首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is now generally accepted that Southeast Asia is composed of continental blocks which separated from Gondwana with the formation of oceanic crust during the Paleozoic, and were accreted to Asia in the Late Paleozoic or Early Mesozoic, with the subduction of the intervening oceanic crust. From east to west the Malay peninsula and Sumatra are composed of three continental blocks: East Malaya with a Cathaysian Permian flora and fauna; Sibumasu, including the western part of the Malay peninsula and East Sumatra, with Late Carboniferous–Early Permian 'pebbly mudstones' interpreted as glaciogenic diamictites; and West Sumatra, again with Cathaysian fauna and flora. A further unit, the Woyla nappe, is interpreted as an intraoceanic arc thrust over the West Sumatra block in the mid Cretaceous. There are varied opinions concerning the age of collision of Sibumasu with East Malaya and the destruction of Paleotethys. In Thailand, radiolarites have been used as evidence that Paleotethys survived until after the Middle Triassic. In the Malay peninsula, structural evidence and the ages of granitic intrusions are used to support a Middle Permian to Early Triassic age for the destruction of Paleotethys. It is suggested that the West Sumatra block was derived from Cathaysia and emplaced against the western margin of Sibumasu by dextral transcurrent faulting along a zone of high deformation, the Medial Sumatra Tectonic Zone. These structural units can be traced northwards in Southeast Asia. The East Malaya block is considered to be part of the Indochina block, Sibumasu can be traced through Thailand into southern China, the Medial Sumatra Tectonic Zone is correlated with the Mogok Belt of Myanmar, the West Burma block is the extension of the West Sumatra block, from which it was separated by the formation of the Andaman Sea in the Miocene, and the Woyla nappe is correlated with the Mawgyi nappe of Myanmar.  相似文献   

2.
Age determinations of the Triassic lithostratigraphic units of the Yanshan belt were previously based on plant fossils and regional correlations of lithologies. The Liujiagou and Heshanggou Formations were assigned as the Lower Triassic, and the Ermaying Formation was regarded as the Middle Triassic. We carried out a geochronologic study of detrital zircon grains from the Triassic sandstone in the Xiabancheng and Yingzi basins in northern Hebei where the Triassic strata are exceptionally well preserved. The results show that the Liujiagou, Heshanggou, and Ermaying Formations are all Late Triassic in age. The ages of detrital zircons also revealed that the upper part of the Shihezi Formation and the overlying Sunjiagou Formation, both of which were thought to be the Middle-Late Permian units, are actually late Early to Middle Triassic deposits. This study combines the upper Shihezi and Sunjiagou Formations into a single unit termed as the Yingzi Formation. We also substitute the widely-used Liujiagou, Heshanggou, and Ermaying Formations with the Dingjiagou, Xiabancheng, and Huzhangzi Formations, respectively. Field observations and facies analysis show that the top of the Shihezi Formation is an erosive surface, marking a parallel unconformity between the Middle Permian and Lower Triassic. The Yingzi Formation is composed mainly of meandering river deposits, indicative of tectonic quiescence and low-relief landform in the Early to Middle Triassic. In contrast, the Dingjiagou, Xiabancheng, and Huzhangzi Formations are interpreted as the deposits of sandy/gravelly braided rivers, alluvial fans, fan deltas, and deep lakes in association with volcanism, thus indicating an intense rifting setting. A new Triassic lithostratigraphic division is proposed according to age constraints and facies analysis, and the results are of significance for understanding the early Mesozoic tectonic evolution of the Yanshan belt.  相似文献   

3.
Earthquake is a disaster event resulting from rapid and intensive crustal vibration caused by fault activity, volcanic eruption, or block dilapidation. Heezen and Ewing[1] and Heezen and Dyke[2] were the first to note earthquake-related mass movement and associated deposits in connection to the turbidity currents and submarine slumps triggered by the Grand Bank Earthquake in 1929. Seilacher[3] defined redeposited sedimentary beds, disturbed and modified by earth- quakes, as seismite. Since t…  相似文献   

