首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metal in seven Type III carbonaceous chondrites has been measured for concentrations of Ni, Co and Cr. Cobalt in kamacite is 3.2 to 5.5 times greater than in taenite on composite grains containing both phases. No correlation was found between the metal compositions and sub-type classification. Ni and Co contents of kamacite from several of the Type III's studied fall outside of the range for these elements in bulk meteoritic metal and are relevant to the assignment of a meteoritic vs a non-meteoritic origin for lunar metal particles in the fines and breccias.  相似文献   

2.
The lunar crust at the Apollo 16 landing site contains substantial amounts of a “primitive component” in which the ferromagnesian group of elements is concentrated. The composition of this component can be retrieved via an analysis of mixing relationships displayed by lunar breccias. It is found to be a komatiite which is compositionally similar to terrestrial komatiites both in major and minor elements. The komatiite component of the lunar crust is believed to have formed by extensive degrees of melting of the lunar interior at depths greater than were involved in the formation of the lunar magma ocean which was parental to the crust. After formation of the anorthositic crust, it was invaded by extensive flows and intrusions of komatiite magma from these deeper source regions. The komatiites became intimately mixed with the anorthosite by intensive meteoroid impacts about 4.5 b.y. ago, thereby accounting for the observed mixing relationships displayed by the crust. The compositional similarity between lunar and terrestrial komatiites strongly implies a corresponding similarity between the compositions of their source regions in the lunar interior and the Earth's upper mantle. The composition of the lunar interior can be modelled more specifically by combining the komatiite composition with its liquidus olivine composition (as determined experimentally) in proportions chosen so as to produce a cosmochemically acceptable range of Mg/Si ratios for the bulk Moon. Except for higher FeO and lower Na2O, the range of compositions thereby obtained for the bulk moon is very similar to the composition of the Earth's upper mantle.The effects of meteoritic contamination on the abundances of cobalt and nickel in lunar highland breccias were subtracted on the assumption that the contaminating projectiles were chondritic. The cobalt and nickel residuals thereby obtained were found to correlate strongly with the (Mg + Fe) content of the breccias, demonstrating that the Co and Ni are associated with the ferromagnesian component of the breccias and are genuinely indigenous to the Moon. The lunar highland Co and Ni residuals also display striking Ni/Co versus Ni correlations which follow a similar trend to those displayed by terrestrial basalts, picrites and komatiites. The lunar trends provide further decisive evidence of the indigenous nature of the Co and Ni residuals and suggest the operation of extensive fractionation controlled by olivine-liquid equilibria in producing the primitive component of the lunar breccias. Indigenous nickel abundances at the Apollo 14, 15 and 17 sites are much lower than at the Apollo 16 site, although rocks from all sites follow the same Ni/Co versus Ni trends. It is suggested that the primitive component at the Apollo 14, 15 and 17 sites was generally of basaltic composition, in contrast to the komatiitic nature of the Apollo 16 primitive component.  相似文献   

3.
Two volcanic cycles can be distinguished, in the Pontid magmatic arc. They comprise an Upper Cretaceous, Lower Volcanic Cycle of which only the waning stage contains abundant pyroclastic rocks. The latter show spatial association to the fault pattern and are closely related to mineralisation. The overlying, early Tertiary, Upper Volcanic Cycle shows evidence of explosive vulcanicity in the Upper Basic Series. Dacites and rhyodacites are only locally developed and again show spatial association with the faulting.Comparison of the major and minor element chemistries of the two cycles demonstrates the clear separation into a lower tholeiitic and an upper calc-alkaline cycle. The rocks show similar chemistry to volcanic suites from island arcs in other areas.The origin of the tholeiitic magma is ascribed to melting of “dry” amphibolite during early subduction of Tethyan ocean floor beneath “Pontian Land”. This resulted in low K abundances and K/Rb ratios, and some Fe enrichment in the tholeiitic basalts.The calc-alkaline magma is thought to be derived from a later stage in the subduction process when melting of amphibole was joined by melting of biotite or phlogopite. The Upper Volcanic Cycle is thus enriched in K and shows no Fe enrichment due to a probable higher water content. The higher Cr and Ni contents of the Upper Volcanic Cycle, together with K, may imply some melting of lherzolite overlying the subducted slab.  相似文献   

