首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150–200 °C isobaric temperature range at 5–6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure.

Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a “cratonic” geotherm (40 mW m−2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at 1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U–Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592–618].

The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at 150 Ma to the southeast of the craton, propagating to the west by 108–74 Ma, the craton interior by 85–90 Ma and the far southwest and northwest by 65–70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30–100 Ma earlier and are probably connected.

Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture.  相似文献   


2.
This paper reports a new 1° × 1° global thermal model for the continental lithosphere (TC1). Geotherms for continental terranes of different ages (> 3.6 Ga to present) constrained by reliable data on borehole heat flow measurements (Artemieva, I.M., Mooney, W.D. 2001. Thermal structure and evolution of Precambrian lithosphere: a global study. J. Geophys. Res 106, 16387–16414.), are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low-quality heat flow data (ca. 60% of the continents). These data are supplemented by cratonic geotherms based on electromagnetic and xenolith data; the latter indicate the existence of Archean cratons with two characteristic thicknesses, ca. 200 and > 250 km. A map of tectono-thermal ages of lithospheric terranes complied for the continents on a 1° × 1° grid and combined with the statistical age relationship of continental geotherms (z = 0.04  t + 93.6, where z is lithospheric thermal thickness in km and t is age in Ma) formed the basis for a new global thermal model of the continental lithosphere (TC1). The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle, with the strongest lateral temperature variations (as large as 800 °C) in the shallow mantle. A map of the depth to a 550 °C isotherm (Curie isotherm for magnetite) in continental upper mantle is presented as a proxy to the thickness of the magnetic crust; the same map provides a rough estimate of elastic thickness of old (> 200 Ma) continental lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle.Statistical analysis of continental geotherms reveals that thick (> 250 km) lithosphere is restricted solely to young Archean terranes (3.0–2.6 Ga), while in old Archean cratons (3.6–3.0 Ga) lithospheric roots do not extend deeper than 200–220 km. It is proposed that the former were formed by tectonic stacking and underplating during paleocollision of continental nuclei; it is likely that such exceptionally thick lithospheric roots have a limited lateral extent and are restricted to paleoterrane boundaries. This conclusion is supported by an analysis of the growth rate of the lithosphere since the Archean, which does not reveal a peak in lithospheric volume at 2.7–2.6 Ga as expected from growth curves for juvenile crust.A pronounced peak in the rate of lithospheric growth (10–18 km3/year) at 2.1–1.7 Ga (as compared to 5–8 km3/year in the Archean) well correlates with a peak in the growth of juvenile crust and with a consequent global extraction of massif-type anorthosites. It is proposed that large-scale variations in lithospheric thickness at cratonic margins and at paleoterrane boundaries controlled anorogenic magmatism. In particular, mid-Proterozoic anorogenic magmatism at the cratonic margins was caused by edge-driven convection triggered by a fast growth of the lithospheric mantle at 2.1–1.7 Ga. Belts of anorogenic magmatism within cratonic interiors can be caused by a deflection of mantle heat by a locally thickened lithosphere at paleosutures and, thus, can be surface manifestations of exceptionally thick lithospheric roots. The present volume of continental lithosphere as estimated from the new global map of lithospheric thermal thickness is 27.8 (± 7.0) × 109 km3 (excluding submerged terranes with continental crust); preserved continental crust comprises ca. 7.7 × 109 km3. About 50% of the present continental lithosphere existed by 1.8 Ga.  相似文献   

3.
Andrew A. Nyblade 《Lithos》1999,48(1-4):81-91
Studies of heat flow from Precambrian terrains have demonstrated three empirical relationships; a temporal relationship between heat flow and tectonic age, a spatial pattern between heat flow and the proximity of Archean cratons, and a temporal relationship between heat flow and the age of lithosphere stabilization. In the first relationship, heat flow is inversely related to tectonic age. The second pattern is characterized by low heat flow from Archean cratons and Proterozoic terrains adjacent to cratonic margins (pericratonic terrains), and higher heat flow from Proterozoic terrains that are more than a few hundred kilometers from a craton. In the third pattern, heat flow decreases as the age of stabilization of the lithosphere increases. A number of interpretations of Precambrian heat flow have been offered to explain one or more of these relationships. The simple cooling of a thermal boundary layer predicts essentially no change in heat flow in terrains older than 1.5 Ga, and therefore does not likely provide a comprehensive framework for the interpretation of Precambrian heat flow. By contrast, two other interpretations, (1) thicker lithosphere beneath Archean terrains than beneath Proterozoic terrains, and (2) greater heat production in Proterozoic crust than in Archean crust, when combined with the special structural configuration of sutures, can both contribute to the spatial and temporal heat flow distributions. Xenolith thermobarometry constraints on lithospheric temperatures, however, limit the contribution of age-dependent crustal heat production, and therefore at least part of the heat flow distributions derive from variations in lithosphere thickness.  相似文献   

