首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analysed Rossi X-ray Timing Explorer Proportional Counter Array observations of a recent outburst of the X-ray pulsar XMMU J054134.7−682550. We calculated the pulse frequency history of the source. We found no sign of a binary companion. The source spins up when the X-ray flux is higher, with a correlation between the spin-up rate and X-ray flux, which may be interpreted as a sign of an accretion disc. On the other hand, the source was found to have an almost constant spin frequency when the X-ray flux is lower without any clear sign of a spin-down episode. The decrease in pulsed fraction with decreasing X-ray flux was interpreted as a sign of accretion geometry change, but we did not find any evidence of a transition from accretor to propeller regimes. The source was found to have variable pulse profiles. Two peaks in pulse profiles were usually observed. We studied the X-ray spectral evolution of the source throughout the observation. Pulse-phase-resolved analysis does not provide any further evidence for a cyclotron line, but may suggest a slight variation of intensity and width of the 6.4 keV iron line with phase.  相似文献   

2.
Using X-ray data from the Rossi X-ray Timing Explorer , we report the pulse timing results of the accretion-powered, high-mass X-ray binary pulsar 4U 1907+09, covering a time-span of almost two years. We measured three new pulse periods in addition to the previously measured four pulse periods. We are able to connect pulse arrival times in phase for more than a year. The source has been spinning down almost at a constant rate, with a spin-down rate of     for more than 15 yr. Residuals of pulse arrival times yield a very low level of random-walk noise, with a strength of ∼     on a time-scale of 383 d, which is 40 times lower than that of the high-mass X-ray binary pulsar Vela X-1. The noise strength is only a factor of 5 greater than that of the low-mass X-ray binary pulsar 4U 1626−67. The low level of the timing noise and the very stable spin-down rate of 4U 1907+09 make this source unique among the high-mass X-ray binary pulsars, providing another example, in addition to 4U 1626−67, of long-term quiet spin down from an accreting source. These examples show that the extended quiet spin-down episodes observed in the anomalous X-ray pulsars 1RXS J170849.0−400910 and 1E 2259+586 do not necessarily imply that these sources are not accreting pulsars.  相似文献   

3.
We present photometric measurements of the eclipsing dwarf nova and X-ray source GY Cnc. The observations were collected during outbursts and in quiescence. The investigation of plates from the Sonneberg archive showed that the mean outburst interval is about 210–270 days, that the outburst is very fast, and lasts for about 5 days.  相似文献   

4.
The second known outburst of the WZ Sge type dwarf nova GW Lib was observed in 2007 April. We have obtained unique multiwavelength data of this outburst which lasted ∼26 days. The American Association of Variable Star Observers ( AAVSO ) recorded the outburst in the optical, which was also monitored by Wide Angle Search for Planets , with a peak V magnitude of ∼8. The outburst was followed in the ultraviolet and X-ray wavelengths by the Swift ultraviolet/optical and X-ray telescopes. The X-ray flux at optical maximum was found to be three orders of magnitude above the pre-outburst quiescent level, whereas X-rays are normally suppressed during dwarf nova outbursts. A distinct supersoft X-ray component was also detected at optical maximum, which probably arises from an optically thick boundary layer. Follow-up Swift observations taken 1 and 2 years after the outburst show that the post-outburst quiescent X-ray flux remains an order of magnitude higher than the pre-outburst flux. The long interoutburst time-scale of GW Lib with no observed normal outbursts support the idea that the inner disc in GW Lib is evacuated or the disc viscosity is very low.  相似文献   

5.
We present new X-ray observations of the high-mass X-ray binary (HMXRB) pulsar OAO 1657−415, obtained during one orbital period (10.44 d) with the Rossi X-Ray Timing Explorer ( RXTE ). Using the binary orbital parameters, obtained from Burst and Transient Source Experiment (BATSE) observations, we resolve the fluctuations in the pulse frequency at time-scales on the order of 1 d for the first time. Recent BATSE results by Baykal showed that OAO 1657−415 has spin-up/down trends in its pulse frequency time series, without any correlation with the X-ray luminosity at energies >20 keV. In the present RXTE observations the source is found to be in an extended phase of spin-down. We also find a gradual increase in the X-ray luminosity which is correlated with a marginal spin-up episode. The marginal correlation between the gradual spin-up (or decrease in spin-down rate) and increase in X-ray luminosity suggests that OAO 1657−415 is observed during a stable accretion episode where the prograde accretion disc is formed.  相似文献   

