (0.62 μmoles m−2 s−1 and 12.40 μmoles m−2 s−1 for normal conditions respectively). These values have been found to be related to the cave ventilation rate and dependent on the availability of CO2 in the surrounding environment. For airflow close to zero the values of CO2 input per plan surface have a range in the order of magnitude of a few units × 10−6 mh−1. Based on two experiments, the anthropogenic contribution from cave visitors has been calculated, at between 0.35 lCO2 min−1 person−1 and 0.45 lCO2min−1person−1.  相似文献   

8.
Aerosol and rain samples were collected between 48°N and 55°S during the KH-08-2 and MR08-06 cruises conducted over the North and South Pacific Ocean in 2008 and 2009, to estimate dry and wet deposition fluxes of atmospheric inorganic nitrogen (N). Inorganic N in aerosols was composed of ~68% NH4+ and ~32% NO3 (median values for all data), with ~81% and ~45% of each species being present on fine mode aerosol, respectively. Concentrations of NH4+ and NO3 in rainwater ranged from 1.7–55 μmol L−1 and 0.16–18 μmol L−1, respectively, accounting for ~87% by NH4+ and ~13% by NO3 of total inorganic N (median values for all data). A significant correlation (r = 0.74, p < 0.05, n = 10) between NH4+ and methanesulfonic acid (MSA) was found in rainwater samples collected over the South Pacific, whereas no significant correlations were found between NH4+ and MSA in rainwater collected over the subarctic (r = 0.42, p > 0.1, n = 6) and subtropical (r = 0.33, p > 0.5, n = 6) western North Pacific, suggesting that emissions of ammonia (NH3) by marine biological activity from the ocean could become a significant source of NH4+ over the South Pacific. While NO3 was the dominant inorganic N species in dry deposition, inorganic N supplied to surface waters by wet deposition was predominantly by NH4+ (42–99% of the wet deposition fluxes for total inorganic N). We estimated mean total (dry + wet) deposition fluxes of atmospheric total inorganic N in the Pacific Ocean to be 32–64 μmol m−2 d−1, with 66–99% of this by wet deposition, indicating that wet deposition plays a more important role in the supply of atmospheric inorganic N than dry deposition.  相似文献   

9.
Summary  The carbon dioxide exchange in arctic and subarctic terrestrial ecosystems has been measured using the eddy-covariance method at sites representing the latitudinal and longitudinal extremes of the European Arctic sea areas as part of the Land Arctic Physical Processes (LAPP) project. The sites include two fen (Kaamanen and Kevo) and one mountain birch ecosystems in subarctic northern Finland (69° N); fen, heathland, and snowbed willow ecosystems in northeastern Greenland (74° N); and a polar semidesert site in Svalbard (79° N). The measurement results, which are given as weekly average diurnal cycles, show the striking seasonal development of the net CO2 fluxes. The seasonal periods important for the net CO2 fluxes, i.e. winter, thaw, pre-leaf, summer, and autumn can be identified from measurements of the physical environment, such as temperature, albedo, and greenness. During the late winter period continuous efflux is observed at the permafrost-free Kaamanen site. At the permafrost sites, efflux begins during the thaw period, which lasts about 3–5 weeks, in contrast to the Kaamanen site where efflux continues at the same rate as during the winter. Seasonal efflux maximum is during the pre-leaf period, which lasts about 2–5 weeks. The summer period lasts 6 weeks in NE Greenland but 10–14 weeks in northern Finland. During a high summer week, the mountain birch ecosystem had the highest gross photosynthetic capacity, GP max, followed by the fen ecosystems. The polar semidesert ecosystem had the lowest GP max. By the middle of August, noon uptake fluxes start to decrease as the solar elevation angle decreases and senescence begins within the vascular plants. At the end of the autumn period, which lasts 2–5 weeks, topsoil begins to freeze at the end of August in Svalbard; at the end of September at sites in eastern Greenland; and one month later at sites in northern Finland. Received March 1, 2000 Revised October 2, 2000  相似文献   