4.
华北克拉通中生代破坏前的岩石圈地幔与下地壳   总被引:23,自引:11,他引:12  
翟明国 《岩石学报》2008,24(10):2185-2204
华北克拉通是世界上最古老的克拉通之一,有 38亿年的古老陆壳存在,它经历了复杂的地质变迁,在太古宙末(约2500Ma)基本完成克拉通化,在古元古代(约1900~1850Ma)整体受到了高级变质作用,最终完成了克拉通化。它的东部在中生代发生了重大的构造机制的转变,克拉通基底发生了破坏、置换和再造。在太行山重力梯度带以西的华北克拉通受中生代构造转折的改造程度较低,它们的下地壳和岩石圈地幔结构,大致保持了华北克拉通破坏前的状态。前寒武纪麻粒岩地体代表了掀翻抬升到地表的古元古代下地壳,出露地表的时间大致在1850~1800Ma。中、新生代火山岩中的地幔和麻粒岩捕虏体代表了现代的岩石圈地幔和下地壳的岩石。岩石学、地球化学和地球物理的研究,推测华北克拉通西部的岩石圈厚约200km,地壳厚度约45km~50km,是在古元古代(约1.9Ga)时期终极克拉通化作用形成的,其厚度和结构与全球典型的元古宙克拉通岩石圈相同。而太行山重力梯度带以东的克拉通岩石圈地幔受到程度不等的交代、改造、置换和减薄,下地壳大规模重熔,地壳厚度也发生减薄,指示了强烈的壳幔解耦、物质交换和重新耦合的过程。  相似文献   

5.
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide.  相似文献   

6.
Lower crustal xenoliths recovered from Eocene to Cambrian kimberlites in the central and southern Slave craton are dominated by mafic granulites (garnet, clinopyroxene, plagioclase±orthopyroxene), with subordinate metatonalite and peraluminous felsic granulites. Geothermobarometry indicates metamorphic conditions of 650–800 °C at pressures of 0.9–1.1 GPa. The metamorphic conditions are consistent with temperatures expected for the lower crust of high-temperature low-pressure (HT-LP) metamorphic belts characteristic of Neoarchean metamorphism in the Slave craton. U–Pb geochronology of zircon, rutile and titanite demonstrate a complex history in the lower crust. Mesoarchean protoliths occur beneath the central Slave supporting models of an east-dipping boundary between Mesoarchean crust in the western and Neoarchean crust in the eastern Slave. At least, two episodes of igneous and metamorphic zircon growth occurred in the interval 2.64–2.58 Ga that correlate with the age of plutonism and metamorphism in the upper crust, indicating magmatic addition to the lower crust and metamorphic reworking during this period. In addition, discrete periods of younger zircon growth at ca. 2.56–2.55 and 2.51 Ga occurred 20–70 my after the cessation of ca. 2.60–2.58 Ga regional HT-LP metamorphism and granitic magmatism in the upper crust. This pattern of younger metamorphic events in the deep crust is characteristic of the Slave as well as other Archean cratons (e.g., Superior). The high temperature of the lower crust immediately following amalgamation of the craton, coupled with evidence for continued metamorphic zircon growth for >70 my after ‘stabilization’ of the upper crust, is difficult to reconcile with a thick (200 km), cool lithospheric mantle root beneath the craton prior to this event. We suggest that thick tectosphere developed synchronously or after these events, most likely by imbrication of mantle beneath the craton at or after ca. 2.6 Ga. The minimum age for establishing a cratonic like geotherm is given by lower crustal rutile ages of ca. 1.8 Ga in the southern Slave. Transient heating and possible magmatic additions to the lower crust continued through the Proterozoic, with possible additional growth of the tectosphere.  相似文献   