4.
The Upper Pliocene to Pleistocene Casabianca Formation is an assemblage of coarse-grained volcanogenic sediments derived from the Ruiz-Cerro Bravo volcanic axis, which were deposited on the west and east flanks of the middle Colombian Central Cordillera (5°–5°30′ N Lat.; 74°30′–76° W Long.).Facies assemblages, paleocurrent data, and geomorphic expression define four depositional settings: (1) an alluvial fan with debris-flow lobes represented by the Manizales fan in the western sector and the Fresno fan in the eastern sector, characterized by the facies assemblage of Gms, Gp and Gt; (2) valley fill deposits represented by the Arauca section at the west sector, characterized by the facies assemblage of Gms and Gi; (3) deposits produced by the diversion of the debris-flow and hyperconcentrated flood-flow deposits from the main channels into narrow effluent channels; represented by the Delgaditas and Manzanares-Marquetalia sections, in the eastern sector and characterized by the facies assemblage Gms and Gm(a); and (4) lateral accretion in gravelly, medium to high-sinuosity rivers, represented by the Casabianca-Villa Hermosa, Palo Cabildo-Falan, Lagunillas and Guali sections of the eastern sector, characterized by the facies assemblage Gms, Gp and Gt.Casabianca Formation deposition records the response of a semi-arid to tropical fluvial system to large, volcanism-induced sediment loads.  相似文献   

5.
Two types of chert are defined in Thailand based on lithology, faunal content, and stratigraphy. 'Pelagic chert' consists of densely packed radiolarian tests in a microcrystalline quartz matrix with no terrigenous material and is found as blocks embedded within sheared matrix. 'Hemipelagic chert' also has a microcrystalline quartz matrix, and contains not only scattered radiolarian tests, but also calcareous organisms such as foraminifers. The pelagic cherts range in age from Devonian to Middle Triassic, whereas hemipelagic chert is only from the Early to the Late Triassic. Lithological and stratigraphic characteristics indicate that the pelagic chert originated in the Paleo-Tethys, whereas the hemipelagic chert accumulated on the eastern margin of the Sibumasu Block. The hemipelagic and pelagic chert are exposed in two north-trending belt-like zones. The western zone includes the hemipelagic chert, as well as glaciomarine and other Paleozoic to Mesozoic successions, overlying a Precambrian basement that consists exclusively of Sibumasu elements. The eastern zone contains pelagic chert and limestone and should be correlated to the Inthanon Zone. The Inthanon Zone is characterized by the presence not only of Paleo-Tethyan sedimentary rocks, but also of Sibumasu Block elements that structurally underlie the Paleo-Tethyan rocks. The boundary between the Sibumasu and Paleo-Tethys zones is a north-trending, low-angle thrust that resulted from the collision of the Sibumasu and Indochina blocks.  相似文献   

6.
In South China, the Wuqiangxi Formation of the Banxi Group and its equivalents underlie the early Cryogenian (Sturtian) glacial deposits but their thickness varies from <200 m to >2000 m. In the Guzhang section of western Hunan, the Wuqiangxi Formation is only 152 m thick, and an ash bed 58 m below the glacial diamictite yielded a SHRIMP U-Pb age of 809.3±8.4 Ma. In contrast, 90 km south of the Guzhang section towards the basin in Zhijiang area where the Wuqiangxi Formation is ~2200 m thick, an age of 725±10 Ma has been reported from the top of this unit, 300 m below the glacial diamictite. These ages provide new evidence for the regional stratigraphic correlation across the Nanhua basin, and suggest unusually large (>2 km) stratigraphic erosion potentially associated with the Sturtian glaciation in South China. The magnitude of erosion may imply significant uplifting and tectonotopography at the onset of the Sturtian glaciation.  相似文献   

