首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
A new mineral, mariinskite, BeCr2O4, the chromium analog of chrysoberyl, has been found at the Mariinsky (Malyshevo) deposit, the Ural Emerald Mines, the Central Urals, Russia. The mineral is named after its type locality. It was discovered in chromitite in association with fluorphlogopite, Cr-bearing muscovite, eskolaite, and tourmaline. Mariinskite occurs as anhedral grains ranging from 0.01 to 0.3 mm in size; in some cases it forms pseudohexagonal chrysoberyl-type twins. The mineral is dark-green, with a pale green streak; the Mohs’ hardness is 8.5, microhardness VHN = 1725 kg/mm2. D meas = 4.25(2) g/cm3, D calc = 4.25 g/cm3. Microscopically, it is emerald-green, pleochroic from emerald-green (γ) to yellow-green (β) and greenish yellow (α). The new mineral is biaxial (+), γ = 2.15(1), β = 2.09(3), and α = 2.05(1), 2V meas = 80 ± (10)°, 2V calc = 80.5°. In reflected light, it is gray with green reflections; R max (589) = 12.9%; R min (589) = 12.3%, and there are strong, internal green reflections. The strongest absorption bands in the IR spectrum are as follows (cm?1): 935, 700, 614, 534. Space group Pnma, a = 9.727(3), b = 5.619(1), c = 4.499(1) Å, V = 245.9(3) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern are as follows (d Å, I, hkl): 4.08(40)(101), 3.31(90)(111), 2.629(50)(301), 2.434(50)(220), 2.381(40)(311), 2.139(60)(221), 1.651(100)(222). The average chemical composition of mariinskite (electron microprobe, wt %) is as follows: BeO 16.3, Al2O3 23.89, Cr2O3 58.67, Fe2O3 0.26, V2O3 0.26, TiO2 0.61, total is 99.98. The empirical formula, calculated on the basis of four O atoms is Be1.03(Cr1.22Al0.74Ti0.01Fe0.01V0.01)1.99O4. The compatibility index 1 ? (Kp/Kc), 0.019, is excellent. The type specimens are deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, and the Ural Geological Museum, Yekaterinburg, Russia.  相似文献   

2.
The crystal structure (R = 0.0194) of arcanite β-K2SO4 was studied on a single crystal from exhalations of the Arsenatnaya fumarole, Tolbachik Volcano (Kamchatka, Russia). The mineral crystallizes at a temperature of ≥350–430°C and associates with langbeinite, aphthitalite, hematite, tenorite, johillerite, and others. Arcanite is orthorhombic, Pnma, a = 7.4763(2) Å, b = 5.77262(16) Å, c = 10.0630(3) Å, V = 434.30(2) Å3, Z = 4. Its structure contains isolated SO4 tetrahedra, whereas K cations center ten- and nine-fold polyhedra.  相似文献   

3.
Avdoninite, a new mineral species, has been found together with euchlorite, paratacamite, atacamite, belloite, and langbeinite hosted in exhalation sediments of the Yadovitaya fumarole in the Second Cinder Cone at the Northern Breach of the Great Fissure Tolbachik Eruption, Tolbachik volcano, Kamchatka Peninsula, Russia. Avdoninite occurs as imperfect, short prismatic and thick tabular crystals up to 0.2 mm long, with (001) and (100) forms, crystal aggregates, and pseudomorphs (together with atacamite) after melanothallite observed. The new mineral is brittle, with the Mohs hardness 3 (for aggregates). Density is 3.03 g/cm3 (meas.) and 3.066 g/cm3 (calc.). Avdoninite is biaxial and optically neutral, with α = 1.669, β = 1.688, γ = 1.707, 2V = ?90°. Dispersion is not observed. Optical orientation: Y = c, X = b? Pleochroism is absent. The infrared spectrum suggests the presence of water molecules in avdoninite. Electron microprobe chemical analysis has given (wt %) K2O 11.94 (±0.4), CuO 51.43 (±0.7), Cl 37.07 (±0.6), H2O (determined by the Penfield method) 6.9, ?O=Cl2 ?8.37, total 98.97. The empirical formula is K1.96Cu5.00Cl8.09(OH)3.87. · 1.03H2O. Avdoninite is monoclinic, space group P2/m, P2, or Pm; a = 24.34(2) Å, b = 5.878(4) Å, c = 11.626(5) Å, β = 93.3(1)°, V = 1660.6(20) Å3, Z = 4. The compatibility index is good: 1 ? K p/K c = 0.056 for D calc and 0.044 for D meas. The strongest lines in the X-ray powder diffraction pattern (d, Å (I, %) (hkl)) are 11.63(100)(001), 5.88(20)(010), 5.80(27)(002), 5.73(17)(\(\overline 1 \)02), 2.518(19)(21\(\overline 4 \)), 2.321(17)(005). Avdoninite is identical to a technogenic analogue previously described from the Blyava volcanic-hosted massive sulfide deposit, Orenburg oblast, Russia. The new mineral is named after Vladimir Nikolaevich Avdonin (born 1925), a senior researcher of the Ural Geological Museum of the Ural State Mining University. The type material of avdoninite from Kamchatka is deposited in the Mineralogical Museum of the Department of Mineralogy, St. Petersburg State University, St. Petersburg, Russia. The registration number is 19175.  相似文献   