7.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   

8.
高山  刘勇胜 《地学前缘》2003,10(3):61-67
测定了辽宁复县奥陶纪金伯利岩和河北汉诺坝与山东栖霞第三纪碱性玄武岩中产出的地幔包体的Re Os同位素组成。金伯利岩中地幔包体的Re贫化Os同位素模式年龄 (TRD)为 2 .5~ 2 .8Ga ,从Re Os同位素定年角度证明了华北克拉通确实存在太古宙岩石圈地幔。对汉诺坝二辉橄榄岩包体获得了 (1.9± 0 .18)Ga的Re Os同位素等时线年龄 ,表明现今保存在那里的地幔主要是古元古代时形成的。汉诺坝地区出露有大量新太古代岩石 ,表明曾存在太古宙地幔。由于缺乏太古宙年龄 ,说明由汉诺坝所代表的克拉通中部曾存在的太古宙地幔在古元古代时已被减薄 ,并被 1.9Ga的新生岩石圈地幔置换。该事件与华北克拉通中部广泛的古元古代碰撞造山过程导致的麻粒岩相变质作用的时代相同 ,说明有关的岩石圈置换作用可能主要与拆沉作用有关。栖霞地幔包体具有与现代对流地幔相同的Os同位素组成 ,且Os同位素组成与Re/Os比值没有明显相关性 ,表明年龄很新。结合其它地质地球化学证据 ,说明克拉通东部的太古宙岩石圈地幔的置换作用主要发生在中生代 ,且可能与三叠纪华北和扬子陆块的陆陆碰撞造山导致的岩石圈地幔和下地壳的拆沉作用有关。本研究表明华北克拉通岩石圈地幔置换作用在时空上的分布是十分不均一的。 2 .5~ 2 .8Ga与 1.9Ga不仅?  相似文献   

9.
The ages of subcontinental lithospheric mantle beneath the North China and South China cratons are less well-constrained than the overlying crust. We report Re–Os isotope systematics of mantle xenoliths entrained in Paleozoic kimberlites and Mesozoic basalts from eastern China. Peridotite xenoliths from the Fuxian and Mengyin Paleozoic diamondiferous kimberlites in the North China Craton give Archean Re depletion ages of 2.6–3.2 Ga and melt depletion ages of 2.9–3.4 Ga. No obvious differences in Re and Os abundances, Os isotopic ratios and model ages are observed between spinel-facies and garnet-facies peridotites from both kimberlite localities. The Re–Os isotopic data, together with the PGE concentrations, demonstrate that beneath the Archean continental crust of the eastern North China Craton, Archean lithospheric mantle of spinel- to diamond-facies existed without apparent compositional stratification during the Paleozoic. The Mesozoic and Cenozoic basalt-borne peridotite and pyroxenite xenoliths, on the other hand, show geochemical features indicating metasomatic enrichment, along with a large range of the Re–Os isotopic model ages from Proterozoic to Phanerozoic. These features indicate that lithospheric transformation or refertilization through melt-peridotite interaction could be the primary mechanism for compositional changes during the Phanerozoic, rather than delamination or thermal-mechanical erosion, despite the potential of these latter processes to play an important role for the loss of garnet-facies mantle. A fresh garnet lherzolite xenolith from the Yangtze Block has a Re depletion age of ∼1.04 Ga, much younger than overlying Archean crustal rocks but the same Re depletion ages as spinel lherzolite xenoliths from adjacent Mesozoic basalts, indicating Neoproterozoic resetting of the Re–Os system in the South China Craton.  相似文献   