7.
Yue  Li  Ryo  Matsumoto  Steve  Kershaw 《Island Arc》2005,14(4):623-635
Abstract   During the Hirnantian period, the Yangtze Platform was situated in the western part of the South China block (SCB) before its later rotation, in the middle–low paleolatitudes of the southern hemisphere in the northeast side of peri-Gondwana. It is part of the Kosov faunal province as indicated by the Hirnantia fauna. Sedimentary evidence shows the domination of cool ventilated marine water from its offshore ramp and shelf. Hirnantian shallow-water carbonate facies (Kuanyinchiao Bed) overlie earlier Ashgill graptolitic black shales (Wufeng Formation) as a result of marine regression. In the Yangtze Platform, however, we have found local areas of intertidal to nearshore facies that lack the typical highly diverse Hirnantia fauna. Some warm-water features (radial oolites, peloids, diverse solitary rugose corals and other benthic shelly fauna) occur commonly in some limited shallow areas, forming grainstones and packstones. Although interglacial episodes within the Hirnantian glaciation could be responsible for these features, their limited occurrence within the interior of the platform leads us to interpret the deposits as indicating that cold-water currents from the southeastern high latitudes were partly excluded from the nearshore area of the Yangtze Platform. The landmass of the eastern SCB in the Hirnantian epoch prevented access to some areas of the cold marine water masses that flowed from higher latitudes of Gondwana; the result was a persistence of warm-water shallow marine facies in some areas.  相似文献   

8.
Abstract Well-preserved radiolarians from the Newcastle Group in southwest Kawhia, New Zealand, constitute the first record of Lower Jurassic radiolarians from in situ deposits in high latitudes of the Southern Hemisphere on the margin of Gondwana. The radiolarians were extracted from carbonate nodules from five horizons in the Rewarewa Formation and the lower part of the Arawhero Formation, in the Murihiku Terrane. The radiolarian-bearing sequence, which lies within the upper part of the type section of the local Aratauran Stage, is roughly datable as Hettangian-Sinemurian from rare ammonite occurrences. The radiolarian assemblages consist, on average, of 80–90% spumellarians and 10–20% nassellarians. Spumellarians include species of the following genera: Archaeotriastrum, Crucella, Emiluvia (?) Homeoparo-riaella, Orbictilifomaa, Pantanellium, Paronaella (?), Pseudocrucella, PseIIdoheliodiscus, Spon-gostaurus and Spongotrochus. Nassellarians are composed of species of Ragotum, Bipedis, Droltus, Jams (?) Perispyridium (?) Raoultius, Riedelius, Saitoum and Thetis. From data of Lower Jurassic radiolarian faunas of Europe, North America and Japan, the New Zealand fauna shows stronger affinity with those of the European Tethys such as Turkey (e.g. De Wever 1982) and the Northern Alps (Kozur & Mostler 1990) than with faunas from other areas of the circum-Pacific. This connection between the European Tethyan and New Zealand faunas is not well explained by presently accepted continental reconstructions (Smith et al. 1994) for the Early Jurassic.  相似文献   

9.
Well che89, located in the Chepaizi area in the northwest margin of Junggar basin, acquires high production industrial oil flow, which is an important breakthrough in the exploration of the south foreland slope area of Junggar basin. The Chepaizi area is near two hydrocarbon generation depressions of Sikeshu and Shawan, which have sets of hydrocarbon source rock of Carboniferous to Jurassic as well as Upper Tertiary. Geological and geochemical parameters are proper for the accumulation of mixed source crude oil. Carbon isotope, group composition and biomarkers of crude oil in Upper Tertiary of well Che89 show that the features of crude oil in Upper Tertiary Shawan Formation are between that of Permian and Jurassic, some of them are similar to these two, and some are of difference, they should be the mixed source of Permian and Jurassic. Geochemical analysis and geological study show that sand extract of Lower Tertiary Wulunguhe Formation has the same source as the crude oil and sand extract of Upper Tertiary Shawan Formation, but they are not charged in the same period. Oil/gas of Wulunguhe Formation is charged before Upper Tertiary sedimentation, and suffered serious biodegradation and oxidation and rinsing, which provide a proof in another aspect that the crude oil of Upper Tertiary Shawan Formation of well Che89 is not from hydrocarbon source rock of Lower Tertiary.  相似文献   