4.
The different basalt types related to rift structure development have been investigated, starting from the pre-rift stage in the northern Ethiopian rift and its eastern escarpment and plateau.The basic volcanic rocks are represented mainly by transitional basalts, both in the pre-rift (plateau) and rift (escarpment and rift floor) stages. A striking feature is that although the plateau basalts show clear tholeiitic affinity and the rift basalts reveal a somewhat pronounced “alkaline” character, the REE and LILE element abundances, however, progressively decrease from the “tholeiitic” basalts of the plateau to the “alkaline” basalts of the rift.All data support the view that such contrasting features may be attributed to a continuous depletion of hygromagmatophile (REE, LILE) elements in the mantle source material, related to the large volumes of magmas produced in the early phase of rift structure development. The transition from “tholeiitic” (plateau) to “alkaline” (rift) transitional basalts is related to decreasing intensity of extensional movements.  相似文献   

5.
Surface sediment samples collected from the inner shelf region of the Bay of Bengal, were analysed for the major elements and total and acetic acid available trace elements (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Si, Zn) to evaluate geochemical processes influencing their distribution. Major elemental analysis showed that the sediments had high concentrations of Si and relatively low concentrations of Al and Fe. Both major elemental and trace metal concentrations indicated that the sediments represent weathered products of granite and charnockite. Normalization of metals to Al indicated relatively high enrichment factors for Pb, Cd, Zn and Cr. The higher proportions of nondetrital Pb (66%), Cd (41%) and Co (28%) reveal metal contamination due to anthropogenic inputs. Factor analysis (FA) identified six possible types of sedimentological and geochemical associations. The dominant factor accounting for 26.9% of the total variance identifies an anthropogenic input and accumulation of nondetrital Cd, Co, Cr, Ni and Pb. Association of these metals with CaCO3 reveals that shell fragments in the surface sediments are likely act as a carrier phase for nondetrital metals. The results are discussed in the context of the sources and pathways of elements in the Bay of Bengal.  相似文献   

6.
Rare earth element (REE) and other trace element compositions of 16 lavas from all historic and 2 prehistoric eruptions on 5 islands of the Azores Archipelago show notable intra-and inter-island differences. Fe enrichment and “compatible” element depletion due to fractional crystallization have been superimposed on variations established in the source area. Fractionation of La/Sm, U/Th, K/Na and “large ion lithophile” (LIL) element abundances are probably related to variable fusion of a source peridotite whose LIL element distribution cannot be exactly specified in view of its possible heterogeneity. Relative light-REE enrichment in basalt appears greatest on the “potassic” island São Miguel, the more sodic island Fayal and one lava from Pico, and least in basalts from the “sodic” islands Terceira, São Jorge and Pico. This variation is matched by most other LIL elements, although P shows unexpected enrichment in Terceira lavas, otherwise the least LIL element-enriched and most heavy-REE-enriched. Upper mantle phase chemistry is probably critical in establishing the patterns. In particular, P—REE covariance may reflect phase stabilities of apatite and (P-bearing) garnet in the upper mantle. Distribution patterns of REE in the historic lavas are similar to those of basalts from the Atlantic median rift at the crest of the Azores “platform”. Transition to light-REE-depleted rift-erupted basalts to the southwest is believed to be step-wise with increasing water depth, possibly indicating retention of a light-REE-rich phase in the residue from partial fusion as intersection of geotherm and peridotite solidus occur at lower pressures. The source mantle for the Azores basalts is probably light-REE- and LIL element-enriched but we find no evidence so far to suggest its emplacement by thermal “plume” activity.  相似文献   

7.
Seven samples of the unique St. Mesmin meteorite have been analyzed by instrumental and radiochemical neutron activation analysis for Na, Ca, Sc, Cr, Mn, Fe, Co, Ni, Zn, Ga, Ge, Se, In, Sm, Yb, Ir and Au. St. Mesmin is unique in being the only ordinary chondrite known to contain an unmelted xenolith of another ordinary chondrite. Data for two host matrix samples and three light clasts are consistent with their classification as LL chondrite material. The composition of the large dark xenolith confirms earlier evidence that it is an H chondrite; volatile abundances are consistent with it being highly shocked, petrologic type-4 material. In an olivine microporphyry, siderophile abundances are mostly about 0.13 times LL abundances, an apparent indication of metal loss during the shock melting which produced the clast. As in other regolithic chondrites, the dark host has higher contents of highly volatile elements than do the light clasts. We suggest that this results from a combination of differences in intensity of preexisting metamorphism as well as a redistribution of volatiles during regolith gardening.The H-group xenolith in St. Mesmin is a relatively recent addition to the parent body (< 1.4 Ga ago), but it is argued that this does not require regolith activity at that time. Rather the view is supported that the regolith period occurred very early in the meteorite's history (&gsim;4.0 Ga ago) and may have been related to the growth of the parent body. The H-group fragment may be part of the projectile whose impact excavated the St. Mesmin meteoroid from the LL parent body.  相似文献   