4.
Lammerite-β, Cu3(AsO4)2, occurs as a product of the post-eruption fumarole activity of the second cinder cone of the North breach of the Great Fissure Tolbachik eruption in 1975–1976, Kamchatka Peninsula, Russia. Sporadic light to dark green splinter-shaped grains are no larger than 0.15 mm in size. Cleavage is not observed. The mechanical admixture of finely dispersed hematite forms condensed brownish spots that are occasionally zonal relative to the contours of the lammerite-β grains. Associated minerals are euchlorine, piypite, alumoklyuchevskite, alarsite, and lammerite. Lammerite-β is brittle and transparent and has vitreous luster. The calculated density is 5.06 g/cm3. The mineral is not pleochroic, biaxial (+), α = 1.887(5), β = 1.936(5), γ = 2.01(1), 2V(calc.) = 80.9°; dispersion is strong, r < v. The new mineral is monoclinic, the space group is P21/c, a = 6.306(1), b = 8.643(1), c = 11.310(1) Å, β = 92.26(1)°, V = 615.9(1) Å3, and Z = 4. Characteristic reflections in the X-ray powder diffraction pattern (I-d-hkl) are 100-2.83-004, 10-5.65-002, and 10-4.32-020. The chemical composition is as follows, wt %: 51.30 CuO, 0.32 ZnO, 49.12 As2O3, with a total of 100.74 wt %. The empirical and idealized formulas are Cu3.00Zn0.02As1.99O8 and Cu3(AsO4)2, respectively.  相似文献   

5.
The new mineral sardignaite, a bismuth molybdate with formula BiMo2O7(OH)·2H2O, occurs in quartz veins within a granitic rock at Su Senargiu, near Sarroch, Sardegna, Italy. The name is after the locality. Sardignaite occurs a thin prismatic crystals up to 1 mm in length, with pale yellow color and a white streak. It is transparent with adamantine lustre, non fluorescent, and brittle with a conchoidal fracture. It is associated with bismuthinite, bismoclite, molybdenite, ferrimolybdite, koechlinite, wulfenite, and the new mineral IMA 2009–022. Mohs hardness is ca. 3. D calc is 4.82 g/cm3. The mineral is monoclinic, space group P21/m, with a 5.7797(7), b 11.567(1), c 6.3344(8) Å, β 113.360(9)°, V 388.8(1) Å3. The strongest lines in the powder X-ray diffraction pattern are d(I)(hkl): 3.206(100)(031), 5.03(80)(?101), 1.992(45)(221), 3.120(32)(130). The crystal structure of sardignaite was solved to R(F) 0.056 using single-crystal X-ray diffraction data, and is characterized by edge-sharing dimers of [MoO5(H2O)] octahedra, linked to each other through corner-sharing to give rise to corrugated columns running along b. Such columns are held together by Bi3+ cations, eight-fold coordinated by 7 O + 1 (OH). Both the mineral and its name were approved by the IMA-CNMNC.  相似文献   