10.
New U–Pb geochronology for an extensive exposure of high-pressure granulites in the East Lake Athabasca region of the western Canadian shield is consistent with a history characterized by 2.55 Ga stabilization of cratonic lithosphere, 650 million years of lower crustal residence and cratonic stability, and 1.9 Ga reactivation of the craton during lithospheric attenuation and asthenospheric upwelling. High precision single-grain and fragment zircon data define distinctive discordia arrays between 2.55 and 1.9 Ga. U–Pb ion microprobe spot analyses yield a similar range of U–Pb dates with no obvious correlation between date and cathodoluminescence zonation. We attribute the complex U–Pb zircon systematics to growth of the primary populations during a 2.55 Ga high-pressure granulite facies event (~1.3 GPa, 850°C) recorded by the dominant mineral assemblage of the mafic granulite gneisses, with subsequent zircon recrystallization and minor secondary zircon growth during a second high-pressure granulite facies event (1.0 GPa, ~800°C) at 1.9 Ga. The occurrence of two discrete granulite facies metamorphic events in the lower crust, separated by an interval of 650 million years that included isobaric cooling for at least some of this time, suggests that the rocks resided at lower crustal depths until 1.9 Ga. We infer that this phase of lower crustal residence and little tectonic activity is coincident with an extended period of cratonic stability. Detailed structural and thermochronological datasets indicate that multistage unroofing of the lower crustal rocks occurred in the following 200 million years. Extended lower crustal residence would logically be the history inferred for lower crust in most cratonic regions, but the unusual aspect of the history in the East Lake Athabasca region is the subsequent lithospheric reactivation that initiated transport of the lower crust to the surface. We suggest that a weakened strength profile related to the 1.9 Ga heating left the lithosphere susceptible to far-field tectonic stresses from bounding orogens that drove the lower crustal exhumation. An ultimate return to cratonic stability is responsible for the preservation of this extensive lower crustal exposure since 1.7 Ga.  相似文献   

11.
Nd-evolutionary paths for diversified igneous suites from southern Brazil are here re-evaluated using published results. We interpret the εNd paths considering the secondary fractionation of 147Sm/144Nd due to major petrogenetic processes. The inclusion of Nd isotopes and geochemical data for Precambrian and Mesozoic basic rocks allow improving the discussion on the subcontinental lithosphere beneath southern Brazil. Late Neoproterozoic rocks, mostly granitoids, are exposed in two regions of the southern Brazilian shield, an eastern collisional belt and a western foreland. The latter included two geotectonic domains amalgamated at this time, the São Gabriel Arc (900–700 Ma), and the Taquarembó cratonic block. Magma genesis mainly involved mixture of crustal and incompatible-element-enriched mantle components, both with a long residence time. Continental segments are the Neoarchaean–Paleoproterozoic lower crust (ca. 2.55 Ga) in the western foreland, and Paleoproterozoic–Neoproterozoic recycled crust (2.1–0.8 Ga) in the collisional belt. Granitoids with a single crustal derivation are limited in the southern Brazilian Shield. Mixing processes are well-registered in the western foreland, where the re-enriched old mantle was probably mixed with a 900–700 Ma-old subducted lithosphere and a 2.55 Ga-old lower crust. The contribution of the latter increased from the early 605–580 Ma to the later 575–550 Ma Neoproterozoic events, which may be due either to crustal thickening or to delamination of the lithosphere. Magma sources were diversified in the 660–630 Ma collisional belt. Initially, they involved the mixing between two components with similar Nd isotopic ratios, a 2.1–0.8 Ga-old recycled crust and a subduction-processed old mantle. Regional heating and abundant production of granitic melts, with diversified contribution of enriched mantle components, mark the end of the collisional period, at 630–580 Ma. We can also attribute this to the delamination of the lithosphere, so that the same geodynamic process may explain the magmatism in the whole shield at the end of the Dom Feliciano Orogeny. Mesozoic rocks include flood basalts from the Cretaceous Paraná Province and sub-coeval alkalic suites. Multiple processes of metasomatism affected the lithospheric mantle, resulting in some complexity but they mainly register two enriched-mantle components, both generated during Neoarchaean–Paleoproterozoic events. One end-member has a more pronounced subduction signature. The other one probably resulted from the re-enrichment of the first component at the end of the Camboriú collisional orogeny (2.0 Ga).  相似文献   

12.
Whole-rock Sm–Nd isotope systematics of 79 Archean granitoids from the eastern Kaapvaal craton, southern Africa, are used to delineate lithospheric boundaries and to constrain the timescale of crustal growth, assembly and geochemical differentiation c. 3.66–2.70 Ga. Offsets in εNd values for 3.2–3.3 Ga granitoids across the Barberton greenstone belt (BGB) are consistent with existing models for c. 3.23 Ga accretion of newly formed lithosphere north of the BGB onto pre-existing c. 3.66 Ga lithosphere south of the BGB along a doubly verging subduction margin. The Nd isotopic signature of c. 3.3–3.2 Ga magmatic rocks show that significant crustal growth occurred during subduction–accretion. After c. 3.2 Ga, however, the Nd signature of intrusive rocks c. 3.1 and 2.7 Ga is dominated by intracrustal recycling rather than by new additions from the mantle, signalling cratonic stability.  相似文献   