10.
On the basis of new paleontological data,the sequence and distributions of the Middle Devonian-Tournaisian rocks on Hainan Island have been sorted out for the first time.The Devonian rocks include the Middle Devonian Jinbo Formation and the Upper Devonian Changjiang Formation,which are distributed in northwestern Hainan Island.The Jinbo Formation is represented by631 m of littoral facies deposits,and was intruded by the Yanshanian granite in the base.The presence of chitinozoans Eisenackitina caster,Funsochitina pilosa,and Lagenochitina amottensis indicates the Givetian in age.The Changjiang Formation is made up of 140 m of neritic facies rocks,and contains the Famennian conodonts Palmatolepis gracilis sigmoidalis,Polygnathus germanus,and corals Cystophrentis kalaohoensis.The Devonian-Tournaisian transition beds,the lower part of the Jishi Formation,are composed of 61–129 m sandstone and siltstone,with gastropods Euomphalus spp.and brachiopods,and marked by conglomerate with the underlying Devonian rocks.The middle-upper part of the Tournaisian Jishi Formation consists of 100–251 m clastic and carbonate rocks,containing abundant corals Pseudoularinia irregularis,conodonts Siphonodella isosticha,trilobites Weberiphillipsia linguiformis,and brachiopods.On the basis of the occurrence of Xinanosprifer flabellum and Homotoma sp.,the Nanhao Formation in southern Hainan Island is now regarded as the Lower Silurian,instead of the previously designated Lower Carboniferous.It is confirmed that no Carboniferous rocks occurred in the area south to the Gancheng-Wanning Fault.  相似文献   

11.
Ladakh (India) provides a complete geological section through the northwestern part of the Himalayas from Kashmir to Tibet. Within this section the magmatic, metamorphic and geotectonic evolution of the northern Himalayan orogeny has been studied using petrographic, geochemical and isotope analytical techniques.The beginning of the Himalayan cycle was marked by large basaltic extrusions (Panjal Trap) of Permian to Lower Triassic age at the “northern” margin of the Gondwana continent (Indian Shield). These continental type tholeiitic basalts were followed by a more alkaline volcanism within the Triassic to Jurassic Lamayuru unit of the Gondwana continental margin.Lower Jurassic to Cretaceous oceanic crust and sediments (ophiolitic mélange s.s.) accompany the Triassic to Cretaceous flysch deposits within the Indus-Tsangpo suture zone, the major structural divide between the Indian Shield (High Himalaya) and the Tibetan Platform. So far, no relic of Paleozoic oceanic crust has been found.Subduction of the Tethyan oceanic crust during Upper Jurassic and Cretaceous time produced an island arc represented by tholeiitic and calc-alkaline volcanic rock series (Dras volcanics) and related intrusives accompanied by volcaniclastic flysch deposits towards the Tibetan continental margin.Subsequent to the subduction of oceanic crust, large volumes of calc-alkaline plutons (Trans-Himalayan or Kangdese plutons) intruded the Tibetan continental margin over a distance of 2000 km and partly the Dras island arc in the Ladakh region.The collision of the Indian Shield and Tibetan Platform started during the middle to upper Eocene and caused large-scale, still active intracrustal thrusting as well as the piling up of the Himalayan nappes. The tectonically highest of these nappes is built up of oceanic crust and huge slices of peridotitic oceanic mantle (Spongtang klippe).In the High Himalayas the tectonic activity was accompanied and outlasted by a Barrovian-type metamorphism that affected Triassic sediments of the Kashmir-Nun-Kun synclinorium up to kyanite/staurolite grade and the deeper-seated units up to sillimanite grade. Cooling ages of micas are around 20 m.y. (muscovite) and 13 m.y. (biotite). Towards the Indus-Tsangpo suture zone metamorphism decreases with no obvious discontinuity through greenschist, prehnite-pumpellyite to zeolite grade. Remnants of possibly an Eo-Himalayan blueschist metamorphism have been found within thrust zones accompanying ophiolitic mélange in the suture zone.  相似文献   