6.
Xitieshanite is a new ferric sulfate mineral discovered in the oxidation zone of a Pb-Zn deposit at Xitieshan, Qinghai Province, China. The typical crystal of xitieshanite is a rhombic rectangle. It is bright green in colour with a light yellow tint. Luster vitrous Translucent to almost transparent. Streak yellow. Cleavage imperfect. Fracture uneven or conchoidal. H. (Vickers)=62.6kg/mm2. Specific gravity=1.99obs(2.02calc,) Pleochroism strong, and axial colours: X=colourless to pale yellow, Y=pale yellow, Z=light yellow with greenish tint. It is optically positive, biaxial, 2V=77°,r v. Refractive indices:N x =1.536,N y =1.570,N z =1.628. Extinction parallel and inclined. Elongation positive and negative. X-ray single-crystal study shows it is monoclinic. Space groupP21/a. Unit cell parameters:a=14.102,b=6.908,c=10.673 Å, β=111.266°,V=968.9, Å3,Z=4. The powder pattern of xitieshanite gave the strongest lines: 6.67(6)(201), 6.09(5)(110), 5.69(5)(011), 4.96(10)(002), 4.81(10)(211), 4.21(5)(112), and 3.90(9)(211). Chemical analysis gave Al2O3 0.01, Fe2O3 26.15, FeO 0.18, MgO 0.03, CaO 0.09, K2O 0.03, Na2O 0.07, SO3 27.69, H2O 45.02, total 99.27%, corresponding to the chemical formula: Fe2+ (SO4)(OH) · 7H2O. The DTA curve shows respectively three strong endothermic peaks at 85°, 170°, and 735°C, and a weak peak at 460°C. The TGA curve shows a loss of weight in three different steps. The infrared spectral curve of xitieshanite demonstrates that it has two principal absorption bands at 3,350 and 1,225–1,003 cm?1 and two subordinate bands at 1,620 and 603 cm?1.  相似文献   

7.
Hydroxylborite, a new mineral species, an analogue of fluoborite with OH > F, has been found at the Titovsky deposit (57°41′N, 125°22′E), the Chersky Range, Dogdo Basin, Sakha-Yakutia Republic, Russia. Prismatic crystals of the new mineral are dominated by the {10\(\overline 1 \)0} faces without distinct end forms and reach (1?1.5) × (0.1?0.2) mm in size. Radial aggregates of such crystals occur in the mineralized marble adjacent to the boron ore (suanite-kotoite-ludwigite). Calcite, dolomite, Mg-rich ludwigite, kotoite, szaibelyite, clinohumite, magnetite, serpentine, and chlorite are associated minerals. Hydroxylborite is transparent colorless, with a white streak and vitreous luster. The new mineral is brittle. The Mohs’ hardness is 3.5. The cleavage is imperfect on {0001}. The density measured with equilibration in heavy liquids is 2.89(1) g/cm3; the calculated density is 2.872 g/cm3. The wave numbers of the absorption bands in the IR spectrum of hydroxylborite are (cm?1; sh is shoulder): 3668, 1233, 824, 742, 630sh, 555sh, 450sh, and 407. The new mineral is optically uniaxial, negative, ω = 1.566(1), and ε = 1.531(1). The chemical composition (electron microprobe, H2O measured with the Penfield method, wt %) is 18.43 B2O3, 65.71 MgO, 10.23 F, 9.73 H2O, 4.31-O = F2, where the total is 99.79. The empirical formula calculated on the basis of 6 anions pfu is as follows: Mg3.03B0.98[(OH)2.00F1.00]O3.00. Hydroxylborite is hexagonal, and the space group is P63/m. The unit-cell dimensions are: a = 8.912(8) Å, c = 3.112(4) Å, V = 214.05(26) Å3, and Z = 2. The strongest reflections in the X-ray powder pattern [d, Å (I, %)(hkil)] are: 7.69(52)(01\(\overline 1 \)0), 4.45(82)(11\(\overline 2 \)0), 2.573(65)(03\(\overline 3 \)0), 2.422(100)(02\(\overline 2 \)1), and 2.128(60)(12\(\overline 3 \)1). The compatibility index 1 ? (K p/K c) is 0.038 (excellent) for the calculated density and 0.044 (good) for the measured density. The type material of hydroxylborite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow (inventory number 91968) and the Geological Museum of the All-Russia Institute of Mineral Resources, Moscow (inventory number M-1663).  相似文献   

8.
The paper describes the first finding of quintinite [Mg4Al2(OH)12][(CO3)(H2O)3] at the Mariinsky deposit in the Central Urals, Russia. The mineral occurs as white tabular crystals in cavities within altered gabbro in association with prehnite, calcite, and a chlorite-group mineral. Quintinite is the probable result of late hydrothermal alteration of primary mafic and ultramafic rocks hosting emerald-bearing glimmerite. According to electron microprobe data, the Mg: Al ratio is ~2: 1. IR spectroscopy has revealed hydroxyl and carbonate groups and H2O molecules in the mineral. According to single crystal XRD data, quintinite is monoclinic, space group C2/m, a =5.233(1), b = 9.051(2), c = 7.711(2) Å, β = 103.09(3)°, V = 355.7(2) Å3. Based on structure refinement, the polytype of quintinite should be denoted as 1M. This is the third approved occurrence of quintinite-1M in the world after the Kovdor complex and Bazhenovsky chrysotile–asbestos deposit.  相似文献   