10.
CO2 fluxes were measured continuously for three years (2003?C2005) using the eddy covariance technique for the canopy layer with a height of 27 m above the ground in a dominant subtropical evergreen forest in Dinghushan, South China. By applying gapfilling methods, we quantified the different components of the carbon fluxes (net ecosystem exchange (NEE)), gross primary production (GPP) and ecosystem respiration (Reco) in order to assess the effects of meteorological variables on these fluxes and the atmospherecanopy interactions on the forest carbon cycle. Our results showed that monthly average daily maximum net CO2 exchange of the whole ecosystem varied from ?3.79 to ?14.24 ??mol m?2 s?1 and was linearly related to photosynthetic active radiation. The Dinghushan forest acted as a net carbon sink of ?488 g C m?2 y?1, with a GPP of 1448 g Cm?2 y?1, and a Reco of 961 g C m?2 y?1. Using a carboxylase-based model, we compared the predicted fluxes of CO2 with measurements. GPP was modelled as 1443 g C m?2 y?1, and the model inversion results helped to explain ca. 90% of temporal variability of the measured ecosystem fluxes. Contribution of CO2 fluxes in the subtropical forest in the dry season (October-March) was 62.2% of the annual total from the whole forest ecosystem. On average, 43.3% of the net annual carbon sink occurred between October and December, indicating that this time period is an important stage for uptake of CO2 by the forest ecosystem from the atmosphere. Carbon uptake in the evergreen forest ecosystem is an indicator of the interaction of between the atmosphere and the canopy, especially in terms of driving climate factors such as temperature and rainfall events. We found that the Dinghushan evergreen forest is acting as a carbon sink almost year-round. The study can improve the evaluation of the net carbon uptake of tropical monsoon evergreen forest ecosystem in south China region under climate change conditions.  相似文献   

11.
PM10 samples were collected over three years at Monzenmachi, the Japan Sea coast, the Noto Peninsula, Ishikawa, Japan from January 17, 2001 to December 18, 2003, using a high volume air sampler with quartz filters. The concentrations of the water-soluble inorganic ions in PM10 were determined with using ion chromatography. By analyzing the characteristics of these, the evidences were found that the Asian outflow had an obviously influence on the air quality at our study site. The results were as follows: the secondary pollutants SO42−, NO3 and NH4+ were the primary water-soluble inorganic ions at our study site. The monthly mean concentrations of SO42−, NH4+, NO3 and Ca2+ have prominent peak in spring due to the strong influence of the Asian continent outflow—these according to backward air trajectory analysis, the maximum of which were 6.09 for nss-SO42− in May, 2.87 for NO3 and 0.68 μg m−3 for nss-Ca2+ in April, respectively. Comparable to similar data reported from various points around East Asia, it had the characteristics of a polluted coastal area at our study site. The concentration of nss-Ca2+ in PM10 drastically increased when the Asian dust invaded, the mean value during the Asian dust days(AD) was 0.86 μg m−3, about 4 times higher than those of normal days (NAD). Meanwhile, the mean concentrations of nss-SO42−, NO3 and NH4+ in AD periods were higher than those in NAD periods which were 5.87, 1.76 and 1.82 μg m−3, respectively, it is due to the interaction between dust and secondary particles during the long-range transport of dust storms. Finally, according to the source apportionment with positive matrix factorization (PMF) method in this study, the major source profiles of PM10 at our study site were categorized as (1) marine salt, (2) secondary sulfate, (3) secondary nitrate and (4) crustal source.  相似文献   

12.
Continuous weekly monitoring on the concentration of gases and aerosols in urban ambient air by a four-stage filter-pack method was carried out for 7 years in order to study not only the acid-base balance of acid-related (HNO3, NO3 , and non-sea-salt-(nss-)SO4 2−) and alkali-related (NH3, NH4 +, and nss-Ca2+) chemical species but also its influence on the acidification of precipitation. The concentrations of the total nitrate (= NO3 + HNO3) and nss-SO42− showed a similar seasonal variation: high in the summer and low in the winter. The total nitrate and nss-SO42− accounted for 0.43 and 0.57 of the acid-related species, respectively, on an equivalent basis. The total ammonium (= NH3 + NH4+) accounted for more than 0.9 of the alkali-related species, except for a springtime nss-Ca2+ episodic peak. The alkali-related species were generally overabundant compared with the acid-related species in the HNO3-NO3-nss-SO42−-NH3-NH4+-nss-Ca2+ system. The alkali-rich distribution was especially pronounced in the winter, but the acid-related species was comparable to the alkali-related species in the summer, which was attributed to the larger H+ deposition by precipitation in the summer. This study can provide a methodology to associate survey results obtained by a filter-pack method with those of precipitation.  相似文献   