12.
The Yezo Group has a wide longitudinal distribution across Hokkaido, northern Japan. It represents a Cretaceous (Early Aptian–Late Maastrichtian) and Late Paleocene forearc basin‐fill along the eastern margin of the paleo‐Asian continent. In the Nakagawa area of northern Hokkaido, the uppermost part of the Yezo Group consists of the Hakobuchi Formation. Along the western margin of the Yezo basin, 24 sedimentary facies (F) represent 6 facies associations (FA), suggesting prevailing storm‐dominated inner shelf to shoreface environments, subordinately associated with shoreface sand ridges, outer shelf, estuary and fluvial environments. The stacking patterns, thickness and facies trends of these associations allow the discrimination of six depositional sequences (DS). Inoceramids Sphenoceramus schmidti and Inoceramus balticus, and the ammonite Metaplacenticeras subtilistriatum, provide late Early to Late Campanian age constraints to this approximately 370‐m thick final stage of deposition and uplift of the Yezo forearc basin. Six shallow‐marine to subordinately non‐marine sandstone‐dominated depositional sequences include four 10 to 110‐m thick upward‐coarsening regressive successions (FS1), occasionally associated with thin, less than 10‐m thick, upward‐fining transgressive successions (FS2). The lower DS1–3, middle DS4–5 and upper DS6 represent three depositional sequential sets (DSS1–3). These eastward prograding and westward retrograding recurring shallow‐marine depositional systems may reflect third‐ and fourth‐order relative sealevel changes, in terms of sequence stratigraphy.  相似文献   

13.
The Upper Triassic Langjiexue Group in southeastern Tibet has long been an enigmatic geological unit. It belongs tectonically to the northern Tethys Himalayan zone, but provenance signatures of the detritus it contains are significantly different from those of typical Tethys Himalayan sandstones. Because the Langjiexue Group is everywhere in fault contact with Tethys Himalayan strata, its original paleogeographic position has remained controversial for a long time. According to some researchers, the Langjiexue Group was deposited onto the northern edge of the Indian passive continental margin, whereas others interpreted it as an independent block accreted to the northern Indian margin only during final India-Asia convergence and collision in the Paleocene. This study compares the Langjiexue Group and coeval Upper Triassic strata of the southern Tethys Himalayan zone(Qulonggongba Formation). Our new provenance data indicate that Qulonggongba Formation sandstones contain common felsic volcanic rock fragments, minor plagioclase, and euhedral to subhedral zircon grains yielding Late Paleozoic to Triassic ages. These provenance features compare well with those of the Langjiexue Group. Because the Qulonggongba Formation certainly belongs to the Tethys Himalayan zone, the provenance similarity with the Langjiexue Group indicates that the latter is also an in situ Tethys Himalayan sedimentary sequence rather than part of an exotic block. Volcanic detritus including Late Paleozoic to Triassic zircon grains in both Langjiexue Group and Qulonggongba Formation are interpreted to have been derived from the distant Gondwanide orogen generated by Pan-Pacific subduction beneath the southeastern margin of Gondwana. The Qulonggongba Formation, deposited above marlstones of the lower Upper Triassic Tulong Group, is overlain by India-derived coastal quartzose sandstones of the uppermost Triassic Derirong Formation. Deposition of both the Qulonggongba Formation and the Langjiexue Group were most likely controlled by regional tectonism, possibly a rifting event along the northern margin of Gondwana.  相似文献   

14.
Wang  ZhenQi  Zhi  DongMing  Zhang  ChangMin  Xue  XinKe  Zhang  ShangFeng  Li  TianMing  Yang  Fei  Liu  LouJun  Cheng  Liang  Lu  Dong  Zhou  FengJuan  Chen  YuanYong 《中国科学:地球科学(英文版)》2010,52(1):106-114