6.
Results of quasi-simultaneous SWIFT and RTT-150 observations for the X-ray nova SWIFT J174510.8-262411 in May–June 2013 at the decaying phase of its outburst are presented. It is shown that the nova spectrum can be fitted in a very wide energy range (from the infrared z and i bands to hard X-rays) by a single power law attenuated due to absorption but without any traces of the presence of a soft (blackbody) component. The presence of such a component is suggested by the generally accepted models of disk accretion onto a black hole in a binary system. The observation of a single power-law spectrum may imply that synchrotron radiation from the source’s relativistic jets makes a major contribution to its flux or that the accretion disk is everywhere hot, optically thin, and radiates nonthermally.  相似文献   

7.
We analysed the Rossi X-ray Timing Explorer ( RXTE ) archival data of 1E 1048.1−5937 covering a time-span of more than one year. The spin-down rate of this source decreases by ∼30 per cent during the observation. We could not resolve the X-ray flux variations because of contamination by eta Carinae. We find that the level of pulse frequency fluctuations of 1E 1048.1−5937 is consistent with typical noise levels of accretion-powered pulsars . Recent RXTE observations of 1E 2259+586 have shown a constant spin-down with a very low upper limit on timing noise. We used the RXTE archival X-ray observations of 1E 2259+586 to show that the intrinsic X-ray luminosity times-series is also stable, with an rms fractional variation of less than 15 per cent. The source could have been in a quiet phase of accretion with a constant X-ray luminosity and spin-down rate.  相似文献   

8.
Based on data from the SWIFT, INTEGRAL, MAXI/ISS orbital observatories, and the ground-based RTT-150 telescope, we have investigated the broadband (from the optical to the hard X-ray bands) spectrum of the X-ray nova MAXI J1828-249 and its evolution during the outburst of the source in 2013–2014. The optical and infrared emissions from the nova are shown to be largely determined by the extension of the power-law component responsible for the hard X-ray emission. The contribution from the outer cold regions of the accretion disk, even if the X-ray heating of its surface is taken into account, turns out to be moderate during the source’s “high” state (when a soft blackbody emission component is observed in the X-ray spectrum) and is virtually absent during its “low” (“hard”) state. This result suggests that much of the optical and infrared emissions from such systems originates in the same region of main energy release where their hard X-ray emission is formed. This can be the Compton or synchro-Compton radiation from a high-temperature plasma in the central accretion disk region puffed up by instabilities, the synchrotron radiation from a hot corona above the disk, or the synchrotron radiation from its relativistic jets.  相似文献   

9.
The optical counterpart of the transient, millisecond X-ray pulsar SAX J1808.4–3658 was observed in four colours ( BVRI ) for five weeks during the 2005 June–July outburst. The optical fluxes declined by ∼2 mag during the first 16d and then commenced quasi-periodic secondary outbursts, with time-scales of several days, similar to those seen in 2000 and 2002. The broad-band spectra derived from these measurements were generally consistent with emission from an X-ray heated accretion disc. During the first 16d decline in intensity the spectrum became redder. We suggest that the primary outburst was initiated by a viscosity change driven instability in the inner disc and note the contrast with another accreting millisecond pulsar, XTE J0929−314, for which the spectrum becomes bluer during the decline. On the night of 2005 June 5 (HJD 245 3527) the I -band flux was ∼0.45-mag brighter than on the preceding or following nights whereas the BV and R bands showed no obvious enhancement. A type I X-ray burst was detected by the Rossi X-ray Timing Explorer spacecraft during this I -band integration. It seems unlikely that reprocessed radiation from the burst was sufficient to explain the observed increase. We suggest that a major part of the I -band excess was due to synchrotron emission triggered by the X-ray burst. Several other significant short duration changes in V − I were detected. One occurred at about HJD 245 3546 in the early phase of the first secondary outburst and may be due to mass-transfer instability or to another synchrotron emission event.  相似文献   

10.
We present a precise timing analysis of the accreting millisecond pulsar XTE J1814−338 during its 2003 outburst, observed by RXTE . A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period,   P orb= 15 388.7229(2)  s, and of the projected semimajor axis,   a sin  i / c = 0.390633(9)  light-second. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency  (ν= 314.356 108 79(1) Hz)  and the first estimate of the spin frequency derivative of this source while accreting     . This spin-down behaviour arises when both the fundamental frequency and the second harmonic are taken into consideration. We discuss this in the context of the interaction between the disc and the quickly rotating magnetosphere, at accretion rates sufficiently low to allow a threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. We also present indications of a jitter of the pulse phases around the mean trend, which we argue results from movements of the accreting hotspots in response to variations of the accretion rate.  相似文献   