8.
The suspended solids taken out of the affluents of Lake Constance have been isolated and the concentrations of C, N, P, Ni, Cr, Cd, Zn, Co, Fe and Mn within the material have been determined. The loads in every river were calculated by the relations between water discharge, concentration of suspended matter and concentration of the elements. Test showed, that the material from the Bregenzer Ach and the Neuer Rhein adsorb phosphate out of the water. The suspended solids of the other rivers give phosphate to the water.

hier: Sinkstoffe=Schwebstoffe.  相似文献   

9.
The particulate concentrations of 17 trace metals, Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Ag, Sb, Au, Hg, Pb and Th have been measured in the marine atmosphere (58 samples) and in the deep waters (35 samples) of the Tropical North Atlantic. For oceanic suspended matter, our results are similar to those in samples from the Atlantic and the Pacific Oceans collected during the GEOSECS Program. Based on these results, we have made a flux balance for the mixed layer between input via the atmosphere and removal through small and large particles. These data show that the primary flux of suspended aluminosilicates in the Tropical North Atlantic is attributable to the atmospheric input. Elements Sc, Th, Fe, V, Mn, Co and Cr show high correlation with Al in the marine atmosphere. Of these elements, Fe, Mn, V, Co and Cr are influenced by additional processes such as biological, in the marine environment. For elements Ni, Cu, Zn, Se, Ag, Sb, Au, Hg and Pb, we observe high enrichments (relative to average crustal material) in the marine atmosphere which may be due, at least partially, to the influence of anthropogenic sources. These metals also show similar enrichments in deep ocean suspended matter. Model calculations indicate that the atmospheric flux may not control the deep ocean particulate chemistry of Ni, Cu, Zn, Ag, Sb, Au and Hg. Hence it is likely that, for these elements, the enrichment in the ocean is due to processes within the marine regime, for example their involvement in the biological cycle of the ocean. For Se and Pb, the atmospheric source looks to be the dominant contribution to their particulate concentration in seawater. In the deep North Atlantic, particulate Pb appears to be mostly of anthropogenic origin, which is not the case for Se.  相似文献   

10.
Bulk abundances of Na, Mg, Al, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, La, Sm, Eu, Yb, Lu, Ir, and Au were determined by neutron activation analysis of chondrules separated from unequilibrated H-, L-, and LL-chondrites (Tieschitz, Hallingeberg, Chainpur, Semarkona) and correlated with chondrule petrographic properties. Despite wellknown compositional differences among the whole-rock chondrites, the geometric mean compositions of their respective chondrule suites are nearly indistinguishable from each other for many elements. Relative to the condensible bulk solar system (approximated by the Cl chondrite Orgueil), chondrules are enriched in lithophile and depleted in siderophile elements in a pattern consistent with chondrule formation by melting of pre-existing materials, preceded or attended by silicate/metal fractionation. Relative to nonporphyritic chondrules, porphyritic chondrules are enriched in refractory and siderophile elements, suggesting that these two chondrule groups may have formed from different precursor materials.  相似文献   

11.
Two Luna 16 soils have been analyzed for Ag, Au, Bi, Br, Cd, Co, Cs, Cu, Ga, Ge, In, Ur, Ni, Rb, Re, Sb, Se, Te, Tl, and Zn. A meteoritic component similar to that in Apollo 11 and 12 soils seems to be present, corresponding to ∼1.5 to 2% Cl chondrites or equivalent. It probably consists largely of micrometeorites. Three elements show strong enrichments compared to Apollo 11 and 12 soils: Cd (5× to 200×), Ag (5× to 10×), and Bi (3×). Presumably these elements were brought in by Cd-Ag-Bi rich material, similar to that in Unit VI of Apollo core 12028.  相似文献   