Well che89, located in the Chepaizi area in the northwest margin of Junggar basin, acquires high production industrial oil flow, which is an important breakthrough in the exploration of the south foreland slope area of Junggar basin. The Chepaizi area is near two hydrocarbon generation depressions of Sikeshu and Shawan, which have sets of hydrocarbon source rock of Carboniferous to Jurassic as well as Upper Tertiary. Geological and geochemical parameters are proper for the accumulation of mixed source crude oil. Carbon isotope, group composition and biomarkers of crude oil in Upper Tertiary of well Che89 show that the features of crude oil in Upper Tertiary Shawan Formation are between that of Permian and Jurassic, some of them are similar to these two, and some are of difference, they should be the mixed source of Permian and Jurassic. Geochemical analysis and geological study show that sand extract of Lower Tertiary Wulunguhe Formation has the same source as the crude oil and sand extract of Upper Tertiary Shawan Formation, but they are not charged in the same period. Oil/gas of Wulunguhe Formation is charged before Upper Tertiary sedimentation, and suffered serious biodegradation and oxidation and rinsing, which provide a proof in another aspect that the crude oil of Upper Tertiary Shawan Formation of well Che89 is not from hydrocarbon source rock of Lower Tertiary.

  相似文献   

15.
An exceptionally well-exposed, ancient, intra-arc basin in the Permian Takitimu Group of New Zealand contains 14 km of interbedded primary volcanic and marine volcaniclastic rocks of basaltic to rhyodacitic composition. These are the products of subaerial and submarine arc volcanism and closely associated turbidite sedimentation. The Takitimu oceanic arc/basin setting formed a dynamic closed sedimentary system in which large volumes of volcaniclastic material generated at the arc was rapidly redeposited in marine basins flanking the eruptive centres. Volcanism probably included (1) moderate- to deep-water extrusion of lava and deposition of hyaloclastite, (2) extrusive and explosive eruptions from shallow marine to marginally emergent volcanoes in or on the margin of the basin, and (3) Plinian and phreato-Plinian eruptions from more distant subaerial vents along the arc. Much of the newly erupted material was rapidly transported to the adjacent marine basin by debris flows, slumping and sliding. Hemipelagic sedimentation predominated on the outer margin of the basin, infrequently interrupted by deposition of ash from the most explosive arc volcanism and the arrival of extremely dilute turbidites. Turbidite sedimentation prevailed in the remainder of the basin, producing a thick prograding volcaniclastic apron adjacent to the arc. The volcaniclastic strata closely resemble classic turbidite deposits, and show similar lateral facies variations to submarine fan deposits. Study of such sequences provides insight into poorly understood processes in modern arc-related basins.  相似文献   

16.
The Lower Triassic Xikou Formation in southwestern Fujian, China is a set of complex deep-water sediments which includes turbidites, sandy contourites and isolated olistoliths. Five facies and seven subfacies are recognized in the deep-water turbidites, which are considered to belong to five facies associations of upper, middle and lower fans, respectively. The sandy contourites, which occur within turbidites as isolated thin layers with structures of traction current, are formed by reworking turbidites. They occur in discrete units, not as a part of a vertical sequence of structures, such as Bouma sequence. Paleocurrent directions derived from sandy contourites are perpendicular to or at a large angle of those derived from turbidites. In some areas, within the Formation there exist large oolitic limestone blocks slided from shallow sea. The temporal-spatial distribution of three types of sediments mentioned above and the related evidences could indicate that a passive continental margin from shallow sea to bathyal-abyssal region, dipping toward southeast, once occurred in study area during the early Triassic. The early Triassic represents a period of sealevel uprising. The uprising of sea level and the development of isolated olistoliths probably imply gradual shrinking of an ocean basin at that time. Project supported by the National Natural Science Foundation of China (Grant Nos. 49490011, 49702036).  相似文献   