13.
Concentrations of manganese in 56 rain events in Wilmington, NC, USA rainwater from April 1, 2005 to March 31, 2006 were 11 ± 3 nM for dissolved Mn and 1.2 ± 0.4 nM for particulate Mn. Concentrations of both forms of Mn were higher in terrestrial storms relative to marine events. This observation along with the positive correlation of Mn with pollutant indicators suggests anthropogenic inputs to rain at this location, as has been observed at other locations. The ratio of Mnpart/Mndiss was threefold larger in summer relative to winter rain, which matched the increase of particulate to dissolved Fe in rainwater suggesting influence of Saharan dust during the summer. Like Fe in rain, Mn undergoes photoreduction in rainwater, which has also been shown to be important in Mn cycling in seawater. The flux of Mn removed from the atmosphere via wet deposition is 1.5 × 10−5 moles m−2 yr−1 at this location, which is approximately twice the flux reported from two rainwater studies conducted in the early 1980s on Bermuda. Atmospheric input of Mn to the oceans is important because Mn like Fe is an essential and potentially limiting nutrient. Experiments mixing authentic rainwater and seawater demonstrate that rainwater dissolved Mn does not rapidly precipitate in seawater suggesting wet deposition is an important source of soluble, stable Mn to surface seawater.  相似文献   

14.
Turf-grass lawns are ubiquitous in the United States. However direct measurements of land–atmosphere fluxes using the eddy-covariance method above lawn ecosystems are challenging due to the typically small dimensions of lawns and the heterogeneity of land use in an urbanised landscape. Given their typically small patch sizes, there is the potential that CO2 fluxes measured above turf-grass lawns may be influenced by nearby CO2 sources such as passing traffic. In this study, we report on two years of eddy-covariance flux measurements above a 1.5 ha turf-grass lawn in which we assess the contribution of nearby traffic emissions to the measured CO2 flux. We use winter data when the vegetation was dormant to develop an empirical estimate of the traffic effect on the measured CO2 fluxes, based on a parametrised version of a three-dimensional Lagrangian footprint model and continuous traffic count data. The CO2 budget of the ecosystem was adjusted by 135gCm−2 in 2007 and by 134gCm−2 in 2008 to determine the natural flux, even though the road crossed the footprint only at its far edge. We show that bottom-up flux estimates based on CO2 emission factors of the passing vehicles, combined with the crosswind-integrated footprint at the distance of the road, agreed very well with the empirical estimate of the traffic contribution that we derived from the eddy-covariance measurements. The approach we developed may be useful for other sites where investigators plan to make eddy-covariance measurements on small patches within heterogeneous landscapes where there are significant contrasts in flux rates. However, we caution that the modelling approach is empirical and will need to be adapted individually to each site.  相似文献   

15.
Campaigns were conducted to measure Organic Carbon (OC) and Elemental Carbon (EC) in PM2.5 during winter and summer 2003 in Beijing. Modest differences of PM2.5 and PM10 mean concentrations were observed between the winter and summer campaigns. The mean PM2.5/PM10 ratio in both seasons was around 60%, indicating PM2.5 contributed significantly to PM10. The mean concentrations of OC and EC in PM2.5 were 11.2±7.5 and 6.0±5.0μg m-3 for the winter campaign, and 9.4±2.1 and 4.3±3.0 μg m-3 for the summer campaign, respectively. Diurnal concentrations of OC and EC in PM2.5 were found high at night and low during the daytime in winter, and characterized by an obvious minimum in the summer afternoon. The mean OC/EC ratio was 1.87±0.09 for winter and Z39±0.49 for summer. The higher OC/EC ratio in summer indicates some formation of Secondary Organic Carbon (SOC). The estimated SOC was 2.8 μg m-3 for winter and 4.2μg m-3 for summer.  相似文献   