9.
Aqualite, a new eudialyte-group mineral from hydrothermally altered peralkaline pegmatites of the Inagli alkaline pluton (Sakha-Yakutia, Russia) is described in this paper. Natrolite, microcline, eckermanite, aegirine, batisite, innelite, lorezenite, thorite, and galena are associated minerals. Aqualite occurs as isometric crystals up to 3-cm across. The color is pale pink, with a white streak and vitreous luster. The mineral is transparent. The fracture is conchoidal. The mineral is brittle; no cleavage or parting is observed. The Mohs’ hardness is 4 to 5. The density is 2.58(2) g/cm3 (measured by the volumetric method) and 2.66 g/cm3 (calculated). Aqualite is optically uniaxial (+), α = 1.569(1) and β = 1.571(1). The mineral is pleochroic from colorless to pale pink on X and pink on Y, α < β. Aqualite is weakly fluorescent with a dull yellow color under ultraviolet light. The mineral is stable in 50% HCl and HNO3 at room temperature. Weight loss after ignition at 500°C is 9.8%. Aqualite is monoclinic, and the space group is R3. The unit-cell dimensions are a = 14.078(3) Å, c = 31.24(1) Å, V = 5362 Å3, and Z = 3. The strongest reflections in the X-ray powder pattern [d, Å (I)(hkl)] are: 4.39(100)(2005), 2.987(100)(315), 2.850(79)(404), 10.50(44)(003), 6.63(43)(104), 7.06(42)(110), 3.624(41)(027), and 11.43(39)(101). The chemical composition (electron microprobe, H2O determined with the Penfield method) is as follows (wt %): 2.91 Na2O, 1.93 K2O, 11.14 CaO, 1.75 SrO, 2.41 BaO, 0.56 FeO, 0.30 MnO, 0.17 La2O3, 0.54 Ce2O3, 0.36 Nd2O3, 0.34 Al2O3, 52.70 SiO2, 12.33 ZrO2, O.78 TiO2, 0.15 Nb2O5; 1.50 Cl, 9.93 H2O,-O=Cl2 0.34; where the total is 99.46. The empirical formula calculated on the basis of Si + Zr + Ti + Al + Nb = 29 apfu is as follows: [(H3O)7.94Na2.74K1.20Sr0.49Ba0.46Fe0.23Mn0.12]Σ13.18(Ca5.79REE0.19)Σ5.98 (Zr2.92Ti0.08)Σ3.0(Si25.57Ti0.21Al0.19Nb0.03)S26.0[O66.46(OH)5.54]Σ72.0 [(OH)2.77Cl1.23]Σ4.0. The simplified formula is (H3O)8(Na,K,Sr)5Ca6Zr3Si26O66(OH)9Cl. Aqualite differs from typical eudialyte by the extremely low contents of Na and Fe, with more than 50% Na being replaced with the (H3O)+ group. The presence of oxonium ions is confirmed by IR spectroscopic and X-ray single-crystal diffraction analysis. The mineral is compared with five structurally studied high-oxonium analogues from alkaline plutons of other regions. All of these minerals were formed at a relatively low temperature through the ion-exchange transformation of “protoeudialytes”; the successor minerals inherited the principal structural and compositional features of the precursor minerals. The name aqualite is derived from the Latin aqua in reference to its specific chemical composition. The type material of aqualite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

10.
Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm?1; sh is shoulder; w is a weak band): 3525sh, 3425, 3180, 1642, 1120w, 1070w, 1035w, 900sh, 874, 833, 820, 690w, 645w, 600sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) (X = c) 2V means = 10(8)°, and 2V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu 1.93 2+ Al1.97Mg0.04Fe 0.02 2+ [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128–140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O molecules per formula; and parameter c decreases from 22.78 to 18.77 Å. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)((hkl)] are: 22.8(100)(001), 11.36(60)(002), 5.01(90)(200), 3.38(5)(123, 205), 2.780(70)(026), 2.682(30)(126), 2.503(50)(400), 2.292(20)(404). The type material of attikaite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. The registration number is 3435/1.  相似文献   