11.
Near infrared coronal line emission at 1.98 ± 0.02Μm due to [Si VI] detected in the spectrum of Nova Herculis 1991 about 17 days after optical maximum is reported. The early appearance of coronal emission is yet another unusual feature of this fast nova in which early onset of dust formation processes and X-ray detection five days after outburst have already been reported. The coronal line observations reported here are consistent with X-ray detection and support a hot shocked circumstellar envelope at the periphery of the dust formation zone in the nova.  相似文献   

12.
We have investigated the Quasi Periodic Oscillation (QPO) properties of the transient accreting X-ray pulsar XTE J1858 + 034 during the second outburst of this source in April–May 2004. We have used observations made with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE) during May 14–18, 2004, in the declining phase of the outburst. We detected the presence of low frequency QPOs in the frequency range of 140–185 mHz in all the RXTE-PCA observations. We report evolution of the QPO parameters with the time, X-ray flux, and X-ray photon energy. Though a correlation between the QPO centroid frequency and the instantaneous X-ray flux is not very clear from the data, we point out that the QPO frequency and the one day averaged X-ray flux decreased with time during these observations. We have obtained a clear energy dependence of the RMS variation in the QPOs, increasing from about 3% at 3 keV to 6% at 25 keV. The X-ray pulse profile is a single peaked sinusoidal, with pulse fraction increasing from 20% at 3 keV to 45% at 30keV. We found that, similar to the previous outburst, the energy spectrum is well fitted with a model consisting of a cut-off power law along with an iron emission line.  相似文献   

13.
We present a previously unpublished ROSAT Wide Field Camera observation of the transient source RE J1255+266 made just 4 d before the discovery observations. The source is not detected, limiting the duration of the outburst to be less than expected for a superoutburst of a WZ Sge system.
We also present a marginal detection of X-ray emission from RE J1255+266 using ASCA . The most probable luminosity is 6×1029 erg s−1, which is very similar to WZ Sge itself.
We discuss the nature of the source in the light of these observations, and conclude that it is most probably a WZ Sge system, but that the observed outburst must have been a normal dwarf nova outburst.  相似文献   

14.
We present timing and spectral analysis of RXTE -PCA (Proportional Counter Array) observations of the accretion powered pulsar 4U 1907+09 between 2007 June and 2008 August. 4U 1907+09 had been in a spin-down episode with a spin-down rate of  −3.54 × 10−14 Hz s−1  before 1999. From RXTE observations after 2001 March, the source showed a ∼60 per cent decrease in spin-down magnitude, and INTEGRAL observations after 2003 March showed that source started to spin-up. We found that the source recently entered into a new spin-down episode with a spin-down rate of  −3.59 × 10−14 Hz s−1  . This spin-down rate is pretty close to the previous long-term spin-down rate of the source measured before 1999. From the spectral analysis, we showed that hydrogen column density varies with the orbital phase.  相似文献   

15.
We suggest that the variable pulse profile of GX 1+4 in the low-energy X-ray region results from the superposition of polar and disk components. The anomalous appearance during the spin-down episode can then be explained, if we consider a transition from thin to thick accretion disk configuration which can develop at midly super-Eddington luminosity levels of the source. a close examination of the data suggests that the intrinsic period of the pulsar is 4 min. A switching disk geometry can provide a natural explanation to pulse profile variations in more luminous accreting binary pulsars and also account for the transition between high and low spectral states seen in the case of the Cyg X-1 and low-mass X-ray binary systems.  相似文献   

16.
An overview of the results of observations for the transient X-ray pulsar 4U 0115+63, amember of a binary system with a Be star, since its discovery to the present day (~40 years) based on data from more than dozen observatories and instruments is presented. An overall light curve and the history of change in the spin frequency of the neutron star over the entire history of its observations, which also includes the results of recent measurements made by the INTEGRAL observatory during the 2004, 2008, and 2011 outbursts, are provided. The source’s energy spectra have also been constructed from the INTEGRAL data obtained during the 2011 outburst for a dynamic range of its luminosities 1037?7 × 1037 erg s?1. We show that apart from the fundamental harmonic of the cyclotron absorption line at energy~11 keV, its four higher harmonics at energies ?24, 35.6, 48.8, and 60.7 keV are detected in the spectrum. We have performed a detailed analysis of the source’s spectra in the 4–28 keV energy band based on all of the available RXTE archival data obtained during bright outbursts in 1995–2011. We have confirmed that modifying the source’s continuum model can lead to the disappearance of the observed anticorrelation between the energy of the fundamental harmonic of the cyclotron absorption line and the source’s luminosity. Thus, the question about the evolution of the cyclotron absorption line energy with the luminosity of the X-ray pulsar 4U 0115+63 remains open and a physically justified radiation model for X-ray pulsars is needed to answer it.  相似文献   