12.
The patterns of variation of TiO2 conent during magmatic evolution are different in the so called “orogenic” and “anorogenie” basic associations; these last terms, which are the cause of much misunderstanding, can be replaced by the terms “isotitaniferous” and “anisotitaniferous”.  相似文献   

13.
In the Iblean region, southeast Sicily, a sequence of subaqueous and subaerial volcanics is interlayered in sedimentary levels, Upper Miocene to Lower Pleistocene in age. These rocks range from low-K tholeiites to basanites.Rare earth elements (REE) have been determined by instrumental neutron activation analysis in five samples, and other trace elements (Li, Rb, Sr, Co, Cr, Cu, Ni) by atomic absorption spectrophotometry in thirteen samples, already analyzed also for major elements.The tholeiites differ systematically from rocks of the alkalic suite for elements like Li, Sr and light REE (Sr < 200 ppm, Ce ? 15 ppm in the former; Sr > 500 up to 2000 ppm, Ce > 150 ppm in the latter), while Ni, Co, Cr and heavy REE ranges overlap in the two rock suites.The results agree in indicating different degrees of partial melting, probably at different levels in a heterogeneous mantle, as responsible for the origin of most of the rocks found in the Iblean region: the tholeiites should have been formed at relatively shallow depth by fusion of large proportions of a depleted mantle, while increasingly undersaturated volcanics of the alkalic suite have been probably generated at greater depth by partial melting of decreasing amounts of mantle material.  相似文献   

14.
Water Resources - The average concentrations of elements Fe, Mn, Zn, Pb, Cu, Cr, V, Co, Cd, Ni, As, and Mo in the subcolloidal fraction of bottom sediments were determined in the northern and...  相似文献   

15.
The concentration of 10 to 15 siderophile elements was determined in the magnetic and non-magnetic portions of Abee (E4) and Hvittis (E6). The results indicate that, with the exception of Cu, W and Fe, all elements are strongly concentrated in the metal phase. Unlike ordinary chondrites, the metal phase of Abee and Hvittis consists exclusively of kamacite, which is very homogeneous and shows no systematic variation in composition with grain size.Differences in siderophile element content between Abee and Hvittis can be accounted for exclusively by differences in metal content and composition. These differences reflect different degrees of refractory siderophile loss, metal-silicate fractionation and loss of moderately volatile elements. The Ir/Ni ratio is 25% lower in Abee than in Hvittis, indicating that more Ir (Os, Pt, etc.) was lost from Abee during the refractory element fractionation. Abee and the other E4–5 members have also lost no metal and are not depleted in moderately volatile elements. In Abee the non-refractory elements Fe to Ge are present in CI ratios, and this meteorite has also Ir/Re ratios ?CI.These differences, which are recorded in the composition of the metal phase, make a straightforward genetic relationship between the two enstatite chondrite groups difficult to accept. In particular, the different Ir/Ni ratios, which were established very early in the chemical history of these chondrites, at the time of the refractory element fractionation, force us to conclude that E4–5 and E6 chondrites evolved from two different reservoirs, and that exchange of material among them never occurred. However, members of both groups have similar cosmic ray exposure ages suggesting derivation from the same parent body, which poses some interesting problems.  相似文献   

16.
Summary The electric conductivity of basaltic rocks of the final volcanic phase of the Alpine-Carpathian orogenesis was studied in the temperature interval of 200–1000°C. The results obtained are compared with the chemical and modal composition of the rocks and with the content of trace elements (Cr, Co, Ni, V). The statistical treatment of a set of 11 rocks types indicated that the electric conductivity is mostly affected by the modal composition of the rock in the temperature interval of 200–600°C, whereas the effect of trace elements can be seen distinctly in the interval of 600–1000°C.  相似文献   

17.
Dil Deresi stream is a highly contaminated stream passing through the most heavily industrialized area of Izmit Bay. In this research, surface sediments in the <63-microm fraction collected from 34 sites at western part of Izmit Bay, Northeastern Marmara Sea, Turkey were analyzed by ICP-AES for Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn and Zn. Metal concentrations were compared with the marine sediment quality standards (SQS) and literature data to assess the pollution status of the sediments. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The analysis revealed three groups of elements: (1) Sn is the most enriched element; (2) As, Cd, Pb and Zn are minor enriched elements; and (3) Co, Cr, Cu, Fe, Mg, Mn and Ni are at background concentrations. The distribution maps of the concentrations and enrichment factors for all heavy metals were also produced as a contour plot based on Geographic Information System (GIS) technology.  相似文献   