11.
A new mineral, lahnsteinite, has been found in the dump of the Friedrichssegen Mine, Bad Ems district, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Lahnsteinite, occurring as colorless tabular crystals in the cavities of goethite, is associated with pyromorphite, hydrozincite, quartz, and native copper. The Mohs’ hardness is 1.5; the cleavage is perfect parallel to (001). D calc = 2.995 g/cm3, D meas = 2.98(2) g/cm3. The IR spectrum is given. The new mineral is optically biaxial, negative, α = 1.568(2), β = 1.612(2), γ = 1.613(2), 2V meas = 18(3)°, 2V calc = 17°. The chemical composition (wt %, electron microprobe data; H2O was determined by gas chromatography of ignition products) is as follows: 3.87 FeO, 1.68 CuO, 57.85 ZnO, 15.83 SO3, 22.3 H2O, total is 101.53. The empirical formula is (Zn3.3Fe0.27Cu0.11)Σ3.91(S0.98O4)(OH)5 · 3H2.10O. The crystal structure has been studied on a single crystal. Lahnsteinite is triclinic, space group P1, a = 8.3125(6), b = 14.545(1), c = 18.504(2) Å, α = 89.71(1), β = 90.05(1), γ = 90.13(1)°, V = 2237.2(3) Å3, Z = 8. The strong reflections in the X-ray powder diffraction pattern [d, Å (I, %)] are: 9.30 (100), 4.175 (18), 3.476 (19), 3.290 (19), 2.723 (57), 2.624 (36), 2.503 (35), 1.574 (23). The mineral has been named after its type locality near the town of Lahnstein. The type specimen of lahnsteinite is deposited in the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, registration number 4252/1.  相似文献   

12.
A new mineral aklimaite, Ca4[Si2O5(OH)2](OH)4 · 5H2O, has been found near Mount Lakargi, Upper Chegem caldera, Kabardino-Balkaria, the Northern Caucasus, Russia, in the skarnified limestone xenolith in ignimbrite. This hydrothermal mineral occurs in a cavity of altered larnite skarn and is associated with larnite, calcium humite-group members, hydrogarnets, bultfonteinite, afwillite, and ettringite. Aklimaite forms transparent, colorless (or occasionally with pinkish tint) columnar or lath-shaped crystals up 3 × 0.1 × 0.01 mm in size, flattened on {001} and elongated along {010}; they are combined in spherulites. The luster is vitreous; the cleavage parallel to the {001} is perfect. D calc = 2.274 g/cm3. The Mohs’ hardness is 3–4. Aklimaite is optically biaxial, negative, 2V meas > 70°, 2V calc = 78°, α = 1.548(2), β = 1.551(3), γ = 1.553(2). The IR and Raman spectra are given. The chemical composition (wt %, electron microprobe) is as follows: 0.06 Na2O, 0.02 K2O, 45.39 CaO, 0.01 MnO, 0.02 FeO, 24.23 SiO2, 0.04 SO3, 3.22 F, 27.40 H2O(calc.), ?1.36 -O=F2; the total is 99.03. The empirical formula calculated on the basis of 2Si apfu with O + OH + F = 16 is as follows: (Ca4.02Na0.01)Σ4.03[Si2.00O5.07(OH)1.93][(OH)3.16F0.84] Σ4.00 · 5H2O. The mineral is monoclinic, space group C2/m, a = 16.907(5), b = 3.6528(8), c = 13.068(4) Å, β = 117.25(4)·, V= 717.5(4) Å3, Z = 2. Aklimaite is representative of the new structural type, the sorosilicate with disilicate groups [Si2O5(OH)2]. The strongest reflections in the X-ray powder patterns [d, Å (hkl)] are: 11.64(100)(001), 2.948(32)(310, 203), 3.073(20) ( $\bar 404$ , $\bar 311$ ), 2.320(12)(005, 510), 2.901 (11)(004), 8.30(10) $\left( {\bar 201} \right)$ . The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

13.
Xinganite is a new REE-Be-rich silicate discovered in China. Its ideal formula is: (Y, Ce)Be SiO4 OH. The mineral is of monoclinic system. The intensity data were collected with a single-crystal four-circle diffractometer. The lattice parameters are: a=4.7681 (± 0.00263) Å,b=7.7657 (± 0.00686) Å, c=9.9301 (± 0.00639) Å; α =90°, β=90.171° (±0.0053°), γ=90° space group p21/c;,Z=4. The crystal structure has been determined by direct methods and electron density synthesis methods. The least squares refinement gave a final discrepancy indexR=0.086. The crystal structural analysis shows that xinganite is of datolite-type structure.  相似文献   