17.
We present new results on the recently discovered 69 ms X-ray pulsar AXS J161730-505505, the sixth youngest example of a rotation-powered pulsar. We have undertaken a comprehensive X-ray-observing campaign of AXS J161730-505505 with the ASCA, BeppoSAX, and RXTE observatories and follow its long-term spin-down history between 1989 and 1999 using these observations and archival Ginga and ASCA data sets. The spin-down is not simply described by a linear function as originally thought, but instead we find evidence of a giant glitch (DeltaP&solm0;P greater, similar10-6) between 1993 August and 1997 September, perhaps the largest yet observed from a young pulsar. The glitch is well described by steps in P and P&d2; accompanied by a persistent P&d3; similar to those seen in the Vela pulsar. The pulse profile of AXS J161730-505505 presents a single asymmetric peak that is maintained over all observation epochs. The energy spectrum is also steady over time, characterized by a highly absorbed power law with a photon index Gamma=1.4+/-0.2, consistent with that found for other young rotation powered pulsars.  相似文献   

18.
We present the most complete multiwavelength coverage of any dwarf nova outburst: simultaneous optical, Extreme Ultraviolet Explorer and Rossi X-ray Timing Explorer observations of SS Cygni throughout a narrow asymmetric outburst. Our data show that the high-energy outburst begins in the X-ray waveband 0.9–1.4 d after the beginning of the optical rise and 0.6 d before the extreme-ultraviolet rise. The X-ray flux drops suddenly, immediately before the extreme-ultraviolet flux rise, supporting the view that both components arise in the boundary layer between the accretion disc and white dwarf surface. The early rise of the X-ray flux shows that the propagation time of the outburst heating wave may have been previously overestimated.
The transitions between X-ray and extreme-ultraviolet dominated emission are accompanied by intense variability in the X-ray flux, with time-scales of minutes. As detailed by Mauche & Robinson, dwarf nova oscillations are detected throughout the extreme-ultraviolet outburst, but we find they are absent from the X-ray light curve.
X-ray and extreme-ultraviolet luminosities imply accretion rates of  3 × 1015 g s−1  in quiescence,  1 × 1016 g s−1  when the boundary layer becomes optically thick, and  ∼1018 g s−1  at the peak of the outburst. The quiescent accretion rate is two and a half orders of magnitude higher than predicted by the standard disc instability model, and we suggest this may be because the inner accretion disc in SS Cyg is in a permanent outburst state.  相似文献   

19.
We present extensive, high-density Swift observations of V2491 Cyg (Nova Cyg 2008 No. 2). Observing the X-ray emission from only one day after the nova discovery, the source is followed through the initial brightening, the super-soft source phase and back to the pre-outburst flux level. The evolution of the spectrum throughout the outburst is demonstrated. The UV and X-ray light curves follow very different paths, although changes occur in them around the same times, indicating a link between the bands. Flickering in the late-time X-ray data indicates the resumption of accretion. We show that if the white dwarf (WD) is magnetic, it would be among the most magnetic known; the lack of a periodic signal in our later data argues against a magnetic WD, however. We also discuss the possibility that V2491 Cyg is a recurrent nova, providing recurrence time-scale estimates.  相似文献   

20.
A0535+262 is a transient Be/X-ray binary system which was in a quiescent phase from 1994 to 2005. In this paper we report on the timing and spectral properties of the INTEGRAL detection of the source in 2003 October. The source is detected for ∼6000 s in the 18–100 keV energy band at a luminosity of  ∼3.8 × 1035 erg s−1  ; this is compatible with the high end of the range of luminosities expected for quiescent emission. The system is observed to be outside of the centrifugal inhibition regime and pulsations are detected with periodicity,   P = 103.7 ± 0.1 s  . An examination of the pulse history of the source shows that it had been in a constant state of spin-down since it entered the quiescent phase in 1994. The rate of spin-down implies the consistent presence of an accretion disc supplying torques to the pulsar. The observations show that the system is still active and highly variable even in the absence of recent Type I or Type II X-ray outbursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号