18.
Eight L- and one LL-group chondrites were selected for a major and trace element content study of their metals by instrumental neutron activation techniques. The elements Ni, Co, Fe, Cu, As, Ga, W, Au and Ir were determined. For each meteorite three metallic fractions were analyzed: (1) coarse, >100 mesh; (2) intermediate, 100–200 mesh; (3) fine, <200 mesh. The composition of the metals varies considerably with grain size, as a result of a preferential concentration of kamacite in the coarse and of taenite in the intermediate and fine fractions.A third metallic component, consisting of very fine plessitic inclusions, was observed in chondrules of equilibrated chondrite types 5 and 6. This component is probably responsible for the decrease of Ni, Cu, Ga and Au observed in the fine metallic fractions of the equilibrated chondrite types.W, as well as Ga, increases in the bulk metals with the petrologic type, suggesting that a substantial amount of this element, as already observed for Ga by previous authors, is not in the metal, but in some silicate phases in the lower metamorphic petrologic types 3 and 4.Ir is always concentrated in the fine metallic fractions of all meteorites, independent of petrologic type, suggesting the presence of a fine-grained metallic component enriched in this element.  相似文献   

19.
Experiments were carried out to simulate the transformations of anaerobic freshwater chemistry at aeration. Quantitative characteristics of the passage from dissolved into suspended state in the course of aeration were obtained for Fe, Mn, Co, Ni, Cu, Zn, Cd, Ag, Rb, Cs, Sr, Ba, Be, Al, Ga, Cr, Ti, Zr, U, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, B, V, Ge, As, Mo, and W. The decrease in the concentration of dissolved forms was found to be maximal for Fe and Mn, reaching 0.03 and 0.2 mg/L, respectively; these values correspond to the solubility of newly-precipitated oxihydrates of those elements. Among other elements, a high degree of removal is typical of elements-hydrolysates (Cr, Zr, Al, Ga, Be, Ti, and the majority of rare-earth elements), some heavy metals (Zn, Ag, Cd, and Co), and W.  相似文献   

20.
The geochemical baselines and distribution of 31 elements (Al, Fe, K, Na, Mg, Ca, Mn, Ba, Cr, Zr, Ni, Sr, Zn, Y, Li, Cu, Mo, Nb, Th, Co, Ga, W, Ta, Be, Ti, Ge, Se, Bi, Te, Sc and Re) and physico-chemical parameters of the tropical surface sediments of the Terengganu River basin, Malaysia, are reported. Sediments are sandy loam to sand in texture consisting of mostly quartz, low organic matter content (average-2.68%), low CEC (average-2.02 cmol(+)/kg) and mildly acidic pH1:5 (average-5.91). Concentrations of Mn, Fe, Ba, Cr, Ni, Cu, Mo and Se were measured to be above the environmental sediment quality criteria at various locations. Lake sediments registered significantly higher Al, Fe, Ti, Mg, Ca, Mn, Te and Sc concentrations as compared to the river sediments. Most of the elements investigated showed an association with silt size fraction (2-63 μm). Among the investigated metals, Mo and Fe concentrations showed an increasing (5-fold) and decreasing (3-fold) trend, respectively, along the river path from the upstream to the downstream depending on the stream pH-redox conditions. The enrichment factor values (EF 5) of Cr, Ni, Mo and Se indicated enrichment from anthropogenic activities. Alkali and alkali earth metals registered a significant depletion (EF values 0.7) as compared to the Earth's crust. Principal component analysis of the two main components (PC1, 87.4% and PC2, 8.7%) revealed a well-defined group of estuary sediments. Lake and river sediment sampling locations did not form defined groups revealing heterogeneity in the origin of geologic material and the in-stream geochemical processes. However, Cr, Ni, Mo and Se formed a separate group with elevated concentrations (e.g. Cr1,000 mg/kg) indicating contamination of sediments. This work presents the geochemical baselines of the tropical sediments as industrial development and urbanization along the north east coast of Peninsular Malaysia are advancing rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号