13.
The thermal structure and thickness of continental roots   总被引:19,自引:0,他引:19  
C. Jaupart  J. C. Mareschal 《Lithos》1999,48(1-4):93-114
We compare heat flow data from the Precambrian shields in North America and in South Africa. We also review data available in other less well-sampled Shield regions. Variations in crustal heat production account for most of the variability of the heat flow. Because of this variability, it is difficult to define a single average crustal model representative of a whole tectonic province. The average heat flow values of different Archean provinces in Canada, South Africa, Australia and India differ by significant amounts. This is also true for Proterozoic provinces. For example, the heat flow is significantly higher in the Proterozoic Namaqua–Natal Belt of South Africa than in the Grenville Province of the Canadian Shield (61 vs. 41 mW m−2 on average). These observations indicate that it is not possible to define single value of the average heat flow for all provinces of the same crustal age. Large amplitude short wavelength variations of the heat flow suggest that most of the difference between Proterozoic and Archean heat flow is of crustal origin. In eastern Canada, there is no good correlation between the local values of heat flow and heat production. In the Archean, Proterozoic and Paleozoic provinces of eastern Canada, heat flow values through rocks with the same heat production are not significantly different. There is therefore no evidence for variations of the mantle heat flow beneath these different provinces. After removing the local crustal heat production from the surface heat flow, the mantle (Moho) heat flow was estimated to be between 10–15 mW m−2 in the Archean, Proterozoic and Paleozoic provinces of eastern Canada. Estimates of the mantle heat flow in the Kaapvaal craton of South Africa may be slightly higher (≈17 mW m−2). Large-scale variations of bulk crustal heat production are well-documented in Canada and imply significant differences of deep lithospheric thermal structure. In thick lithosphere, surficial heat flow measurements record a time average of heat production in the lithospheric mantle and are not in equilibrium with the instantaneous heat production. The low mantle heat flow and current estimates of heat production in the lithospheric mantle do not support a mechanical (conductive) lithosphere thinner than 200 km and thicker than 330 km. Temperature anomalies with surrounding oceanic mantle extend to the convective boundary layer below the conductive layer, and hence to depths greater than these estimates. Mechanical and thermal stability of the lithosphere require the mantle part of the lithosphere to be chemically buoyant and depleted in radiogenic elements. Both characteristics are achieved simultaneously by partial melting and melt extraction.  相似文献   

14.
Zircons from granulite xenoliths entrained in a Late Cretaceous mafic dike in the Jiaodong Peninsula, North China Craton (NCC), show three distinct U-Pb age populations. Part of the old zircon grains yield discordant data that project to ages of about 2.4 to 2.5 Ga, a few grains indicate growth at about 2.0 Ga and a third group yield Cretaceous ages with peaks at 120 and 90 Ma. The oldest zircons give Hf TDM model ages of 2.6-2.8 Ga. These results demonstrate the existence of original Archean lower crust in the Jiaodong region. Zircons of 2.0 Ga have similar Hf TDM model ages as the Neoarchean-Paleoproterozoic grains, suggesting that these zircons were products of metamorphic recrystallization due to thermal event without juvenile input. Early Cretaceous zircons yield εHf(t) values of − 21 to − 12 and Late Cretaceous zircons large variable εHf(t) from + 4 to − 50. These data suggest that magmatic underplating occurred in the Neoarchean to Earliest Proterozoic lower crust of the NCC, both in the Early and Late Cretaceous. It is suggested that the Mesozoic magma underplating, which also provided the heat source for the voluminous Mesozoic magmatism in the NCC, significantly modified the composition of the Archean to Paleoproterozoic lower crust of the NCC.  相似文献   

15.
Nd model ages(TDM) of the Pre-Mesozoic crustal rock samples from Southeast China range from 1.2 to 3.5Ga.Two age peaks of 1.4Ga and 1.8 Ga are observed in the histogram of TDM model ages.Available U-Pb zircon inheritance ages are concentrated around 1.2-1.4Ga,1.8Ga and 2.5Ga,respectively.The combined use of Sm-Nd and U-Pb zircon inheritance ages suggests that the formation of the Precambrian curst is of episodic character.The oldest crustal nucleus may have been formed during the Late Archean(2.5Ga or older?).A rapid production of the crust took place 1.8 Ga ago,consistent with the global crust formation event at 1.7-1.9Ga.Another important episode of the addition of juvenile crustal material from the mantle in Southeast China took place 1.2-1.4Ga ago,during which the pre-existing crust was strongly reworked and/or remelted.  相似文献   