17.
This paper examined sequence‐stratigraphic features of a gravelly fluvial system of the Iwaki Formation, which developed in a forearc‐basin setting in Northeast Japan during the Eocene through Oligocene. On the basis of three‐dimensional architectural element analysis, we discriminated three major cycles of channel complexes, which contain ten component channel deposits in total in the fluvial succession. Component channel deposits in the uppermost part of each cycle are sandier and associated with overbank muddy deposits and coal beds as compared with those in the lower part of the cycle. Mean clast‐size also decreases upsection in the entire gravelly fluvial deposits. The fluvial succession is interpreted to have been deposited in response to an overall rise in relative sea level that was superimposed by three short‐term relative sea‐level rises on the basis of vertical stacking patterns and component lithofacies features of channel deposits, and of correlation of the fluvial succession with an age‐equivalent marine succession in an area about 50 km offshore. However, geometry and stacking patterns of the channel complexes do not exhibit any distinct temporal variation and amalgamated channel and bar deposits are dominant throughout the transgressive fluvial succession. On the other hand, an overall fining‐upward pattern of the entire Iwaki Formation fluvial deposits in association with three component fining‐upward patterns is distinct, and is interpreted to be consistent with the tenet of the standard fluvial sequence‐stratigraphic models. This indicates that the present example represents one type of variation in the standard fluvial sequence‐stratigraphic models, possibly reflecting the forearc‐basin setting, which is generally represented by higher valley slope, higher shedding of coarse‐grained sediments, and shorter longitudinal profiles to the coastal area as compared with a passive‐continental‐margin setting.  相似文献   

18.
Sequence stratigraphy which began in the late seventies of the previous century has not only enriched and widened the scope of stratigraphy, but also has been widely used in sedimentary geology, basin analy-sis, exploration of oil and gas, and other fields of ge-ology. In the last two decades and more, sequence stratigraphy, as a new branch of stratigraphical disci-pline, has become a cornerstone of modern stratigra-phy, and has produced more profound influences than all others. The currently …  相似文献   

19.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

20.

Triassic sequences in both the western Qinling and Songpan terrane are composed mostly of deep-marine sediments. A detailed study was carried out on main sedimentary facies of Triassic successions, showing that they resulted from diverse sedimentary processes, such as submarine debris-flows, turbidity currents, bottom-flows, suspension fallout, and fluidized sediment flows. Debris-flows are dividable into two types, gravelly and sandy debris-flows, respectively, and the sandy debris-flow deposits make up considerable portion of the Triassic successions concerned. Turbidite is characterized by occurrence of normal grading, and the whole Bouma sequences, though widely developed, are not totally attributed to true turbidity currents. The non-graded Ta division is thought to originate from sandy debris flows, whereas the rest divisions result from low-density currents or from bottom-current modification if they contain sedimentary structures related to traction currents. Four types of facies associations are distinguished within Triassic deep-marine successions: massive and thick-bedded coarse-grained facies association, medium- and thick-bedded sandstone with interlayered fine-grained facies association, interlayered thin-bedded fine-grained facies association, and syn-sedimentary slump/breccia facies association. Spatial distribution of the different facies associations suggests that Lower Triassic sedimentation occurred primarily in continental slope, submarine channels, and base-of-slope aprons in the Hezuo-Jianzha region of the western Qinling, whereas the Middle Triassic consists mainly of sedimentary facies of base-of-slope aprons and submarine incised valleys. The counterparts in the Dangchang-Diebu region, in contrast, are characterized by platform carbonates. The shallow-marine carbonates evolved into deep-marine facies since the Ladinian, indicative of rapid drowning of the Carnian carbonate platform in Middle Triassic times. Depositional history of Lower Triassic and lower portion of Middle Triassic successions in the northern Songpan terrane is similar to that of the Dangchang-Diebu region of the western Qinling, as manifested by development of Lower-early Middle Triassic shallow-marine carbonate and a rapid shift to base-of-slope apron sediments since the Ladinian.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号