14.
The crystal structure of the unstable mineral alumoklyuchevskite K3Cu3AlO2(SO4)4 [monoclinic, I2, a = 18.772(7), b = 4.967(2), c = 18.468(7) Å, β = 101.66(1)°, V = 1686(1) Å] was refined to R 1 = 0.131 for 2450 unique reflections with F ≥ 4σF hkl. The structure is based on oxocentered tetrahedrons (OAlCu 3 7+ ) linked into chains via edges. Each chain is surrounded by SO4 tetrahedrons forming a structural complex. Each complex is elongated along the b axis. This type of crystal structure was also found in other fumarole minerals of the Great Tolbachik Fissure Eruption (GTFE, Kamchatka Peninsula, Russia, 1975–1976), klyuchevskite, K3Cu3Fe3+O2(SO4)4; and piypite, K2Cu2O(SO4)2.  相似文献   

15.
Batisivite has been found as an accessory mineral in the Cr-V-bearing quartz-diopside metamorphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. A new mineral was named after the major cations in its ideal formula (Ba, Ti, Si, V). Associated minerals are quartz, Cr-V-bearing diopside and tremolite; calcite; schreyerite; berdesinskiite; ankangite; V-bearing titanite; minerals of the chromite-coulsonite, eskolaite-karelianite, dravite-vanadiumdravite, and chernykhite-roscoelite series; uraninite; Cr-bearing goldmanite; albite; barite; zircon; and unnamed U-Ti-V-Cr phases. Batisivite occurs as anhedral grains up to 0.15–0.20 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black and opaque, with a black streak and resinous luster. Batisivite is white in reflected light. The microhardness (VHN) is 1220–1470 kg/mm2 (load is 30 g), the mean value is 1330 kg/mm2. The Mohs hardness is near 7. The calculated density is 4.62 g/cm3. The new mineral is weakly anisotropic and bireflected. The measured values of reflectance are as follows (λ, nm—R max /R min ): 440—17.5/17.0; 460—17.3/16.7; 480—17.1/16.5; 500—17.2/16.6; 520—17.3/16.7; 540—17.4/16.8; 560—17.5/16.8; 580—17.6/16.9; 600—17.7/17.1; 620—17.7/17.1; 640—17.8/17.1; 660—17.9/17.2; 680—18.0/17.3; 700—18.1/17.4. Batisivite is triclinic, space group P \(\overline 1\); the unit-cell dimensions are: a = 7.521(1) Å, b = 7.643(1) Å, c = 9.572(1) Å, α = 110.20°(1), β = 103.34°(1), γ = 98.28°(1), V = 487.14(7) Å3, Z = 1. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)(hkl)] are: 3.09(8)(12\(\overline 2\)); 2.84, 2.85(10)(021, 120); 2.64(8)(21\(\overline 3\)); 2.12(8)(31\(\overline 3\)); 1.785(8)(32\(\overline 4\)), 1.581(10)(24\(\overline 2\)); 1.432, 1.433(10)(322, 124). The chemical composition (electron microprobe, average of 237 point analyses, wt %) is: 0.26 Nb2O5, 6.16 SiO2, 31.76 TiO2, 1.81 Al2O3, 8.20 VO2, 26.27 V2O3, 12.29 Cr2O3, 1.48 Fe2O3, 0.08 MgO, 11.42 BaO; the total is 99.73. The VO2/V2O3 ratio has been calculated. The simplified empirical formula is (V 4.8 3+ Cr2.2V 0.7 4+ Fe0.3)8.0(Ti5.4V 0.6 4+ )6.0[Ba(Si1.4Al0.5O0.9)]O28. An alternative to the title formula could be a variety (with the diorthogroup Si2O7) V8Ti6[Ba(Si2O7)]O22. Batisivite probably pertains to the V 8 3+ Ti 6 4+ [Ba(Si2O)]O28-Cr 8 3+ Ti 6 4+ [Ba(Si2O)]O28 solid solution series. The type material of batisivite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

16.
Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2V meas = 50(10)°, 2V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe 0.53 2+ Mn0.38Mg0.08)Σ0.99(Ti2.44Fe 0.80 3+ Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [d, Å (I, %) (hkl)]: 5.19 (40) (110), 3.53 (40) ( $\overline 3 $ 11), 2.96 (100) ( $\overline 3 $ 13, 311), 2.80 (50) (020), 2.14 (50) ( $\overline 4 $ 22, $\overline 3 $ 15, 313), 1.947 (50) (024, 223), 1.657 (40) ( $\overline 4 $ 07, $\overline 4 $ 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.  相似文献   