16.
The concentrations of platinum-group elements (PGE; Os, Ir, Ru, Pd and Pt) and Re, and the Os isotopic compositions were determined for 33 lithospheric mantle peridotite xenoliths from the Somerset Island kimberlite field. The Os isotopic compositions are exclusively less radiogenic than estimates of bulk-earth (187Os/188Os as low as 0.1084) and require a long-term evolution in a low Re–Os environment. Re depletion model ages (TRD) indicate that the cratonic lithosphere of Somerset Island stabilised by at least 2.8 Ga, i.e. in the Neoarchean and survived into the Mesozoic to be sampled by Cretaceous kimberlite magmatism. An Archean origin also is supported by thermobarometry (Archean lithospheric keels are characterised by >150 km thick lithosphere), modal mineralogy and mineral chemistry observations. The oldest ages recorded in the lithospheric mantle beneath Somerset Island are younger than the Mesoarchean (>3 Ga) ages recorded in the Slave craton lithospheric mantle to the southwest [Irvine, G.J., et al., 1999. Age of the lithospheric mantle beneath and around the Slave craton: a Rhenium–Osmium isotopic study of peridotite xenoliths from the Jericho and Somerset Island kimberlites. Ninth Annual V.M. Goldschmidt Conf., LPI Cont., 971: 134–135; Irvine, G.J., et al., 2001. The age of two cratons: a PGE and Os-Isotopic study of peridotite xenoliths from the Jericho kimberlite (Slave craton) and the Somerset Island kimberlite field (Churchill Province). The Slave–Kaapvaal Workshop, Merrickville, Ontario, Canada]. Younger, Paleoproterozoic, TRD model ages for Somerset Island samples are generally interpreted as the result of open system behaviour during metasomatic and/or magmatic processes, with possibly the addition of new lithospheric material during tectono-thermal events related to the Taltson–Thelon orogen. PGE patterns highly depleted in Pt and Pd generally correspond to older Archean TRD model ages indicating closed system behaviour since the time of initial melt extraction. Younger Proterozoic TRD model ages generally correspond to more complex PGE patterns, indicating open system behaviour with possible sulfide or melt addition. There is no correlation between the age of the lithosphere and depth, at Somerset Island.  相似文献   

17.
论燕山运动的深部地球动力学本质   总被引:109,自引:0,他引:109  
对中国东部新生代玄武岩及其包体的矿物学、岩 石学和地球化学研究的总结发现,中国东部在燕山期主要表现为岩石圈的减薄,并在其东部 出现软流圈地幔与地壳直接接触的独特地质现象。早先应该存在的古老岩石圈地幔大多由于 拆沉作用而不复存在,现今岩石圈 地幔主体是在燕山晚期及其以后形成的。因此,中国东部燕山运动的本质就是岩石圈的减薄 乃至岩石圈地幔的消失。研究认为,这种岩石圈减薄的触发因素可能与当时东侧大洋板块的 俯冲有关。软流圈地幔与地壳直接接触的动力学效应是产生强烈的岩浆板底垫托作用及相伴 随的深部地壳的高温变质作用和部分熔融作用,形成巨量岩浆的侵位与喷发,并造成新生地 壳的显著增生和原有地壳的重新调整。同时,这种地球动力学过程将携带大量地幔物质(包 括成矿物质)进入地壳,并形成地壳尺度的大规模流体循环,从而产生大面积、突发性的巨 量成矿作用。  相似文献   