16.
Comprehensive diagnostic comparisons and evaluations have been carried out with the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and European Centre for Medium Range Weather Forecasts (ECMWF) reanalyses of the vertically integrated atmospheric energy budgets. For 1979 to 1993 the focus is on the monthly means of the divergence of the atmospheric energy transports. For February 1985 to April 1989, when there are reliable top-of-the-atmosphere (TOA) radiation data from the Earth Radiation Budget Experiment (ERBE), the implied monthly mean surface fluxes are derived and compared with those from the assimilating models and from the Comprehensive Ocean Atmosphere Data Set (COADS), both locally and zonally integrated, to deduce the implied ocean meridional heat transports. While broadscale aspects and some details of both the divergence of atmospheric energy and the surface flux climatological means are reproducible, especially in the zonal means, differences are also readily apparent. Systematic differences are typically ∼20 W m−2. The evaluation highlights the poor results over land. Land imbalances indicate local errors in the divergence of the atmospheric energy transports for monthly means on scales of 500 km (T31) of 30 W m−2 in both reanalyses and ∼50 W m−2 in areas of high topography and over Antarctica for NCEP/NCAR. Over the oceans in the extratropics, the monthly mean anomaly time series of the vertically integrated total energy divergence from the two reanalyses correspond reasonably well, with correlations exceeding 0.7. A common monthly mean climate signal of about 40 W m−2 is inferred along with local errors of 25 to 30 W m−2 in most extratropical regions. Except for large scales, there is no useful common signal in the tropics, and reproducibility is especially poor in regions of active convection and where stratocumulus prevails. Although time series of monthly anomalies of surface bulk fluxes from the two models and COADS agree very well over the northern extratropical oceans, the total fields all contain large systematic biases which make them unsuitable for determining ocean heat transports. TOA biases in absorbed shortwave, outgoing longwave and net radiation from both reanalysis models are substantial (>20 W m−2 in the tropics) and indicate that clouds are a primary source of problems in the model fluxes, both at the surface and the TOA. Time series of monthly COADS surface fluxes are shown to be unreliable south of about 20N where there are fewer than 25 observations per 5 square per month. Only the derived surface fluxes give reasonable implied meridional ocean heat transports. Received: 21 March 2000 / Accepted: 21 June 2000  相似文献   

17.
Summary One of the great unknowns in climate research is the contribution of aerosols to climate forcing and climate perturbation. In this study, retrievals from AERONET are used to estimate the direct clear-sky aerosol top-of-atmosphere and surface radiative forcing effects for 12 multi-site observing stations in Europe. The radiative transfer code sdisort in the libRadtran environment is applied to accomplish these estimations. Most of the calculations in this study rely on observations which have been made for the years 1999, 2000, and 2001. Some stations do have observations dating back to the year of 1995. The calculations rely on a pre-compiled aerosol optical properties database for Europe. Aerosol radiative forcing effects are calculated with monthly mean aerosol optical properties retrievals and calculations are presented for three different surface albedo scenarios. Two of the surface albedo scenarios are generic by nature bare soil and green vegetation and the third relies on the ISCCP (International Satellite Cloud Climatology Project) data product. The ISCCP database has also been used to obtain clear-sky weighting fractions over AERONET stations. The AERONET stations cover the area 0° to 30° E and 42° to 52° N. AERONET retrievals are column integrated and this study does not make any seperation between the contribution of natural and anthropogenic components. For the 12 AERONET stations, median clear-sky top-of-atmosphere aerosol radiative forcing effect values for different surface albedo scenarios are calculated to be in the range of −4 to −2 W/m2. High median radiative forcing effect values of about −6 W/m2 were found to occur mainly in the summer months while lower values of about −1 W/m2 occur in the winter months. The aerosol surface forcing also increases in summer months and can reach values of −8 W/m2. Individual stations often have much higher values by a factor of 2. The median top-of-atmosphere aerosol radiative forcing effect efficiency is estimated to be about −25 W/m2 and their respective surface efficiency is around −35 W/m2. The fractional absorption coefficient is estimated to be 1.7, but deviates significantly from station to station. In addition, it is found that the well known peak of the aerosol radiative forcing effect at a solar zenith angle of about 75° is in fact the average of the peaks occurring at shorter and longer wavelengths. According to estimations for Central Europe, based on mean aerosol optical properties retrievals from 12 stations, the critical threshold of the aerosol single scattering albedo, between cooling and heating in the presence of an aerosol layer, is close between 0.6 and 0.76.  相似文献   