17.
A series of fluoride perovskites related to neighborite was investigated using X-ray and neutron diffraction techniques, and Rietveld profile refinement of powder diffraction data. The series (Na1? x K x )MgF3 comprises orthorhombic (Pbnm, a?≈? , b?≈? , c?≈?2a p , Z=4) perovskites in the compositional range 0?≤?x?≤?0.30, tetragonal perovkites (P4/mbm, a?≈? , c?≈?a p , Z=2) in the range 0.40?≤?x?≤?0.46, and cubic phases (Pmm, Z=1) for x?>?0.50. The structure of the orthorhombic neighborite is derived from the perovskite aristotype by rotation of MgF6 octahedra about the [110] and [001] axes of the cubic subcell. The degree of rotation, measured as a composite tilt Φ about the triad axis, varies from 18.2° at x=0 to 11.2° at x=0.30 (as determined from the fractional atomic coordinates). Orthorhombic neighborite also shows a significant displacement of Na and K from the “ideal” position (≤0.25?Å). The tetragonal members of the neighborite series exhibit only in-phase tilting about the [001] axis of the cubic subcell (φ) ranging from 4.5° to 4.8° (determined from the atomic coordinates). The solid solution (Na1? x K x )MgF3, shows a regular variation of unit-cell dimensions with composition from 3.8347?Å for the end-member NaMgF3 (reduced to pseudocubic subcell, a p ) to 3.9897?Å for KMgF3. This variation is accompanied by increasing volumes of the A-site polyhedra, whereas the volume of MgF6 octahedra initially decreases (up to x=0.40), and then increases concomitantly with K content. The polyhedral volume ratio, V A /V B , gradually increases towards the tetragonal structural range, in agreement with diminishing octahedral rotation in the structure. The P4/mbm-type neighborite has an “anomalous” polyhedral volume ratio (ca. 5.04) owing to the critical compression of MgF6 polyhedra.  相似文献   

18.
A new mineral of the neptunite group, magnesioneptunite KNa2Li(Mg,Fe)2Ti2Si8O24, a Mg-dominant analogue of neptunite and manganoneptunite, has been found in the Upper Chegem caldera near Mount Lakargi, Kabardino-Balkaria, the North Caucasus, Russia in a xenolith of altered sandstone located between skarnified carbonate xenoliths and ignimbrite. Magnesioneptunite occurs as nearly isometric grains and aggregates up to 0.1 mm in size in the cores of some grains of a Mg-rich variety of neptunite with Mg/(Fe + Mn) = 0.7?1.0. The chemical composition of magnesioneptunite with a maximum Mg content is as follows, wt %: 3.63 K2O, 8.21 Na2O, 1.73 Li2O, 6.47 MgO, 0.04 MnO, 5.87 FeO, 0.07 Al2O3, 18.73 TiO2, 56.88 SiO2, 99.62 in total. The empirical formula is (K0.67Na0.32Ca0.01)Σ1.00Na2.06Li1.00 · (Mg1.39Fe 0.71 2+ )Σ2.10(Si7.90Al0.01)Σ7.91O24. Grains of magnesioneptunite are dark brown to red-brown, translucent, with vitreous luster. D calc = 3.15 g/cm3, and the Mohs hardness is 5–6. Cleavage parallel to the (110) is perfect. The new mineral is optically biaxial, positive, α = 1.697(2), β = 1.708 (3), γ = 1.725(3), 2V meas = 45(15)°. The mineral is associated with quartz, alkali feldspar, rutile, aegirine, and neptunite. Magnesioneptunite and the Mg-rich variety of neptunite were formed as products of ilmenite alteration. Magnesioneptunite is monoclinic, C2/c; unit-cell parameters: a = 16.327(7), b = 12.4788(4), c = 9.9666(4) Å, β = 115.6519(5)°, V = 1830.5(1) Å3, Z = 4. The type specimen is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.  相似文献   