18.
Syenites from the Barrel Spring pluton were emplaced in the Early Proterozoic Mojave crustal provine of southeastern California at 1.42 Ga. All rocks, even the most mafic, are highly enriched in incompatible elements (e.g. K2O 4–12 wt%, Rb 170–370 ppm, Th 12–120 ppm, La 350–1500xchondrite, La/Ybn 35–100). Elemental compositions require an incompatible element-rich but mafic (or ultramafic) source. Trace element models establish two plausible sources for Barrel Spring magmas: (1) LREE enriched garnet websterite with accessory apatite±rutile (enriched lithospheric mantle), and (2) garnet amphibolite or garnet-hornblende granulite with enriched alkali basalt composition, also with accessory apatite±rutile (mafic lower crust). Nd and Pb isotopic ratios do not distinguish a crust vs mantle source, but eliminate local Mojave province crust as the principal one, and indicate that generation of the enriched source occurred several hundred million years before emplacement of the Barrel Spring pluton. 1.40–1.44 Ga potassic granites are common in southeastern California, suggesting a genetic link between the Barrel Spring pluton and the granites; however, although the same thermal regime was probably responsible for producing both the granitic and syentic magmas, elemental and isotopic compositions preclude a close relationship. Isotopic similarity of the Barrel Spring pluton to 1.40–1.44 Ga granites emplaced in the Central Arizona crustal province to the east may imply that a common component was present in the lithosphere of these generally distinct regions.  相似文献   

19.
Recent tectonic analysis suggests that the North China Craton consists of two Archean continental blocks, called the Eastern and Western Blocks, separated by the Paleoproterozoic Trans-North China Orogen. Although the published geochronological data are not sufficient to constrain the detailed tectonothermal evolution of the craton, the available Nd isotopic data show some important differences in Nd model ages between the tectonic units. The Eastern Block shows two main Nd model age peaks, one between 3.6 and 3.2 Ga and the other between 3.0 and 2.6 Ga. Limited Nd isotopic data from the Western Block show a large range of model ages between 3.2 and 2.4 Ga. These differences are consistent with the recently-proposed model.The Nd isotopic data from mantle-derived mafic rocks indicate that the mantle beneath the North China Craton was depleted in the Archean, consistent with major crustal growth during this period. In the Paleoproterozoic, however, the mantle-derived mafic rocks show negative εNd(t) values, implying crustal contamination. This may have resulted from subduction and collision between the Eastern and Western Block, implying that the mechanisms of crustal formation and evolution may have been different between the Archean and Paleoproterozoic.The North China Craton was re-activated by addition of mantle-derived magma into the lower crust in the late Mesozoic, resulting in rejuvenation of the lower crust. This indicates that underplating is also an important mechanism for continental addition, although in this case it may not equate to crustal growth, since it was preceded by removal of lithospheric mantle and possible some lower crust.  相似文献   

20.
The Rhine Rift System (RRS) forms part of the European Cenozoic Rift System (ECRIS) and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins. Crustal and lithospheric thicknesses range in the RRS area between 24–36 km and 50–120 km, respectively. We discuss processes controlling the transformation of the orogenically destabilised Variscan lithosphere into an end-Mesozoic stabilised cratonic lithosphere, as well as its renewed destabilisation during the Cenozoic development of ECRIS. By end-Westphalian times, the major sutures of the Variscan Orogen were associated with 45–60 km deep crustal roots. During the Stephanian-Early Permian, regional exhumation of the Variscides was controlled by their wrench deformation, detachment of subducted lithospheric slabs, asthenospheric upwelling and thermal thinning of the mantle-lithosphere. By late Early Permian times, when asthenospheric temperatures returned to ambient levels, lithospheric thicknesses ranged between 40 km and 80 km, whilst the thickness of the crust was reduced to 28–35 km in response to its regional erosional and local tectonic unroofing and the interaction of mantle-derived melts with its basal parts. Re-equilibration of the lithosphere-asthenosphere system governed the subsidence of Late Permian-Mesozoic thermal sag basins that covered much of the RRS area. By end-Cretaceous times, lithospheric thicknesses had increased to 100–120 km. Paleocene mantle plumes caused renewed thermal weakening of the lithosphere. Starting in the late Eocene, ECRIS evolved in the Pyrenean and Alpine foreland by passive rifting under a collision-related north-directed compressional stress field. Following end-Oligocene consolidation of the Pyrenees, west- and northwest-directed stresses originating in the Alps controlled further development of ECRIS. The RRS remained active until the Present, whilst the southern branch of ECRIS aborted in the early Miocene. Extensional strain across ECRIS amounts to some 7 km. Plume-related thermal thinning of the lithosphere underlies uplift of the Rhenish Massif and Massif Central. Lithospheric folding controlled uplift of the Vosges-Black Forest Arch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号