18.
 To study glacial termination and related feedback mechanisms, a continental ice dynamics model is globally and asynchronously coupled to a physical climate (atmosphere-ocean-sea ice) model. The model performs well under present-day, 11 kaBP (thousand years before present) and 21 kaBP perpetual forcing. To address the ice-sheet response under the effects of both perpetual orbital and CO2 forcing, sensitivity experiments are conducted with two different orbital configurations (11 kaBP and 21 kaBP) and two different atmospheric CO2 concentrations (200 ppmv and 280 ppmv). This study reveals that, although both orbital and CO2 forcing have an impact on ice-sheet maintenance and deglacial processes, and although neither acting alone is sufficient to lead to complete deglaciation, orbital forcing seems to be more important. The CO2 forcing has a large impact on climate, not uniformly or zonally over the globe, but concentrated over the continents adjacent to the North Atlantic. The effect of increased CO2 (from 200 ppmv to 280 ppmv) on surface air temperature has its peak there in winter associated with a reduction in sea-ice extent in the northern North Atlantic. These changes are accompanied by an enhancement in the intensity of the meridional overturning and poleward ocean heat transport in the North Atlantic. On the other hand, the effect of orbital forcing (from 21 kaBP to 11 kaBP) has its peak in summer. Since the summer temperature, rather than winter temperature, is found to be dominant for the ice-sheet mass balance, orbital forcing has a larger effect than CO2 forcing in deglaciation. Warm winter sea surface temperature arising from increased CO2 during the deglaciation contributes to ice-sheet nourishment (negative feedback for ice-sheet retreat) through slightly enhanced precipitation. However, the precipitation effect is totally overwhelmed by the temperature effect. Our results suggest that the last deglaciation was initiated through increasing summer insolation with CO2 providing a powerful feedback. Received: 22 February 2000 / Accepted: 17 September 2000  相似文献   

19.
Results from large-eddy simulations and field measurements have previously shown that the velocity field is influenced by the boundary layer height, z i , during close to neutral, slightly unstable, atmospheric stratification. During such conditions the non-dimensional wind profile, φ m , has been found to be a function of both z/L and z i /L. At constant z/L, φ m decreases with decreasing boundary layer height. Since φ m is directly related to the parameterizations of the air–sea surface fluxes, these results will have an influence when calculating the surface fluxes in weather and climate models. The global impact of this was estimated using re-analysis data from 1979 to 2001 and bulk parameterizations. The results show that the sum of the global latent and sensible mean heat fluxes increase by 0.77 W m−2 or about 1% and the mean surface stress increase by 1.4 mN m−2 or 1.8% when including the effects of the boundary layer height in the parameterizations. However, some regions show a larger response. The greatest impact is found over the tropical oceans between 30°S and 30°N. In this region the boundary layer height influences the non-dimensional wind profile during extended periods of time. In the mid Indian Ocean this results in an increase of the mean annual heat fluxes by 2.0 W m−2 and an increase of the mean annual surface stress by 2.6 mN m−2.  相似文献   

20.
Summary This paper characterizes Mesoscale Convective Systems (MCSs) during 2001 over Iberia and the Balearic Islands and their meteorological settings. Enhanced infrared Meteosat imagery has been used to detect their occurrence over the Western Mediterranean region between June and December 2001 according to satellite-defined criteria based on the MCS physical characteristics. Twelve MCSs have been identified. The results show that the occurrence of 2001 MCSs is limited to the August–October period, with September being the most active period. They tend to develop during the late afternoon or early night, with preferred eastern Iberian coast locations and eastward migrations. A cloud shield area of 50.000 km2 is rarely exceeded. When our results are compared with previous studies, it is possible to assert that though 2001 MCS activity was moderate, the convective season was substantially less prolonged than usual, with shorter MCS life cycles and higher average speeds. The average MCS precipitation rate was 3.3 mm·h−1 but a wide range of values varying from scarce precipitation to intense events of 130 mm·24 h−1 (6 September) were collected. The results suggest that, during 2001, MCS rainfall was the principal source of precipitation in the Mediterranean region during the convective season, but its impact varied according to the location. Synoptic analysis based on NCEP/NCAR reanalysis show that several common precursors could be identified over the Western Mediterranean Sea when the 2001 MCSs occurred: a low-level tongue of moist air and precipitable water (PW) exceeding 25 mm through the southern portion of the Western Mediterranean area, low-level zonal warm advection over 2 °C·24 h−1 towards eastern Iberia, a modest 1000–850 hPa equivalent potential temperature (θe) difference over 20 °C located close to the eastern Iberian coast, a mid level trough (sometimes a cut-off low) over Northern Africa or Southern Spain and high levels geostrophic vorticity advection exceeding 12·10−10 s−2 over eastern Iberia and Northern Africa. Finally, the results suggest that synoptic, orographic and a warm-air advection were the most relevant forcing mechanisms during 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号