19.
Chesnokovite, a new mineral species, is the first natural sodium orthosilicate. It has been found in an ussingite vein uncovered by underground mining at Mt. Kedykverpakhk, Lovozero alkaline pluton, Kola Peninsula, Russia. Natrolite, sodalite, vuonnemite, steenstrupine-(Ce), phosinaite-(Ce), natisite, gobbinsite, villiaumite, and natrosilite are associated minerals. Chesnokovite occurs as intergrowths with natrophospate in pockets up to 4 × 6 × 10 cm in size consisting of chaotic segregations of coarse lamellar crystals (up to 0.05 × 1 × 2 cm in size) flattened along [010]. The crystals are colorless and transparent. The aggregates are white to pale brownish yellowish, with a white streak and a vitreous luster. The cleavage is perfect parallel to (010) and distinct to (100) and (001). The fracture is stepped. The Mohs’ hardness is 2.5. The measured density is 1.68 g/cm3; the density calculated on the basis of an empirical formula is 1.60 g/cm3 and 1.64 g/cm3 on the basis of an idealized formula. The new mineral is optically biaxial, positive, α = 1.449, β = 1.453, γ = 1.458, 2V meas = 80°, and Z = b. The infrared spectrum is given. The chemical composition (Si determined with electron microprobe; Na, K, and Li, with atomic emission analysis; and H2O, with the Alimarin method) is as follows, wt %: 21.49 Na2O, 0.38 K2O, 0.003 Li2O, 21.42 SiO2, 54.86 H2O, total is 98.153. The empirical formula calculated on the basis of O2(OH)2 is as follows: (Na1.96K0.02)Σ1.98Si1.005O2(OH)2 · 7.58H2O. The simplified formula (Z = 8) is Na2[SiO2(OH)2] · 8H2O. The new mineral is orthorhombic, and the space group is Ibca. The unit-cell dimensions are: a = 11.7119, b = 19.973, c = 11.5652 Å, and V = 2299.0 Å3. The strongest reflections in the X-ray powder pattern [d, Å (I, %)(hkl)] are: 5.001(30)(211), 4.788(42)(022), 3.847(89)(231), 2.932(42)(400), 2.832(35)(060), 2.800(97)(332, 233), and 2.774(100)(341, 143, 114). The crystal structure was studied using the Rietveld method, R p = 5.77, R wp = 7.77, R B = 2.07, and R F = 1.74. The structure is composed of isolated [SiO2(OH)2] octahedrons and the chains of edge-shared [Na[H2O)6] octahedrons. The Si and Na polyhedrons are linked only by H-bonds, and this is the cause of the low stability of chesnokovite under atmospheric conditions. The new mineral is named in memory of B.V. Chesnokov (1928–2005), an outstanding mineralogist. The type material of chesnokovite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

20.
A new mineral, günterblassite, has been found in the basaltic quarry at Mount Rother Kopf near Gerolstein, Rheinland-Pfalz, Germany as a constituent of the late assemblage of nepheline, leucite, augite, phlogopite, åkermanite, magnetite, perovskite, a lamprophyllite-group mineral, götzenite, chabazite-K, chabazite-Ca, phillipsite-K, and calcite. Günterblassite occurs as colorless lamellar crystals up to 0.2 × 1 × 1.5 mm in size and their clusters. The mineral is brittle, with perfect cleavage parallel to (001) and less perfect cleavage parallel to (100) and (010). The Mohs hardness is 4. The calculated and measured density is 2.17 and 2.18(1) g/cm3, respectively. The IR spectrum is given. The new mineral is optically biaxial and positive as follows: α = 1.488(2), β = 1.490(2), γ = 1.493(2), 2V meas = 80(5)°. The chemical composition (electron microprobe, average of seven point analyses, H2O is determined by gas chromatography, wt %) is as follows: 0.40 Na2O, 5.18 K2O, 0.58 MgO, 3.58 CaO, 4.08 BaO, 3.06 FeO, 13.98 Al2O3, 52.94 SiO2, 15.2 H2O, and the total is 98.99. The empirical formula is Na0.15K1.24Ba0.30Ca0.72Mg0.16F 0.48 2+ [Si9.91Al3.09O25.25(OH)3.75] · 7.29H2O. The crystal structure has been determined from a single crystal, R = 0.049. Günterblassite is orthorhombic, space group Pnm21; the unit-cell dimensions are a = 6.528(1), b = 6.970(1), c = 37.216(5) Å, V = 1693.3(4) Å3, Z = 2. Günterblassite is a member of a new structural type; its structure is based on three-layer block [Si13O25(OH,O)4]. The strong reflections in the X-ray powder diffraction pattern [d Å (I, %) are as follows: 6.532 (100), 6.263 (67), 3.244 (49), 3.062 (91), 2.996 (66), 2.955 (63), and 2.763 (60). The mineral was named in honor of Günter Blass (born in 1943), a well-known amateur mineralogist and specialist in electron microprobe and X-ray diffraction. The type specimen of günterblassite is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, with the registration number 4107/1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号